Name: ID:

McGill University

Faculty of Science

Final Examination

MATH 556: Mathematical Statistics I

Examiner: Professor J. Nešlehová Date: Friday, December 9, 2010

Associate Examiner: Professor D. A. Stephens Time: 9:00 A.M. – 12:00 P.M.

Instructions

- This is a closed book exam.
- The exam comprises one title page, three pages of questions and two pages of formulas.
- Answer all six questions in the examination booklets provided.
- Calculators and translation dictionaries are permitted.
- A formula sheet is provided.

Problem 1

Suppose that U is a uniform random variable on the interval (0,1).

(a) Find the probability density function of the random variable

$$X = \mu - \beta \ln\{-\ln(U)\},\,$$

where $\mu \in \mathbb{R}$ and $\beta > 0$ are fixed parameters.

(5 marks)

(b) Prove that the moment generating function of X is of the form

$$M_X(t) = e^{\mu t} \Gamma(1 - \beta t).$$

For which values of t does it exist?

(4 marks)

(c) Let Y be an arbitrary random variable with moment generating function M_Y . Show that

$$E(Y) = S'_Y(t), \quad Var(Y) = S''_Y(t),$$

where
$$S_Y(t) = \ln\{M_Y(t)\}.$$

(4 marks)

(d) Compute the expectation and variance of X from part (a). Use the fact that $\Gamma'(1) = -\gamma$ and $\Gamma''(1) = \pi^2/6 + \gamma^2$, where $\gamma \approx 0.57722$ is the Euler–Mascheroni constant. (4 marks)

Problem 2

Let (X,Y) be a random pair of independent, standard normal random variables. Further, let R and Θ denote the polar coordinates of (X,Y).

(a) Show that R has the so-called Rayleigh distribution with density

$$f_R(r) = re^{-r^2/2}, \quad 0 < r < \infty.$$

(5 marks)

(b) Show that R and Θ are independent.

(5 marks)

(c) Derive the distribution of X/Y. What can you say about its moment generating function?

(6 marks)

Problem 3

The inverse Gaussian distribution with parameters $\chi > 0$ and $\psi > 0$ has probability density function

$$f(x|\chi,\psi) = \frac{\exp\sqrt{\chi\psi}}{\sqrt{2\pi x^3}}\sqrt{\chi}\exp\left\{-\frac{1}{2}(\chi x^{-1} + \psi x)\right\}, \quad x > 0.$$

- (a) Show that the family $f(x|\chi,\psi)$ is an exponential family. Determine the natural parametrization and the natural parameter space. (4 marks)
- (b) Derive expressions for the expectation and variance of random variables $t_1(X), \ldots, t_k(X)$ for a k-parameter exponential family with canonical parameters η_1, \ldots, η_k and functions $t_1(x), \ldots, t_k(x)$ in the usual representation. (4 marks)
- (c) Suppose that X is an inverse Gaussian random variable with parameters $\chi > 0$ and $\psi > 0$. Compute E(1/X) and Var(1/X).
- (d) Prove that if X is an inverse Gaussian random variable with parameters $\chi > 0$ and $\psi > 0$,

$$cov(X, 1/X) = -\frac{1}{\sqrt{\chi\psi}}.$$

(4 marks)

(e) List three pitfalls of the linear correlation coefficient.

(3 marks)

Problem 4

- (a) Let X be a random variable such that X|M=m is $\mathcal{N}(m,\sigma^2)$ where $M\sim \mathcal{N}(\mu,\tau^2)$. Determine the distribution of X. (4 marks)
- (b) Prove that for any three variables X, Y and Z with finite variances,

$$Cov(X, Y) = E(Cov(X, Y|Z)) + Cov(E(X|Z), E(Y|Z))$$

(4 marks)

- (c) Let X_1 and X_2 be random variables such that $X_i|M=m$ is $\mathcal{N}(m,\sigma^2)$ for i=1,2 where $M \sim \mathcal{N}(\mu,\tau^2)$. Suppose further that X_1 and X_2 are independent given M=m. Compute the correlation between X_1 and X_2 .
- (d) Are X_1 and X_2 from part (c) (marginally) independent? Justify your answer. (4 marks)

Problem 5

Let X_1, \ldots, X_n be a random sample from the Poisson distribution with parameter $\lambda > 0$. Consider

$$Y_n = \sqrt{\frac{1}{n} \sum_{i=1}^{n} X_i (X_i - 1)}$$

and recall, without proof, the MGF and the mean and variance of the Poisson distribution.

- (a) Determine the exact distribution of $\overline{X}_n = (X_1 + \dots + X_n)/n$. (4 marks)
- (b) Show that $Var\{X_1(X_1-1)\} = 4\lambda^3 + 2\lambda^2$. (4 marks)
- (c) Prove that $E(Y_n) \leq \lambda$. You can use any inequality proved in class. (4 marks)
- (d) Prove that $Y_n \to \lambda$ in probability. (4 marks)
- (e) Show how the distribution of Y_n can be approximated in terms of the normal distribution when n is large. (4 marks)

Problem 6

Consider i.i.d. random variables X_1, X_2, \ldots with density f and distribution function F.

- (a) Prove that the distribution function of $Y_n = \min(X_1, \dots, X_n)$ equals $1 \{1 F(x)\}^n$ for all $x \in \mathbb{R}$.
- (b) Suppose that there exists $a \in \mathbb{R}$ such that the density f satisfies f(x) = 0 for $x \in (0, a)$ and f(x) > 0 for $x \in [a, \infty)$ (in particular, f(a) > 0). Prove that $n(Y_n a)$ converges in distribution to an exponential random variable with parameter f(a). (5 marks)
- (c) Under the conditions of part (b), prove that $Y_n \to a$ in probability. (4 marks)

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \alpha > 0$$

$$\tau X \text{ gives}$$

and the LOCATION/SCALE transformation
$$Y = \mu + \sigma X$$
 gives $f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$ $F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right)$ Λ

$$M_Y(t) = e^{\mu t} M_X(\sigma t)$$

$$\mathbf{E}_{f_{Y}}\left[Y\right] = \mu + \sigma \mathbf{E}_{f_{X}}\left[X\right]$$

$$\operatorname{Var}_{f_{Y}}\left[Y\right] = \sigma^{2} \operatorname{Var}_{f_{X}}\left[X\right]$$

			CONTINUOUS DISTRIBUTIONS	UTIONS			
		PARAMS.	PDF	CDF	$\mathbb{E}_{f_X}\left[X\right]$	$\operatorname{Var}_{f_X}[X]$	MGF
	×		f_X	F_X			M_X
$Uniform(\alpha,\beta)$ (standard model $\alpha=0,\beta=1)$	(α, β)	$\alpha < \beta \in \mathbb{R}$	$\frac{1}{eta-lpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (standard model $\lambda = 1$)	+	λ∈ℝ ⁺	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	H K	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)$
$Gamma(\alpha, \beta)$ (standard model $\beta = 1$)	+	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$		ΒΙΒ	$\frac{\alpha}{eta^2}$	$\left(rac{eta}{eta-t} ight)^lpha$
$Normal(\mu, \sigma^2)$ (standard model $\mu = 0, \sigma = 1$)	邑	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		η	02	$e\{\mu t + \sigma^2 t^2/2\}$
χ^2_{ν}	+	$ u \in \mathbb{N} $	$\frac{1}{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu/2}} x^{(\nu/2) - 1} e^{-x/2}$		V	2ν	$(1-2t)^{-\nu/2}$
Pareto(heta, lpha)	+ 24	$\theta, \alpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$)	
Beta(lpha,eta)	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	