MATH 556 - ASSIGNMENT 4 - SOLUTIONS

1. Consider the three-level hierarchical model

LEVEL 3: $\theta = (\theta_1, \theta_2) \in \mathbb{R}^+ \times \mathbb{R}^+$ Fixed

LEVEL 2: $X \sim Gamma(\theta_1, \theta_2)$

LEVEL 1: $Y_1, \ldots, Y_n | X = x \sim Poisson(x)$ Y_1, \ldots, Y_n independent given X

(a) Find the (marginal) joint pmf of Y_1, \ldots, Y_n .

We have by direct calculation, for $(y_1, \ldots, y_n) \in \{\mathbb{Z}^+\}^n$,

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = \int_0^\infty \prod_{i=1}^n f_{Y|X}(y_i|x) f_X(x) dx$$

$$= \int_0^\infty \prod_{i=1}^n \frac{e^{-x} x^{y_i}}{y_i!} \frac{\theta_2^{\theta_1}}{\Gamma(\theta_1)} x^{\theta_1 - 1} \exp\{-\theta_2 x\} dx$$

$$= \frac{\theta_2^{\theta_1}}{\Gamma(\theta_1)} \frac{1}{\prod_{i=1}^n y_i!} \int_0^\infty x^{s + \theta_1 - 1} \exp\{-(n + \theta_2) x\} dx \qquad s = \sum_{i=1}^n y_i$$

$$= \frac{\theta_2^{\theta_1}}{\Gamma(\theta_1)} \frac{1}{\prod_{i=1}^n y_i!} \frac{\Gamma(s + \theta_1)}{(n + \theta_2)^{s + \theta_1}}$$

4 Marks

(b) Find the marginal pmf of Y_1 .

Setting n = 1 in the above formula, we have that

$$f_{Y_1}(y_1) = \frac{\theta_2^{\theta_1}}{\Gamma(\theta_1)} \frac{1}{y_1!} \frac{\Gamma(y_1 + \theta_1)}{(1 + \theta_2)^{y_1 + \theta_1}} = \frac{\Gamma(y_1 + \theta_1)}{\Gamma(\theta_1) y_1!} \left(\frac{1}{1 + \theta_1}\right)^{y_1} \left(\frac{\theta_2}{1 + \theta_1}\right)^{\theta_1} \quad y_1 \in \mathbb{Z}^+$$

and zero otherwise.

2 Marks

This is in fact a Negative Binomial distribution.

(c) Find the correlation between Y_1 and Y_2 .

This is most easily computed using iterated expectation: we have

$$\mathbb{E}_{Y_1}[Y_1] = \mathbb{E}_X \left[\mathbb{E}_{Y_1|X}[Y_1|X] \right] = \mathbb{E}_X \left[X \right] = \frac{\theta_1}{\theta_2}$$

from the formula sheet. Clearly $\mathbb{E}_{Y_1}[Y_1] = \mathbb{E}_{Y_2}[Y_2]$. Also

$$\mathbb{E}_{Y_1}[Y_1^2] = \mathbb{E}_X \left[\mathbb{E}_{Y_1|X}[Y_1^2|X] \right] = \mathbb{E}_X \left[\text{Var}_{Y_1|X}[Y_1|X] + \left\{ \mathbb{E}_{Y_1|X}[Y_1|X] \right\}^2 \right] = \mathbb{E}_X[X + X^2]$$

by properties of the Poisson distribution. Thus

$$\operatorname{Var}_{Y_1}[Y_1] = \mathbb{E}_{Y_1}[Y_1^2] - \{\mathbb{E}_{Y_1}[Y_1]\}^2 = \mathbb{E}_X[X] + \mathbb{E}_X[X^2] - \{\mathbb{E}_X[X]\}^2 = \frac{\theta_1}{\theta_2} + \frac{\theta_1}{\theta_2^2} = \frac{\theta_1(1 + \theta_2)}{\theta_2^2}$$

Finally,

$$\mathbb{E}_{Y_1,Y_2}[Y_1Y_2] = \mathbb{E}_X\left[\mathbb{E}_{Y_1,Y_2|X}[Y_1Y_2|X]\right] = \mathbb{E}_X\left[\mathbb{E}_{Y_1|X}[Y_1|X]\mathbb{E}_{Y_2|X}[Y_2|X]\right]$$

by conditional independence. As before, $\mathbb{E}_{Y_1|X}[Y_1|X] = \mathbb{E}_{Y_2|X}[Y_2|X] = X$. Thus

$$\mathbb{E}_{Y_1, Y_2}[Y_1 Y_2] = \mathbb{E}_X \left[X^2 \right] = \text{Var}_X[X] + \{ \mathbb{E}_X[X] \}^2 = \frac{\theta_1}{\theta_2^2} + \frac{\theta_1^2}{\theta_2^2} = \frac{\theta_1(1 + \theta_1)}{\theta_2^2}$$

and hence

$$Cov_{Y_1,Y_2}[Y_1,Y_2] = \frac{\theta_1(1+\theta_1)}{\theta_2^2} - \frac{\theta_1^2}{\theta_2^2} = \frac{\theta_1}{\theta_2^2}$$

and

$$Corr_{Y_1,Y_2}[Y_1,Y_2] = \frac{Cov_{Y_1,Y_2}[Y_1,Y_2]}{Var_{Y_1}[Y_1]} = \frac{1}{1+\theta_2}.$$

4 Marks

2. For $n \ge 1$ random variables X_1, \ldots, X_n , the order statistics, Y_1, \ldots, Y_n , are defined by

$$Y_i = X_{(i)}$$
 - "the ith smallest value in X_1, \ldots, X_n "

for i = 1, ..., n. For example

$$Y_1 = X_{(1)} = \min \{X_1, \dots, X_n\}$$
 $Y_n = X_{(n)} = \max \{X_1, \dots, X_n\}.$

For X_1, \ldots, X_n independently distributed from continuous distribution with pdf f_X , the joint pdf of order statistics Y_1, \ldots, Y_n can be shown to be

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = n! f_X(y_1) ... f_X(y_n)$$
 $y_1 < ... < y_n$

and zero otherwise.

(a) Suppose X_1, X_2, X_3 are independent random variables having an Exponential(1) distribution. Find the distribution of the second order statistic, Y_2 , that is, the second smallest of X_1, X_2, X_3 .

From first principles, we have

$$f_{Y_1,Y_2,Y_3}(y_1,y_2,y_3) = 3! \exp\{-(y_1+y_2+y_3)\} \qquad 0 < y_1 < y_2 < y_3 < \infty$$
 so, for $y_2 > 0$,

$$f_{Y_2}(y_2) = 6 \int_0^{y_2} \int_{y_2}^{\infty} \exp\{-(y_1 + y_2 + y_3)\} dy_3 dy_1$$

$$= 6 \exp\{-y_2\} \int_0^{y_2} \exp\{-y_1\} \exp\{-y_2\} dy_1$$

$$= 6 \exp\{-2y_2\} \int_0^{y_2} \exp\{-y_1\} dy_1$$

$$= 6 \exp\{-2y_2\} (1 - \exp\{-y_2\}).$$

Alternatively, using the general result from lectures, for $Y_j = X_{(j)}$, we have

$$f_{Y_j}(y_j) = \frac{n!}{(j-1)!(n-j)!} \{F_X(y_j)\}^{j-1} f_X(y_j) \{1 - F_X(y_j)\}^{n-j} \qquad y_j > 0$$

$$= \frac{3!}{(2-1)!(3-2)!} \{1 - \exp\{-y_2\}\}^{2-1} \exp\{-y_2\} \{\exp\{-y_2\}\}\}^{3-2} \qquad j = 2$$

$$= 6\{1 - \exp\{-y_2\}\} \exp\{-2y_2\}$$

as before. 5 Marks

(b) Suppose X_1, \ldots, X_n are independent continuous random variables with cdf F_X

$$F_X(x) = 1 - x^{-1}$$
 $x \ge 1$

and zero otherwise.

Show that $Z_n = \min\{X_1, \dots, X_n\}$ has a **degenerate** distribution in the limit as $n \longrightarrow \infty$, that is, that

$$\lim_{n \to \infty} P_{Z_n}[Z_n = c] = 1$$

for some c to be identified, but that there exists a sequence of real values $\{\alpha_n\}$ such that $U_n=Z_n^{\alpha_n}$ has distribution F_X for each n.

Hint: for the first part, having identified c, show that

$$P_{Z_n}[Z_n < c] + P_{Z_n}[Z_n > c] \longrightarrow 0$$

as $n \longrightarrow \infty$.

For the first part, it is evident that we should inspect c=1 as the degenerate limit. Then

$$P_{Z_n}[Z_n < 1] = 0$$

by definition of F_X , and

$$P_{Z_n}[Z_n > 1] = 1 - F_{Z_n}(1) = \{1 - F_X(1)\}^n = 0$$

by the result in lectures that for the minimum order statistic.

$$F_{Z_n}(z) = 1 - \{1 - F_X(z)\}^n = 1 - \frac{1}{z^n}$$
 $z \ge 1$.

Now for $u \geq 1$,

$$F_{U_n}(u) = P_{U_n}[U_n \le u] = P_{Z_n}[Z_n^{\alpha_n} \le u] = P_{Z_n}[Z_n \le u^{1/\alpha_n}] = F_{Z_n}(u^{1/\alpha_n})$$

so

$$F_{U_n}(u) = 1 - \frac{1}{u^{n/\alpha_n}}.$$

Thus choosing $\alpha_n = n$ yields that

$$F_{U_n}(u) = 1 - \frac{1}{u} = F_X(u)$$

as required.

5 Marks