MATH 556: MATHEMATICAL STATISTICS I
PROBABILITY PRIMER

1. EVENTS AND THE SAMPLE SPACE

¢ An experiment is a one-off or repeatable process or procedure for which

(a) there is a well-defined set of (possible) outcomes
(b) the actual outcome is not known with certainty.

* A sample outcome, w, is precisely one of the (possible) outcomes of an experiment.

¢ The sample space, (2, of an experiment is the set of all (possible) outcomes.

(1is a set in the mathematical sense, so set theory notation can be used. For example, if the sample
outcomes are denoted w1, ws . . . ,, say, then the sample space of an experiment can be

- a FINITE list of sample outcomes, {w1, ...,w}
— an INFINITE list of sample outcomes, {wi,wa, ...}

- an INTERVAL or REGION of a real space, {w : w € A C R?}

* Anevent, I, is a designated collection of sample outcomes. Event F occurs if the actual outcome
of the experiment is one of this collection; for any event E, E C (2. Particular events are:

— the collection of all sample outcomes, 2,
— the collection of none of the sample outcomes, () (the empty set).

1.1. OPERATIONS IN SET THEORY

Consider events I/, F' C (). Then the three basic set theory operations are

UNION FUF “FE or I or both occur”
INTERSECTION ENF “both E and F occur”
COMPLEMENT E “FE does not occur”
Consider events F, F, G C Q.
COMMUTATIVITY FUF=FUFE
ENF=FNEFE
ASSOCIATIVITY FU(FUG)=(EUF)UG
EN(FNG)=(ENF)NG
DISTRIBUTIVITY EU(FNG)=(FEUF)N(EUG)
ENn(FUG)=(ENF)U(ENG)

DE MORGAN'SLAWS  (EUF) =E NF'
(ENF) =E UF
For k > 2 events, F1, Es, ..., E;, write

k k
U&:&umum and ﬂ&:&mmmm

i=1 =1

for the union and intersection of E1, E», ..., Ej, with a further extension for k infinite.



1.2. MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Events E and F are mutually exclusive if £ N F = (), that is, if events F and F cannot both occur. If
the sets of sample outcomes represented by E and F' are disjoint (have no common element), then E
and F' are mutually exclusive. Events F1, ..., E, C €) form a partition of event ' C ) if

(a) EiﬂEj:®fori7éj,i,j:1,...,k
k

(b) UEi=F
i=1

so that each element of the collection of sample outcomes corresponding to event F' is in one and only
one of the collections corresponding to events E1, ..., Ej.

1.3. SIGMA-ALGEBRAS

A (countable) collection of subsets, F , of sample space ), say F = {E1, E», ...}, is a sigma-algebra if
I QeF
(I) FeF=FE eF

(IIT) If E4, Es, ... € F, then

UEZ‘E}—.

i=1
If F is a sigma-algebra of subsets of 2, then

i 0erF
(11) If El, Ey € F, then

E\,Bbe F = E\UE,jeF = (E|UE) €F = ENEkcF

so F is also closed under intersection.

2. THE PROBABILITY FUNCTION
For an event £ C (), the probability that F occurs is written P(E).

Interpretation : P(.) is a set-function that assigns “weight” to collections of possible outcomes of an
experiment. There are many ways to think about precisely how this assignment is achieved;

¢ CLASSICAL : “Consider equally likely sample outcomes ...”
e FREQUENTIST : “Consider long-run relative frequencies ...”
* SUBJECTIVE : “Consider personal degree of belief ...”

or merely think of P(.) as a set-function.



3. PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space 2. Then probability function P(.) acts on a sigma-algebra F defined on
P:F—R
and satisfies the following properties:
() Let E € F. Then0 < P(E) < 1.
(II) P(Q) = 1.

(IIT) If Eq, Eo, ... are mutually exclusive events, then

P ( GE) = i P(E;).

3.1. COROLLARIES TO THE PROBABILITY AXIOMS
Forevents E, F C 2
1. P(E') = 1 — P(E), and hence P()) = 0.
2. If EC F,thenP(E) < P(F).
3. Ingeneral, P(FUF) =P(E)+P(F)-P(ENF).
4. P(ENF')=P(E)—P(ENF).
5. P(EUF) <P(E)+P(F).
6. P(ENF) >P(E) +P(F) — 1.
7. The general addition rule: let £, . .., E, be events in 2. Then

M) P(UEZ-) < ) P(E).
=1

i=1

(i) P (Ln) E) = Y P(E)- > P(E;NEj)+ Y P(ENE;NE) —...+(—1)”+1P<

i i<j i<j<k
(i) is known as Boole’s Inequality, and follows from 5.; for (ii), construct the events F; = E; and
i—1 !
F,=E;N (U Ek>
k=1

n n
fori =2,3,...,n. Then I, F5,..., F, are disjoint, and |J E; = |J Fj,s0
i=1 i=1

o (05) -+ (0r) - S
=1 =1 =1

Now, by the corollary above, for i = 2,3,...,n,

i—1 i—1
P(F;) =P(E;) - P <E N (U Ek>> =P(E;) - P (U (E; N Ek)>

k=1 k=1

and the result follows by recursive expansion of the second term fori = 2,3,...,n.

3



4. CONDITIONAL PROBABILITY

For events E, F C Q with P(E) > 0, the conditional probability that /" occurs given that E occurs is
written P(F|E), and is defined by
P(ENF)

P(E)

Thus P(E N F) = P(E)P(F|E), and in general, for events E1, ..., E,
P (

Independence: Events E and F' are mutually independent if

P(F|E) =

s.
Il ) =
_

Ez) = P(El)P(E2|E1)P(E3|E1 N Eg) .. P(Ek|E1 NEsN...N Ek—l)-

P(E|F) = P(E) so that P(E N F) = P(E)P(F)

Extension : Events E1, ..., E}, are independent if, for every subset of events of size | < k, indexed by

{i1,..., 0}, say,
l l
P| (M E, | =]]PE).
j=1 j=1

5. THE THEOREM OF TOTAL PROBABILITY

Let Ey, ..., Ej be a partition of 2, and let F' C Q. Then

k
P(F) = P(F|E)P(E;)

i=1
To see this, note that E1, ..., Ej form a partition of 2, and F' C (2, so
F =(FNE)U...U(FNE)
k k

= P(F) = ;P(FOEZ-) = ;P(F|EZ)P(EZ)

asEiﬂEj:@.

Extension: If we assume that Axiom III holds, that is, that P is countably additive, then the theorem
still holds, that is, if E, Eb, . .. are a partition of {2, and F' C 2, then

P(F) = iP(F NE;) = iP(F\Ei)P(EZ-)

if P(E;) > 0 for all .



6. BAYES THEOREM
Suppose E, F C Q, with P(E),P(F) > 0. Then

P(F|E)P(E)
P(F)

P(E|F) =
This follows by the identity
P(E|F)P(F)=P(ENF)=P(F|E)P(FE), soP(E|F)P(F)=P(F|E)P(E).

Extension: If F,. .., Ej are disjoint, with P(E;) > 0 for ¢ = 1,...,k, and form a partition of F' C €,

then
P(F|E;)P(E;)

2
ZP<F’Ei)P(Ei)

P(Ei|F) =

The extension to the countably additive (infinite) case also holds.

NOTE: in general, P(E|F) # P(F|E)

7. COUNTING TECHNIQUES

Suppose that an experiment has NV equally likely sample outcomes. If event E corresponds to a collec-
tion of sample outcomes of size n(E), then

so it is necessary to be able to evaluate n(£) and NV in practice.

7.1. THE MULTIPLICATION PRINCIPLE

If operations labelled 1, ..., r can be carried out in ny, ..., n, ways respectively, then there are

s
Hni:nl X oo X Ny
i=1
ways of carrying out the r operations in total.

Example 1 If each of r trials of an experiment has N possible outcomes, then there are N possible
sequences of outcomes in total. For example:

(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are
5% different ways of completing the exam.

(ii) There are 2™ subsets of m elements (as each element is either in the subset, or not in the subset,
which is equivalent to m trials each with two outcomes).



7.2. SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled 1,...,r such that the ith op-
eration involves selecting one of the items remaining after the first i — 1 operations have been carried
out. Let n; denote the number of ways of carrying out the ith operation, for ¢ = 1,...,r. Then

(a) Sampling with replacement : an item is returned to the collection after selection. Then n; = N
for all 4, and there are N" ways of carrying out the r operations.

(b) Sampling without replacement : an item is not returned to the collection after selected. Then
n; = N —i+ 1, and there are N(N — 1) ... (N —r + 1) ways of carrying out the r operations.

e.g. Consider selecting 5 cards from 52. Then
(a) leads to 525 possible selections, whereas

(b) leads to 52 x 51 x 50 x 49 x 48 possible selections

NOTE : The order in which the operations are carried out may be important
e.g. in a raffle with three prizes and 100 tickets, the draw {45, 19, 76} is different from {19, 76, 45}.

NOTE : The items may be distinct (unique in the collection), or indistinct (of a unique type in the
collection, but not unique individually). For example, the numbered balls in a lottery, or individual
playing cards, are distinct. However balls in the lottery are regarded as “WINNING” or “NOT WIN-
NING”, or playing cards are regarded in terms of their suit only, are indistinct.

7.3. PERMUTATIONS AND COMBINATIONS

¢ A permutation is an ordered arrangement of a set of items.

¢ A combination is an unordered arrangement of a set of items.

RESULT 1 The number of permutations of n distinct items is n! = n(n —1)...1.

RESULT 2 The number of permutations of r from n distinct items is, by the multiplication principle,

.:n(n—l)x...x(n—r—&—l)

If the order in which items are selected is not important, then

RESULT 3 The number of combinations of r from n distinct items is

|
cn = (”) =" (asP" =rlCM).

" r rl(n —r)!
-recall the Binomial Theorem, namely
" /n\ . )
n_ ipn—i
(a+0b)" = ;(i)a b
Then the number of subsets of m items can be calculated as follows; for each 0 < j < m, choose a

subset of j items from m. Then

Total number of subsets = Z <m> =(1+1"=2m
. J
7=0



If the items are indistinct, but each is of a unique type, say Type I, ..., Type « say, (the so-called Urn
Model) then, then a more general formula applies:

RESULT 4 The number of distinguishable permutations of n indistinct objects, comprising n; items of
typeifori=1,...,x1is
n!

nilng! ... 1!

Special Case : if k = 2, then the number of distinguishable permutations of the n; objects of type I, and
ny = n — ny objects of type Il is
n!
Ch,=—=
"2 myl(n—nq)!
Also, there are C;' ways of partitioning n distinct items into two “cells”, with 7 in one cell and n — r in
the other.

7.4. PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a
collection of sample outcomes of size n(E), then

Example 2 A True/False exam has 20 questions. Let £ = “16 answers correct at random”. Then

20
f f getting 1 f2 < >
P(E) = Number of ways of getting 16 o‘ut of 20 Corr‘ect _\16/ _ 0.0046
Total number of ways of answering 20 questions 220

Example 3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type
IT objects, and an experiment involving sampling five objects without replacement. Let E="precisely 2
Type I objects selected” We need to calculate N and n(E) in order to calculate P(E). In this case N is
the number of ways of choosing 5 from 30 items, and hence

N — (30)
5
To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and then
choosing 3 Type II objects from 20, and hence, by the multiplication rule,

o= (5)(5)

(5)

Therefore



This result can be obtained using a conditional probability argument; consider event F' C E, where F’
= “sequence of objects 11222 obtained”. Then

where Fj; = “type j object obtained ondraw i” i =1,...,5,j = 1,2. Then

10 9 201918
P(F) = P(F11)P(Fo1|Fi1) ... P(Es2|Fi1, For, Fao, Fag) = — — ———
(F) = P(F)P(Fo1|Fn) - . P(Fs2|Fuy, For, Faz, Fip) = 55055000 o
Now consider event G where G = “sequence of objects 12122 obtained”. Then
1020 9 1918
P(G)= s-onmsaman
(@) 3029 28 27 26

i.e. P(G) = P(F). In fact, any sequence containing two Type I and three Type II objects has this

S
probability, and there are <2> such sequences. Thus, as all such sequences are mutually exclusive,

10\ /20
p(z)— (P)10 0201918 _ \2/\3
- \2/3020282726 (30) ’

5

Example 4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II
objects, and an experiment involving sampling five objects with replacement. Let £/ = “precisely 2
Type I objects selected”. Again, we need to calculate N and n(F) in order to calculate P(E). In this
case N is the number of ways of choosing 5 from 30 items with replacement, and hence

N = 30°

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and 3 Type II
objects from 20 in any order. Consider such sequences of selection

Sequence Number of ways

11222 10x10x 20 x 20 x 20
12122 10x20x 10 x 20 x 20

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in 102203 ways.
As before there are C3 such sequences, and thus

5
102203
2)00

P(E) = <305

Again, this result can be obtained using a conditional probability argument; consider event F' C E,
where F' = “sequence of objects 11222 obtained”. Then

o= () (5)

as the results of the draws are independent. This result is true for any sequence containing two Type I
and three Type II objects, and there are C3 such sequences that are mutually exclusive, so

ne=(3) () ()

= 0.329.



