
MATH 556: MATHEMATICAL STATISTICS I

PROBABILITY PRIMER

1. EVENTS AND THE SAMPLE SPACE

• An experiment is a one-off or repeatable process or procedure for which

(a) there is a well-defined set of (possible) outcomes
(b) the actual outcome is not known with certainty.

• A sample outcome, ω, is precisely one of the (possible) outcomes of an experiment.

• The sample space, Ω, of an experiment is the set of all (possible) outcomes.
Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the sample
outcomes are denoted ω1, ω2 . . . ,, say, then the sample space of an experiment can be

– a FINITE list of sample outcomes, {ω1, . . . , ωk}

– an INFINITE list of sample outcomes, {ω1, ω2, . . .}

– an INTERVAL or REGION of a real space,
{
ω : ω ∈ A ⊆ Rd

}
• An event, E, is a designated collection of sample outcomes. Event E occurs if the actual outcome

of the experiment is one of this collection; for any event E, E ⊆ Ω. Particular events are:

– the collection of all sample outcomes, Ω,
– the collection of none of the sample outcomes, ∅ (the empty set).

1.1. OPERATIONS IN SET THEORY

Consider events E,F ⊆ Ω. Then the three basic set theory operations are

UNION E ∪ F “E or F or both occur”
INTERSECTION E ∩ F “both E and F occur”
COMPLEMENT E′ “E does not occur”

Consider events E,F,G ⊆ Ω.

COMMUTATIVITY E ∪ F = F ∪ E
E ∩ F = F ∩ E

ASSOCIATIVITY E ∪ (F ∪G) = (E ∪ F ) ∪G
E ∩ (F ∩G) = (E ∩ F ) ∩G

DISTRIBUTIVITY E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G)
E ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G)

DE MORGAN’S LAWS (E ∪ F )
′
= E

′ ∩ F
′

(E ∩ F )
′
= E

′ ∪ F
′

For k ≥ 2 events, E1, E2, . . . , Ek, write

k∪
i=1

Ei = E1 ∪ . . . ∪ Ek and
k∩

i=1

Ei = E1 ∩ . . . ∩ Ek

for the union and intersection of E1, E2, . . . , Ek, with a further extension for k infinite.
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1.2. MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Events E and F are mutually exclusive if E ∩ F = ∅, that is, if events E and F cannot both occur. If
the sets of sample outcomes represented by E and F are disjoint (have no common element), then E
and F are mutually exclusive. Events E1, . . . , Ek ⊆ Ω form a partition of event F ⊆ Ω if

(a) Ei ∩ Ej = ∅ for i ̸= j, i, j = 1, . . . , k

(b)
k∪

i=1
Ei = F

so that each element of the collection of sample outcomes corresponding to event F is in one and only
one of the collections corresponding to events E1, . . . , Ek.

1.3. SIGMA-ALGEBRAS

A (countable) collection of subsets, F , of sample space Ω, say F = {E1, E2, . . .}, is a sigma-algebra if

(I) Ω ∈ F

(II) E ∈ F =⇒ E′ ∈ F

(III) If E1, E2, . . . ∈ F , then
∞∪
i=1

Ei ∈ F .

If F is a sigma-algebra of subsets of Ω, then

(i) ∅ ∈ F

(ii) If E1, E2 ∈ F , then

E′
1, E

′
2 ∈ F =⇒ E′

1 ∪ E′
2 ∈ F =⇒

(
E′

1 ∪ E′
2

)′ ∈ F =⇒ E1 ∩ E2 ∈ F

so F is also closed under intersection.

2. THE PROBABILITY FUNCTION

For an event E ⊆ Ω, the probability that E occurs is written P(E).

Interpretation : P(.) is a set-function that assigns “weight” to collections of possible outcomes of an
experiment. There are many ways to think about precisely how this assignment is achieved;

• CLASSICAL : “Consider equally likely sample outcomes ...”

• FREQUENTIST : “Consider long-run relative frequencies ...”

• SUBJECTIVE : “Consider personal degree of belief ...”

or merely think of P(.) as a set-function.
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3. PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space Ω. Then probability function P(.) acts on a sigma-algebra F defined on Ω

P : F −→ R

and satisfies the following properties:

(I) Let E ∈ F . Then 0 ≤ P(E) ≤ 1.

(II) P(Ω) = 1.

(III) If E1, E2, . . . are mutually exclusive events, then

P

( ∞∪
i=1

Ei

)
=

∞∑
i=1

P(Ei).

3.1. COROLLARIES TO THE PROBABILITY AXIOMS

For events E,F ⊆ Ω

1. P(E′) = 1− P(E), and hence P(∅) = 0.

2. If E ⊆ F , then P(E) ≤ P(F ).

3. In general, P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

4. P(E ∩ F ′) = P(E)− P(E ∩ F ).

5. P(E ∪ F ) ≤ P(E) + P(F ).

6. P(E ∩ F ) ≥ P(E) + P(F )− 1.

7. The general addition rule: let E1, . . . , En be events in Ω. Then

(i) P

(
n∪

i=1

Ei

)
≤

n∑
i=1

P(Ei).

(ii) P

(
n∪

i=1

Ei

)
=

∑
i

P(Ei)−
∑
i<j

P(Ei ∩ Ej) +
∑

i<j<k

P(Ei ∩ Ej ∩ Ek)− . . .+ (−1)n+1P

(
n∩

i=1

Ei

)

(i) is known as Boole’s Inequality, and follows from 5.; for (ii), construct the events F1 = E1 and

Fi = Ei ∩

(
i−1∪
k=1

Ek

)′

for i = 2, 3, . . . , n. Then F1, F2, . . . , Fn are disjoint, and
n∪

i=1
Ei =

n∪
i=1

Fi,so

P

(
n∪

i=1

Ei

)
= P

(
n∪

i=1

Fi

)
=

n∑
i=1

P(Fi).

Now, by the corollary above, for i = 2, 3, . . . , n,

P(Fi) = P(Ei)− P

(
Ei ∩

(
i−1∪
k=1

Ek

))
= P(Ei)− P

(
i−1∪
k=1

(Ei ∩ Ek)

)
and the result follows by recursive expansion of the second term for i = 2, 3, . . . , n.
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4. CONDITIONAL PROBABILITY

For events E,F ⊆ Ω with P(E) > 0, the conditional probability that F occurs given that E occurs is
written P(F |E), and is defined by

P(F |E) =
P(E ∩ F )

P(E)

Thus P(E ∩ F ) = P(E)P(F |E), and in general, for events E1, . . . , Ek,

P

(
k∩

i=1

Ei

)
= P(E1)P(E2|E1)P(E3|E1 ∩ E2) . . .P(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1).

Independence: Events E and F are mutually independent if

P(E|F ) = P(E) so that P(E ∩ F ) = P(E)P(F )

Extension : Events E1, . . . , Ek are independent if, for every subset of events of size l ≤ k, indexed by
{i1, . . . , il}, say,

P

 l∩
j=1

Eij

 =
l∏

j=1

P(Eij ).

5. THE THEOREM OF TOTAL PROBABILITY

Let E1, . . . , Ek be a partition of Ω, and let F ⊆ Ω. Then

P(F ) =
k∑

i=1

P(F |Ei)P(Ei)

To see this, note that E1, . . . , Ek form a partition of Ω, and F ⊆ Ω, so

F = (F ∩ E1) ∪ . . . ∪ (F ∩ Ek)

=⇒ P(F ) =
k∑

i=1
P(F ∩ Ei) =

k∑
i=1

P(F |Ei)P(Ei)

as Ei ∩ Ej = ∅.

Extension: If we assume that Axiom III holds, that is, that P is countably additive, then the theorem
still holds, that is, if E1, E2, . . . are a partition of Ω, and F ⊆ Ω, then

P(F ) =

∞∑
i=1

P(F ∩ Ei) =

∞∑
i=1

P(F |Ei)P(Ei)

if P(Ei) > 0 for all i.
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6. BAYES THEOREM

Suppose E,F ⊆ Ω, with P(E),P(F ) > 0. Then

P(E|F ) =
P(F |E)P(E)

P(F )
.

This follows by the identity

P(E|F )P(F ) = P(E ∩ F ) = P(F |E)P(E), so P(E|F )P(F ) = P(F |E)P(E).

Extension: If E1, . . . , Ek are disjoint, with P(Ei) > 0 for i = 1, . . . , k, and form a partition of F ⊆ Ω,
then

P(Ei|F ) =
P(F |Ei)P(Ei)
k∑

i=1

P(F |Ei)P(Ei)

The extension to the countably additive (infinite) case also holds.

NOTE: in general, P(E|F ) ̸= P(F |E)

7. COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collec-
tion of sample outcomes of size n(E), then

P(E) =
n(E)

N

so it is necessary to be able to evaluate n(E) and N in practice.

7.1. THE MULTIPLICATION PRINCIPLE

If operations labelled 1, . . . , r can be carried out in n1, . . . , nr ways respectively, then there are

r∏
i=1

ni = n1 × . . .× nr

ways of carrying out the r operations in total.

Example 1 If each of r trials of an experiment has N possible outcomes, then there are N r possible
sequences of outcomes in total. For example:

(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are
520 different ways of completing the exam.

(ii) There are 2m subsets of m elements (as each element is either in the subset, or not in the subset,
which is equivalent to m trials each with two outcomes).
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7.2. SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled 1, . . . , r such that the ith op-
eration involves selecting one of the items remaining after the first i− 1 operations have been carried
out. Let ni denote the number of ways of carrying out the ith operation, for i = 1, . . . , r. Then

(a) Sampling with replacement : an item is returned to the collection after selection. Then ni = N
for all i, and there are N r ways of carrying out the r operations.

(b) Sampling without replacement : an item is not returned to the collection after selected. Then
ni = N − i+ 1, and there are N(N − 1) . . . (N − r + 1) ways of carrying out the r operations.

e.g. Consider selecting 5 cards from 52. Then

(a) leads to 525 possible selections, whereas

(b) leads to 52× 51× 50× 49× 48 possible selections

NOTE : The order in which the operations are carried out may be important
e.g. in a raffle with three prizes and 100 tickets, the draw {45, 19, 76} is different from {19, 76, 45}.

NOTE : The items may be distinct (unique in the collection), or indistinct (of a unique type in the
collection, but not unique individually). For example, the numbered balls in a lottery, or individual
playing cards, are distinct. However balls in the lottery are regarded as “WINNING” or “NOT WIN-
NING”, or playing cards are regarded in terms of their suit only, are indistinct.

7.3. PERMUTATIONS AND COMBINATIONS

• A permutation is an ordered arrangement of a set of items.

• A combination is an unordered arrangement of a set of items.

RESULT 1 The number of permutations of n distinct items is n! = n(n− 1) . . . 1.

RESULT 2 The number of permutations of r from n distinct items is, by the multiplication principle,

Pn
r =

n!

(n− r)!
= n(n− 1)× . . .× (n− r + 1)

If the order in which items are selected is not important, then

RESULT 3 The number of combinations of r from n distinct items is

Cn
r =

(
n

r

)
=

n!

r!(n− r)!
(asPn

r = r!Cn
r ).

-recall the Binomial Theorem, namely

(a+ b)n =
n∑

i=0

(
n

i

)
aibn−i.

Then the number of subsets of m items can be calculated as follows; for each 0 ≤ j ≤ m, choose a
subset of j items from m. Then

Total number of subsets =
m∑
j=0

(
m

j

)
= (1 + 1)m = 2m.
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If the items are indistinct, but each is of a unique type, say Type I, . . ., Type κ say, (the so-called Urn
Model) then, then a more general formula applies:

RESULT 4 The number of distinguishable permutations of n indistinct objects, comprising ni items of
type i for i = 1, . . . , κ is

n!

n1!n2! . . . nκ!

Special Case : if κ = 2, then the number of distinguishable permutations of the n1 objects of type I, and
n2 = n− n1 objects of type II is

Cn
n2

=
n!

n1!(n− n1)!

Also, there are Cn
r ways of partitioning n distinct items into two “cells”, with r in one cell and n− r in

the other.

7.4. PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a
collection of sample outcomes of size n(E), then

P(E) =
n(E)

N

Example 2 A True/False exam has 20 questions. Let E = “16 answers correct at random”. Then

P(E) =
Number of ways of getting 16 out of 20 correct

Total number of ways of answering 20 questions
=

(
20

16

)
220

= 0.0046

Example 3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type
II objects, and an experiment involving sampling five objects without replacement. Let E=“precisely 2
Type I objects selected” We need to calculate N and n(E) in order to calculate P(E). In this case N is
the number of ways of choosing 5 from 30 items, and hence

N =

(
30

5

)
To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and then
choosing 3 Type II objects from 20, and hence, by the multiplication rule,

n(E) =

(
10

2

)(
20

3

)
Therefore

P(E) =

(
10

2

)(
20

3

)
(
30

5

) = 0.360
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This result can be obtained using a conditional probability argument; consider event F ⊆ E, where F
= “sequence of objects 11222 obtained”. Then

F =
5∩

i=1
Fij

where Fij = “type j object obtained on draw i” i = 1, . . . , 5, j = 1, 2. Then

P(F ) = P(F11)P(F21|F11) . . .P(F52|F11, F21, F32, F42) =
10

30

9

29

20

28

19

27

18

26

Now consider event G where G = “sequence of objects 12122 obtained”. Then

P(G) =
10

30

20

29

9

28

19

27

18

26

i.e. P(G) = P(F ). In fact, any sequence containing two Type I and three Type II objects has this

probability, and there are
(
5

2

)
such sequences. Thus, as all such sequences are mutually exclusive,

P(E) =

(
5

2

)
10

30

9

29

20

28

19

27

18

26
=

(
10

2

)(
20

3

)
(
30

5

) .

Example 4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II
objects, and an experiment involving sampling five objects with replacement. Let E = “precisely 2
Type I objects selected”. Again, we need to calculate N and n(E) in order to calculate P(E). In this
case N is the number of ways of choosing 5 from 30 items with replacement, and hence

N = 305

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and 3 Type II
objects from 20 in any order. Consider such sequences of selection

Sequence Number of ways

1 1 2 2 2 10× 10× 20× 20× 20
1 2 1 2 2 10× 20× 10× 20× 20

...
...

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in 102203 ways.
As before there are C5

2 such sequences, and thus

P(E) =

(
5

2

)
102203

305
= 0.329.

Again, this result can be obtained using a conditional probability argument; consider event F ⊆ E,
where F = “sequence of objects 11222 obtained”. Then

P(F ) =

(
10

30

)2(20

30

)3

as the results of the draws are independent. This result is true for any sequence containing two Type I
and three Type II objects, and there are C5

2 such sequences that are mutually exclusive, so

P(E) =

(
5

2

)(
10

30

)2(20

30

)3
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