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Complex Number Basics

Complex numbers take the form z = a + b where a and b are real. The symbol
i is precisely that — a symbol. The set of all complex numbers is denoted C. We
call a the real part of z and use the notation @ = Rz and b the imaginary part of z
with the notation b = 2. If Sz = b = 0, then we say that z is real and identify it
to the real number a. Thus we view the real line R as a subset of C.

We define addition and multiplication according to the following laws

(CL1 + ’Lbl) + (CLQ + ZbQ) = (a1 + CLQ) + ’L(bl + bQ),
(CL1 + ’Lbl) . (CLQ + ZbQ) = (a1b1 — a2b2) + i(albg + CLle).

It can be shown that addition is commutative and associative. The multiplica-
tion is also commutative and associative and the standard distributive laws hold.
A particular case of multiplication is multiplication by a real number

t- (CL2 + ZbQ) = (tCLQ + itbg)
from putting a; = ¢, by = 0 in the multiplication law and now it comes that
tl . (CLl + Zbl) + tz . (ag + Zbg) = (t1a1 + tgag) + i(tlbl + tgbg)

and it follows that we can view C with addition and real multiplication as a two-
dimensional real vector space. Hence the expression the complex plane . So, in
this analogy, we are indentifying

(a+ib) € C «— (a,b) € R?

Following the analogy, complex addition is just vector addition in the plane and
multiplication by a real number is scalar multiplication in the plane.
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The multiplication law is based on the idea that i* = —1. Sometimes we hear
it said that ¢ is the square root of —1. The key point being that there is no real
square root of —1. A more sophisticated approach to complex numbers would
define C = R[i]/I the quotient of the ring of polynomials in the indeterminate
¢ with real coefficients by the ideal consisting of all such polynomials that are
multiples of i? + 1. However, as far as we are concerned this is overkillf] But
in any case, the complex numbers form a commutative ring with identity, the
identity being 1 4 70 which we will simply denoted by 1.

In fact C is a field. This means that if a + ib # 0 (translate logically to
(a,b) # (0,0), or equivalently not both a = 0 and b = 0), we have

(a+1b) - (x +iy) = (v +1iy) - (a+ib) =1

where z = a(a® + b?)"' and y = —b(a® + b*)7'. These are both well defined
since a® + b* > 0 since not both @ = 0 and b = 0. Thus every non-zero element
of C possesses a reciprocal (multiplicative inverse) in C.

Some additional definitions are as follows. The complex conjugate of a com-
plex number z = a+ b is @ — ib which actually means a + i(—b) always assuming
that @ and b are real. It is denoted by z. Visually, the mapping z — Z takes a point
in the complex plane to its reflection in the z-axis. It is a real linear mapping i.e.
we have

tior e = LZ + ta%

for t; and ¢, real and furthermore a ring homomorphism i.e. z1 - 23 = z7 - Z3. Also
it is involutary, namely Z = 2.

For a and b real, we define |a + ib| = v/a? + b2, the Euclidean norm of (a, b)
in R?. This called the modulus or absolute value of the complex number a + ib.
It is both a norm, in particular sublinear over R

\tlzl -+ tQZQ‘ < |t1||2’1| + |t2H22‘, tl,tg - R, 21,22 € C
and satisfies |z| = 0 = z = 0 as well as being multiplicative
|2122| = |21z

There are many other important identities and inequalities which we list below.

'We could also say that C is the splitting field of the polynomial i2 + 1 over R, but this would
be beyond overkill!



z+z
Ry —
T
1z| = |2|

|z 4+ w|? = |2]? 4+ 2Rzw + |w]?
|21 — 23] < |21 — 22| + |22 — 23]

Rz < 2|

z |22
o Zz— Z
VET T,
= = e

|z —w|? = |2]? — 2Rzw + |w|?
|2+ w| < 2] + |w]

REIRES

1.1 Polar Representation

The polar representation of complex numbers corresponds with the representa-
tion of points in the plane in polar coordinates. We write

z = rcos(f) + irsin(f)

and it is clear that r = /22 + y? = |2|. The quantity  is only defined if z # 0
and then only up to an integer multiple of 27, that is if  is a possible value, then
so is @ + 2nm where n € Z. The quantity 6 is called the argument of z. Itis a
consequence of the addition laws for cos and sin that

(r1 cos(0y) + iry sin(6y))(ro cos(fs) + ire sin(6y))
= i ( cos(6;) cos(6y) — sin(6;) sin(92)>

+ T ( sin(6;) cos(02) + cos(6,) sin(%))
= rirgcos(by + 0;) + iryre sin(fy + 6;)

It follows that to take the product of two complex numbers, the modulus of the
product is the product of the moduli, but the argument of the product is the sum
of the arguments.



To cut down on writing we sometimes see cis() = cos(6) + i sin(f) and then
we can write a complex number in polar representation as z = r cis(6). In fact, we
will see later that cis(f) = exp(ifl) where the exponential function of a complex
argument is defined by its power series. We have

cis(6y + 62) = cis(6y) cis(f2)
and also
cis(nf) = cis(6)"

for € R/277Z and n € Z. Other useful relations are
cis(0) = cis(—#0), |cis(0)| = 1.

These identities make it possible to solve easily equations of the type 2" = (
with ¢ given and unknown z. Let z = rcis(f) and { = pcis(¢) be the corre-

sponding polar representations. Then we get v = p and nf = ¢ (mod 27).

2k
Thusr:p% and6:¢+ T

where £ is an integer. But the latter sequence is

n
periodic with period n taking account of the equivalence of arguments that differ
by an integer multiple of 2. Thus the solutions are given by

2%
g T 010 -1

n

In particular the nth roots of unity — the solutions of the equation 2" = 1 are
given by z = cis(2kw/n) for k =0,1,2,...,n — 1.

Since polynomials play a key role in complex analysis, its worth observing
that a polynomial of degree n can have no more then n roots. Let

p(z) =2" 412 e P12 + Da

and suppose that ¢ is a root, i.e. p(¢) = 0. Then
p(z) = p(2) = p(¢) = Y pus(z" = (*).
k=0

But, for each nonnegative integer k, (2* — ¢*) is divisible by 2z — ( since

Zk—gk:(Z—C)(Zk_1+<2k_2+"'+<k_22+<—k_1)



and it follows that p(z) is divisible by z — (. The quotient of this division is a
polynomial of degree n — 1 and a simple induction argument finishes the proof.

We will see later in the course that every monicf| polynomial of degree n with
complex coefficients can be factored as

p(z) = 1]z~

k=1

for some (3,...,¢, € C.

Finally, let us not lose sight of the fact that C is a normed vector space over
R and hence a metric space with distance function d(z1,22) = |21 — 22|. As
a metric space, it inherits all the baggage that goes with metric spaces — open
subsets, closed subsets, convergent sequences and, where mappings are defined,
continuity. In particular, since C is finite dimensional over R we see that C is
complete as a metric space. Furthermore, according to the Heine—Borel Theorem,
every closed bounded subset of C is compact. Actually, in this course we will
not use the open covering version of compactness. We will work with sequential
compactness.

1.2 Complex Multiplication as a Real Linear Mapping
Consider multiplication by the complex number a + ib. We have
(u+iv) = (a+1ib) - (z + iy) = (ax — by) + i(bx + ay)

oru = ax — by and v = bx + ay which can be viewed as a real linear mapping

from R? to itself
u [(a —b T
v) \b a Y

We therefore obtain the following observation. A real linear mapping from R? to
itself can be realised as a complex multiplication if and only if its matrix

ail; a2
a1 G22

satisfies ai;p = ao2 and a1 = —ay9.

2A polynomial is monic iff its leading coefficient is unity.



2

Analytic Functions of a Complex Variable

Let us consider a function defined by a power series expansion with complex
coefficients

f(z) Zao+alz+a2z2+a3z3+--- 2.1
The following theorem tells us where this series converges.

THEOREM 1 There is a “number” p € [0, 00] such that the series (B.1)) con-
verges if |z| < p and does not converge if |z| > p.

There are two extreme cases. In the case p = 0, the series converges only if
z = 0. In this case, the series is for all intents and purposes useless. The other
extreme case is when p = oo and then the series converges for all complex z.
We give two proofs, the first a simple-minded one and the second uses the root
test and actually produces a formula for p. The number p is called the radius of
convergence .

First proof.
The series always converges for z = 0, so let us define

p = sup{|z|; Series (E.1]) converges},

with the understanding that p = oo in case the set is unbounded above. Then, by
definition, |z| > p implies that (E.I)) does not converge. It remains to show that
|z] < p implies that (R.1) converges. In this case, there exists ¢ with |z| < |(]
such that ag + a1¢ + a2¢? + a3¢® + - - - converges, for otherwise |z| would be an
upper bound for the set over which the sup was taken. Therefore a,(" — 0 as
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n — o0. So, there is a constant C' such that |a,("| < C forall n € Z*. But,
now » >, a,2" converges absolutely by comparison with a geometric series

D an2" <Y lanC |5 < 55267'2
n=0 n=1 n=0

n

< 00

2
¢
n

Note that the proof actually shows that (-1]) converges absolutely for |z| < p.
Furthermore the proof shows that if 0 < r < p, then the series converges uni-
formly on the set |z| < r. Another way of saying this is that the series converges
uniformly on the (sequentially) compact subsets of {z;z € C,|z| < p}. A fur-

ther consequence is that the function defined by a power series is continuous in
{212 €C,Jz[ < p}.

1
Second proof. By the root test, series (2.1)) converges if lim sup,,_,, |a,2"|n» <1

1
and does not converge if limsup,,_, . |a,2"|» > 1, because the proof of the root
test shows that the terms do not tend to zero. This gives the formula

1
p = liminf |a,|
n—oo

1
which has to be interpreted by taking |a,| 7 = o0 ifa, =0and p = ccifa, =0

eventually, or if inf,,> v |a,| ™ » tends properly to co as N — oo.

So, in the complex case, we get a disk of convergence with convergence hold-
ing on the open disk and failing on the interior of its complement. In general, not
much can be said about convergence on the boundary of the disk |z| = p.

Power series allow us to define many of the elementary functions in the com-
plex setting.

cos(z) = Z(_)H(Qn)!

n=0

oo
Z2n+1

sin(z) = Z(—)nm

n=0



> Z2n
cosh(z) = Z
— (2n)!
. > Z2n+1
Sll’lh(Z) = Z m

I
o

n

It is easy to check that all the power series listed above have an infinite radius
of convergence and therefore define functions in the entire complex plane.

2.1 Analytic Functions
We make the following definition.

DEFINITION  Let 2 be a nonempty open subset of C. Let f : 0 — C. Then f
is analytic if and only if for each point « € €Q, there is a power series expansion

Zan (z —a)" (2.2)

with strictly positive radius p(«) such that the sum of the series P.2 equals f(z)
in the disk |z — a| < p(«a).

These functions are the main subject matter of this course. We will see later
that the hypotheses are too strong. It will in fact suffice for f to possess a complex
derivative at every point z of {2 in order for f to be analytic in €.

There is also a concept of analyticity on the real line that is sometimes used.

DEFINITION  Let U be a nonempty open subset of R. Let f :  — R or C.
Then f is real analytic if and only if for each point o € U, there is a power series
expansion

Zan (x —a)" (2.3)

with strictly positive radius p(«) such that the sum of the series P.3 equals f(x)
in the interval a — p(a) < < a + p(a).

Of course, if f is real-valued, then the coefficients a,,(«) will be real.



Since the series P3| will converge in the disk {z;z € C, |z — | < p(a)}, we
may let

Q= U{z;zEC,|z—a|<p(a)}

acU

and suspect that f will have an extension f to €. This is in fact the case, but a
little beyond our scope at this point in the course.

2.2 The Complex Exponential

LEMMA 2 For z1, zo € C we have

exp(z1 + 22) = exp(z1) exp(22)

N n
Proof. Letexpy(z) = Z Z—' then we get
= nl
NN
— 2172
expy(z1) expy(22) = Z Z ERENE

On the other hand

N N
Zl + 22 1 n ni _n—ni Zl 22
eXpN z1 + Z2 = E E o Oﬂl 21 %2 = § ol
n! n ny! no!

n=0 n=0 " n1,n2>0
n1+na<N
It follows that
ni _ns
21 2
expy(z1) expy(22) — expy (21 + 22) = E i
0<nimp<N %
ni+ng>N

and at this point we put in the absolute values

z ni z ng
|expy(21) expy(22) — expy (21 + 22)] < E : | 7;" | ;" .
0<n1,n2<N v 2
ni+ns >N



Now if ny + ny > N then either ny > %N or ng > %N (or both). Hence we have

Z \Zl\"l |Z2\"2 Z Z |21|™ |22| i n Z Z \Zl\"l |Z2\"2
ny nl !

N m>gN " no>gN "
2 |m 292
<op(al) 3 2 feapa)y 3 2L
1 ni- 1 Na:
n1>§N n2>§N
The expression Z is a tail sum of the (convergent) series for exp(|z|) and

n>2N
hence tends to zero as N tends to infinity. It follows that exp y(21) expy(22) —
expy (21 + 22) — 0as N — oco. But expy(z;) converges to exp(z;) for j = 1,2
and expy(z1 + 22) converges to exp(z; + 29). it follows that exp(z; + 22) =

exp(z1) exp(zz) as required. u
It is easy to check from the power series definitions that if y is real, then
exp(iy) Z = = cos(y) + isin(y)

n=0

because i?* = (—1)" and i**1 = (—1)4. So, if x is also real, we have

exp(z + iy) = exp(z) exp(iy) = e” cos(y) + ie” sin(y)

allowing us to understand for an arbitrary complex number z, what the real and
imaginary parts of exp(z) are in terms of the real and imaginary parts of z.

2.3 Manipulation of Power Series

Power series can be manipulated in obvious ways. The standard theorems con-
cerning linear combinations, products, quotients and compositions hold good in
the complex case. The proofs are essentially the same as those given in MATH 255.
For the sake of the record, we repeat those proofs here, but we will eventually es-
tablish the results by other means.

In this section we will assume that

f(2) =ao+ a1z +az2® +azz® + - - 2.4
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with radius 7 and for |z| < r and that
g(z) :b0+blz+b222+bgz3+...

with radius s and for |z] < s. We already know from general principles the
following result.

PROPOSITION 3 The series » - (Aa, + pby,)z" has radius at least min(r, s)
and it converges to A\f(z) + pg(z) for |z| < min(r, s).

It is easy to find examples where the radius of Y7 (Aay, + pby,)2z" is strictly
larger than min(r, s).

THEOREM 4  The formal product series Y - ¢,z™ has radius of convergence at
least min(r, s) and it converges to f(z)g(z) for |z| < min(r, s). Explicit formulae

for ¢,, are given by
n n
Cp = g apbp—p = E (p—qby,
p=0 q=0

and furthermore

D ealt™ < {Z \ap\tp} {Z \bquq} (2.5)
n=0 p=0 q=0

for 0 <t < min(r, s).

Proof. Let0 < |z| <t < min(r,s) and € > 0. We denote by

3

11



then, a tricky calculation shows that

In(2)gn(z) — hn(z) = Z apb 2P — Z apby 2Pt = Z apby 2Pt

0<p,g<N 0<p,q 0<p,g<N

p+q<N p+g>N
This gives
[fv(2)gn(2) = hn(2)] < ) fap|lbglt7*
0<p,g<N
p+q>N

and, since p 4+ ¢ > N implies p > N/2 or ¢ > N/2

< Z |ap|[bg |7 + Z |ap|by [t

0<p<N 0<¢<N
N/2<q<N N/2<p<N
N N N N
< (Z ‘ap‘tp> Z |bg[t7 + (Z |bq|tq) Z |apt?
p=0 =51 =0 p=I%1
< (Z ‘%WD) Z |bg[t7 + (Z |bq|tq> Z |a|t?
p=0 5 =0 p=[%]
<€

if N is large enough. But, on the other hand, we also have

£ (2)9(2) = fn(2)gn(2)| <€
if N is large enough. Therefore, for N large enough

f(2)g(2) = hn(2)] < 2e.
Since € is an arbitrary positive number this shows that the partial sums (hy) of
the formal product series converge to the product of the sums of the given series.
This holds for all z with |z| < ¢, but since ¢ may approach min(r, s), it holds for
all z with |z| < min(r,s). So the radius of convergence of the formal product
series is at least min(r, s).
To show (2.3) we remark that

N
zw < il S ol = {zw} {zwqw}
q=0

0<p,q 0<p,g<N
p+g<N

and let NV tend to oo. ]

12



EXAMPLE  The radius of convergence of a product series can exceed the mini-
mum of the individual radii. To see this, take

1
1+Z:1+2z—|—2z2+223+224+---
—z
and
1—=z 2 3 4
=1—-22+22"—-22"4+2"+---
1+ 2

both of which have radius 1. But, not surprisingly, the product series is

1=140240224024+04+---

which has infinite radius. O

COROLLARY 5  Let K € Z". The formal K-fold product series Z cxn?" of

n=0
oo

K
Z a,z" has radius at least r and converges to ( f (z)) . Furthermore

n=0

o0 o0 K
D lexalt" < {Z \an\t”}

for0<t<r.

EXAMPLE  Again, the product series may have larger radius of convergence than
the original. Consider
1 1-3, 1-3-5,

. L2
=14z 2!2 —|——3!z 1 zZ0 4+

[SIES

(1+22)

which has radius §. However, the square of this series is just 1 + 2z which has
infinite radius. U

Now we come to compositions. Usually, the formal composition does not
make sense. The formal K-fold product series has constant term Cx o = af and
so the constant term of g o f would be >~ %_, bxaf’ which is an infinite sum. So,
in general, composition of power series is not a formal operation. However, if we
suppose that ag = 0, then it does become a formal operation. In this special case,

13



the series {> 7 a, 2"} starts with the term in 2% (or later if a; = 0). Hence, in
computing the coefficient of 2™ in g o f we need only consider K = 0,1,...,n.
So each coefficient of g o f is in fact a finite sum.

In practice, it is convenient to break up the discussion of general compositions
of power series into two separate operations. One of these is the special type
of composition with ay = 0 which is a formal operation and the other is the
recentering of power series which is not a formal operation. We will deal with
recentering later.

THEOREM 6  Suppose that ag = 0. Then the formally composed series of g o f
has strictly positive radius and converges to g( f(z)) for z in some neighbourhood
of 0. In most situations, one can say nothing about the radius of convergence,
except that it is strictly positive. However, if s is infinite, then the formally com-
posed series has radius of convergence at least r.

Proof. Let

oo

o(t) =3 lanlt”

n=1
The series has radius > 0 and so ¢ is continuous at 0. Hence, there is a number
p > 0 such that
0<t<p = lo(t)] < s.

F@) =220 anz™| < @(|2]) < s, so that

go f(z) = i br <f(z))K

Now we have for |z| < p,

Note that if s = 0o, then we may take p = r if r is finite or p to be any positive
number (as large as we please) if r = co. Now, using the Corollary f] we get

go f(z) = Z bi Z CKnZ". (2.6)
K=0 n-K

The inner sum could be taken from n = 0 to infinity, but cx,, = 0 for 0 <n < K.
What we would like to do is to interchange the order of summation in (£.6). This

would yield
go f(Z) = Z { bKCK,n} z".
n=0 \K=0

14



and indeed, Y % _, bxCk,, is the coefficient of 2" in the formal powers series for
gof. To justify this interchange, we must apply the theorem dealing with changing
the order of summation (Fubini’s Theorem). We need to show

> bkl Y lexalt™ < oo Q.7)
K=0 =K

But, according to Corollary [,

> lealt” < (vl0))

and .7 holds since ¢(t) < s. The radius of convergence of the formally com-
posed series is then at least p. In the special case s = co, (R.7)) holds for p = rif r
is finite, or for every finite p > 0 if r is infinite. The radius of convergence of the
series is therefore at least 7. |

COROLLARY 7 Suppose that ag # 0. Then

1
—— =dy+d1z+do2® +d32 + -
f(2)

with strictly positive radius. In fact, the coefficients dy, dy, . .. can be obtained by
successively solving the recurrence relations

1 = agpdy

0 = a1dy + apdy

0 = asdy + a1dy + agds

0 = asdy + axdy + ads + agds

et cetera.

Proof. We can assume without loss of generality that ay = 1. Now, let us define
h(z) = 377 a,2™ and g(w) = (1 +w)~!. Then, applying Theorem [, we see

n=1
that
1 1

fz)  1+h(2)

= (goh)(z)

15



has a power series expansion with strictly positive radius. Once we know this,

then both f and 7 have expansions with strictly positive radius and

so the Product Theorem .3 allows us to conclude that the coefficients are in fact
obtained by formal multiplication, leading to the recurrence relations cited above.
n

Finally we deal with recentering power series. This is not a formal power
series operation. We will start with a power series centered at 0, namely

2
ap + a1z + agz” + - -+

Let us suppose that it has radius 7 > 0. Now let || < r. Then we wish to expand
the same gadget about z = «

bo +b1(z — ) +by(z — ) + b3(z —a)®* +--- (2.8)

Substituting w = z — « and comparing the coefficient of w™ in

Z ap(w + )k = Z byw" (2.9)
k=0 n=0
we find the formula
by =Y _ FCpapa*™. (2.10)
k=n

So the coefficients of the recentered series are infinite sums (as opposed to finite
sums) and this is why the recentering operation is not an operation on formal
power series.

THEOREM 8  Under the hypotheses given above, the series (2.10) defining b,
converges for all n € Z*. The radius of convergence of (P.§) is at least r — |«
Finally, the identity (R.9) holds provided that |w| < r — |a.
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Proof. Let|a| < p <rando = p— |a|. Then

00 oo 00 k
S0 K lallof = gl 3 Koot
n=0 k=n k=0 n=0
00
=) _larl(o +|a))*
k=0

since the order of summation can be interchanged for series of positive terms and
since 0+ |a| = p < r. In particular it follows that for each fixed n, the inner series
o0

Z *C., lag| ||~ converges and hence the series (2.10) converges absolutely for

=n
each n € Z*. The same argument now shows that

o o o
D fbalo™ <Y o™y ROy ar|lalf T < oo
n=0 n=0 k=n

and so (P.§) converges absolutely whenever |w| < r — |a|. So the radius of
convergence of the recentered series is at least  — |«|. Finally, we use Fubini’s
theorem to show that (2.9 holds. Effectively, since

00 k
S lael D KOl < oo

k=0 n=0
we have
(e} (e e} [e.e]
S bt = 33 ot
n=0 n= k=
00 k
=D a ) Cuutal
k=0 n=0
o0
Z ak w + a
k=0
by interchanging the order of summation. |
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2.4 The Complex Logarithm

We would like the logarithm to be the inverse function of the exponential. The
exponential function never takes the value zero. This is a consequence of

exp(z) exp(—z) = exp(z — z) = exp(0) = 1

solet z € C\ {0}. Let z = rcis(f). Then the equation exp(w) = z can be
solved. If w = u+ v with u and v real, we get e* = r and cis(v) = cis(¢). Hence
uw = In(r) and @ = v + 2nmi where n € Z. So, unfortunately there are infinitely
many solutions. There are three ways of proceeding. The politician’s solution
to this situation is to do nothing and to assert that the complex logarithm is a
multivalued function. This solution is largely unworkable. The engineers solution
is based on the observation that if you decide to choose a particular solution, say
the one which would have log(1) = 0, then you will run into trouble because as
the point z starting at 1 makes an anticlockwise tour of the origin and comes back
to 1 and if the logarithm is continuous along this path, then on returning to the
origin, the value taken would be 27i. The problem arises from making a circuit
of the origin and the engineer sees that the solution is to prevent the making of
circuits around the origin. To do this he/she makes a cut from the origin out to
infinity. The position of the cut is somewhat arbitrary, but usually it is located in
the most unobtrusive location, namely along the negative real axis N =| — 0o, 0].
Restricted to the set C \ NV, the angle # may be defined in the range —7 < 6 <=
and the complex logarithm so obtained (and called the principal branch of the
logarithm ) is given by
log(r cis()) = In(r) + i0

where indeed, —m < 0 < 7.

The final solution to this situation (the mathematician’s solution) is to assert
that it is necessary to define the complex logarithm on a different space (the uni-
versal covering space of C \ {0}) which in this context can be given the structure
of a Riemann surface. We do not explore this solution at the moment, but possibly
will do so later if time allows.

Since we are dealing with power series, we should consider the power series

o0 n

J() = (-

n=1

which is easily seen to have radius 1. Note that if z is real and —1 < 2z < 1
then f(z) = In(1 + z). This series vanishes at z = 0 and so the Composition
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Theorem for power series applies and tells us that the function z — exp(f(z))
has a power series expansion with radius at least 1. If zisreal and —1 < z < 1
then exp(f(z)) = 1 + z. Since the coefficients of a real power series are uniquely
determined by the function represented by the sum, we see that the relationship
exp(f(z)) = 1+ z must continue to hold for all z complex with |z| < 1. So f(z)
is a logarithm of 1 + z, but which one? Note that if |z| < 1, then R(z) > 0 and it

follows that the argument of 1 + z is in the range —g <0< g We establish that

this # is in fact the imaginary part of f(z) by continuity. Explicitly, we observe
that

hx.y) = S(f(x + iy)) — arctan (1 . x)

takes values in 27Z and is continuous in the open unit disk {(z,y); 2% +y* < 1}
in the plane. At (z,y) = (0,0) we have that ~(0,0) = 0 since f(0) = 0 and
arctan(0) = 0. The function & is a continuous function of a connected space (the
unit disk) into a discrete space (27Z) and hence is constant. If you have difficulty
with this you can also apply the Intermediate Value Theorem to obtain the same
result. To do this, you take an arbitrary point (z,y) of the unit disk and define

H(t) = h(tx,ty)

and continuous function of [0, 1] into 27Z. If H(0) # H(1), then the Intermedi-
ate Value Theorem gives a contradiction.

2.5 Complex Derivatives of Power Series

LEMMA 9  We have the identity

n—2
(z4+Rh)" — 2" —nhz"' = h? Z(n — L —1)(z+ h)zm2
=0

Sketch Proof. ~ We have by the summation formula for a geometric series

[\

n—

(z 4+ ) (tz)" 1 = (tz)" !

D2+ b\ _tz(z4 )" = (t2)"
<\ tz B (1—t)z+h

~
Il
o

(=



Now, differentiating both sides partially with respect to ¢ and then setting ¢ = 1
we get

n—2
wvo  hz(z+h)"—nh" + 22 (z+ b))V = 2
2> (== 1)(z+h)' T = 2
=0
Multiplying by h22~1 and simplifying, now gives the result. |
THEOREM 10  Let the power series f(z Zanz have radius p > 0 and

n=0
define a function f in |z| <P Then f has a complex derivative f'(z) at every

point of |z| < p and f'(z Z na,z""" and the derived power series also has

radius p.

Proof. 1t is clear from the formula for the radius of convergence that the two
series have the same radius of convergence p. We only need to establish that
f'(z) = g(2) in |z| < p where

o0
= g na, 2"
n=0

If |z| < p, then we can find r such that |z| < r < pand we insist that |h| < r—|z
so that |z + h| < |z| 4 |h| < r also. We get from the lemma that

fz+h) = f(z) = hy(2) EZMMan_g_UV+hH|neQ

h2 n=2 =0
< Z ap|r"” QZ (n—0—-1)
- 1 n—2
= Zin(n—lﬂan\r =C < o0
n=2
Hence we find i h - f(2)
z+ — f(z
LB ) < cin
and the result follows. [



COROLLARY 11 Let the power series f(z) = Z a,z" have radius p > 0 and
n=0
define a function f in |z| < p. Then f has a complex derivatives f*)(z) of all

n! _
a,2""* and

orders k € Z* at every point of |z| < p and f*)(2) = E O
n—k)!
n=~k

each of these power series also has radius p.

COROLLARY 12 Let the power series f(z) = Z a,z" have radius p > 0. Then
n=0
the coefficients a,, are uniquely determined by f from the formula

1
an, = —'f(")(O) forn € Z*.
n!
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3

A Rapid Review of Multivariable Calculus

In a single variable, differential calculus is seen as the study of limits of quotients
of the type
f(v) = f(vo)
v—v9
This approach works when the domain of the function f is one-dimensional.

DEFINITION  Let g : |a,b] — V where V is a finite-dimensional normed real
vector space. Let t € |a, b[. Then the quotient

f(s)=(s=1)"(g(s) —g(t) €V
is defined for s in |a, b[ \ {t}. It is not defined at s = t. If

lim f(s)

s—t

exists, then we say that g is differentiable att and the value of the limit is denoted
g'(t) and called the derivative of g att. It is an element of V.

In several variables this approach no longer works. We need to view the deriv-
ative at vy as a linear map df,,, such that we have

f(v) = f(vo) + dfu, (v —vg) + error term.

Here, the quantity f(v) has been written as the sum of three terms. The term
f(vg) is the constant term. It does not depend on v. The second term df,, (v —vy)
is a linear function df,, of v — vy. Finally the third term is the error term. The
linear map df,, is called the differential of f at vy. The differential is also called
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the Fréchet derivative . Sometimes we collect together the first and second terms
as an affine function of v. A function is affine if and only if it is a constant function
plus a linear function. This then is the key idea of differential calculus. We attempt
to approximate a given function f at a given point vy by an affine function within
an admissible error. Which functions are admissible errors for this purpose? We
answer this question in the next section.

There are two settings that we can use to describe the theory. We start out us-
ing abstract real normed vector spaces. However as soon as one is faced with real
problems in finitely many dimensions one is going to introduce coordinates —
i.e. one selects bases in the vector spaces and works with the coordinate vectors.
This leads to the second concrete setting which interprets differentials by Jacobian
matrices.

3.1 The Little “0” of the Norm Class

Let V and W be finite-dimensional real normed vector spaces.

DEFINITION  Let 2 C V be an open set and let vy € ). Then a function
¢ : Q — W isin the class £q .., called little “0” of the norm at vy iff for alle > 0
there exists & > 0 such that

le()]l < el = wo
forallv € Q with ||v — vg| <.

It is clear from the definition that if ¢ € Eq ,, then ¢(vy) = 0.

If we replace the norms on V and W by equivalent norms then it is clear that
the class of functions &g, does not change. Since all norms on a finite dimen-
sional real vector space are equivalent, we see that the class £q ,, is completely
independent of the norms on V' and W. In other words, the class £q , is an
invariant of the linear space structure of V' and W.

The following Lemma is very important for the definition of the differential.
It tells us that we can distinguish between a linear function of v — vy and an
admissible error function.

LEMMA 13 Let Q2 C V be an open set and let vy € ). Let ¢ : 0 — W be
given by

e(v) = AMv — v) Vv € Q)
where \ : V. — W is a linear mapping. Suppose that ¢ € Eq,,. Then p(v) =0
forallv € Q.
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Proof. Letw € V. Then forall € > 0 we have
lp(vo + tu)]| < ef[tull

for all values of ¢ such that |¢] is small enough. Using the specific form of ¢ we
obtain
A < efftu].

Using the linearity and the definition of the norm, this leads to
A < eltl[full
Choosing now ¢ small and non-zero, we find that
AW < €ful]

Since this is true for all € > 0 we have A(u) = 0. But this holds for all u € V' and
the result follows. |

The next Proposition is routine and will be used heavily in these notes.

PROPOSITION 14 Let €2 C V be an open set and let vy € ). Then Eqy, Is a
vector space under pointwise addition and scalar multiplication.

We leave the proof to the reader.

3.2 The Differential
In this section, U, V and W are finite-dimensional real normed vector spaces.

DEFINITION  Let Q2 C V be an open set and let vy € ). Then a function
f Q@ — W is differentiable at v, with differential df,, (a linear map from V' to
W) iff there exists a function ¢ : 2 — W in the class g, such that

f(v) = f(vo) + dfu, (v —v9) + @(v) Yo € Q. 3.1

In this situation, the quantity df,, is called the differential of f at vy.
It is an immediate consequence of Lemma [[3 that if the derivative df,, exists
then it is unique.
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EXAMPLE  If f is a linear mapping from V' to W, then it is everywhere differen-
tiable and its derivative is given by

dfu,(v) = f(v).

The error term is zero. ]

EXAMPLE  If v is a bilinear mapping o : R® & R — R*, then we have
a(z,y) = a(zo + (z — o), Yo + (¥ — %))
= a(xo, yo) + (@0, y — yo) + alx — x0, y0) + a(z — 20,y — %0¥3.2)

The first term in (3.2) is the constant term, the second and third terms are linear.
The last term is little “0” of the norm since

lo(z = 0,y = yo) [l < lletllopllz = zol[lly = woll-
Here || ||op stands for the bilinear operator norm. O

We use the notation U (v, t) for at > 0 and v a vector in a finite-dimensional
vector space V' to designate the open ball centred at v of radius ¢. In symbols

Uv,t) ={w € V;||lw—v| <t}

PROPOSITION 15  Let€) C V be an open set and let f : 0 — W be a function
differentiable at vy € ). Then f is Lipschitz at vy in the sense that there exists
0> 0and 0 < C < oo such that

1f(v) = f(wo)ll < Cllv = woll

whenever v € QN U(vy,0). In particular, f is continuous at vy.

Proof. Using the notation of (B.1)), we have

[df oo (v —v0) | < [|dfuollopllv — voll 3.3)
and for € = 1, there exists > 0 such that
()] < [lv = vol|- (3.4)

forv € QN U(vp, ). Combining (3.3 and (B.4) with B.I) we find

1 (v) = f(wo) | < (ldfus llop + D)l — wol
forv e QN U(vy, ) as required. n

Proposition [[3 has a partial converse.
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PROPOSITION 16 Let) C V bean open set and let f : 2 — W be a function
differentiable at vy € §2. Suppose that there exists § > 0 and 0 < C' < oo such
that

1f(v) = fwo) | < Cllv = woll
whenever v € QN U(vy, d). Then ||dfy, |lop < C.

Proof. We write
f(v) = f(vo) + dfu, (v —vo) + (v — v9)
where ¢ € Eq,,. Let € > 0. The, there exists ; with 0 < d; < ¢ such that
v e |v—wlv < = lle(v —vo)llw < €llv—vollv
and consequently, for v € Q with ||[v — vg||y < §; we find
1o (v = vo)lw < (C' + €)llv = vollv.

Since v—wy is free to roam in a ball centered at Oy, it follows that ||df,, |lop < C+e.
Finally, since € is an arbitrary positive number, we have the desired conclusion. m

The following technical Lemma will be needed for the Chain Rule.

LEMMA 17  Let Q C V be an open set, A an open subset of W, and let f :
0 — A be a function Lipschitz at vy € €. Let 1 : A — U be in Ea ¢(vy). Then
the composed function ¢ o f is in Eq .

Proof. There exists 9; > 0 and 0 < C' < oo such that
1F(w) = f(wo)l| < Cllv = wo (3.5)

whenever v € QN U(v, ;). Let € > 0. Define ¢, = C~'e > 0. Then since 9 is
little “0” of the norm, there exists d; > 0 such that we have

[ (w)]] < exflw = f(wo)

provided w € A and ||w — f(vp)|| < 2. Now define § = min(d;, C~1dy) > 0.
Then, using B.3), v € Q and ||v — vg|| < I together imply that || f(v) — f(vo)]| <
09 and hence also

[P (f DI < ellf(v) = Flvo)ll < Cerllo —wol|.

Since € = Cley, this completes the proof. |
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THEOREM 18 (CHAIN RULE)  Let Q C V be an open set, A an open subset of
W, let f: Q — A be a function differentiable at vq € Q) and let g : A — U
be differentiable at f(vy). Then the composed function g o f is differentiable at vy
and

d(g © f)vo = dgf(vo) © dfv()‘

Proof. We use the differentiability hypotheses to write
f(U) = f(UO) + dfvo(v - UO) + (p(U) Vv € (36>

and

g(w) = g(f(vo)) + dgfwe)(w — f(vo)) + (w) Yw € A (3.7)
where ¢ : ) — W is in the class £q ., and ¥ : A — U is in the class Ea f(uy)-
Combining (B.6) and (B.7) yields

9(F©)) = 907 (00)) + dgsimy (A0 — v0) + 9(0)) + 6(F (@) Vo e

Using the linearity of dgy,,) we can rewrite this in the form

go f(v)=go f(vo) + (dgy(w) © dfuy) (v — v0) + dgswe) (P(v)) + P (f(v)),(3.8)

forall v € Q. The first term on the right of (B-§) is constant and the second term is
linear because it is the composition of two linear functions. Since £q ,, is a vector
space, it suffices to show that the third and fourth terms on the right of (B.§) are
in Eq,v,. For dgg,) ((v)) this is a consequence of the continuity of dg (), and
for 1 (f(v)) it is a consequence of Lemma [L7. u

There is no product rule as such in the multivariable calculus, because it is not
clear which product one should take.

EXAMPLE  For the most general case of the product rule, « is a bilinear mapping
a: R x R® — RF. Let now 2 be open in V and let 7y € Q. Let f and g be
mappings from €2 into R* and R respectively differentiable at . Then let

Mz) = a(f(z),g9(x)) Vel

Applying the chain rule and using the derivative of o found earlier, we find that A
is differentiable at x( and the derivative is given by

dhyov = a(f(20), dgzyv) + a(dfz,v, g(20)).-
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3.3 Derivatives, Differentials, Directional and Partial Derivatives

We have already seen how to define the derivative of a vector valued function on
page P2 How does this definition square with the concept of differential given in
the last chapter? Let V' be a general normed vector space, ¢ : Ja,b] — V and
t a point of |a, b[. Then, it follows directly from the definitions of derivative and
differential that the existence of one of f/(¢) and df; implies the existence of the
other, and

dfy(1) = f'(t).
This formula reconciles the fundamental difference between f'(t) and df;, namely

that f’(t) is a vector and df; is a linear transformation. In effect, the existence of
the limit

() =lim(s — )" (f(s) — (1))

as an element of V, is the same as showing that the quantity

f(s) = (f{O) + (s =) f'(1))

is little “0” of s — t. Thus, df(s —t) = (s —t) f'(t) or equivalently df;(1) = f'(¢).

For a one-dimensional domain, the concepts of derivative and differential are
closely related. We can attempt to understand the case in which the domain is
multidimensional by restricting the function to lines. Let us suppose that {2 be an
open subset of a normed vector space U and that ug € 2, u; € U. We can then
define a function g : R — U by ¢(t) = uo + tu;. The function g parametrizes
a line through wg. We think of u; as the direction vector, but this term is a
misnomer because the magnitude of u; will play a role. For |¢| small enough,
g(t) € Q. Hence, if f : Q@ — V is a differentiable function, the composition
f o g will be differentiable in some neighbourhood of 0 and

(f29)(0) =d(f og)o(l) = dfu,dgo(1) = dfuyg'(0) = dfuy(uw1). (3.9

since both g and f o g are defined on a one-dimensional space. Equation (B.9)
allows us to understand what df,,, (1) means, but unfortunately it cannot be used
to define the differential.

DEFINITION  The directional derivative D.,,, f(ug) of the function f at the point
ug in the direction uy is defined as the value of (f o g)'(0) if this exists. In symbols

Du, f(uo) = lim s (f (o + sur) — f (uo)). (3.10)
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Clearly, in case f is differentiable, we can combine (B.9) and (B.10) to obtain
dfuo(ul) = Dulf(uo) (311)
EXAMPLE  Consider the function f : R? — R defined by
£y it (z,y) #(0,0),
= re+y
ey {o if (2,y) = (0,0).

It is easy to check that f is linear on every line passing through the origin (0, 0).
Hence the directional derivative D¢, f(0,0) exists for every direction vector
(¢,m) € R%. In fact, it comes as no surprise that

2

£°n ;
D _J e (&) #(0,0),
SRS it
and this is not a linear function of (&, ) and therefore cannot possibly be equal
to df(0,0(&§,n) which would necessarily have to be linear in (£, 7). It follows from
(B-9) that df o0y cannot exist. O

Let 2 be an open subset of R™. Faced with a mapping f : @ — R¥ we will
typically write this mapping as
f(xlax% s 7'rm)
= (fi(z1, 22, .. Tm), fo(@r, e, oy )y ooy (1, Toy oo T))

where f; through fi denote the corresponding coordinate functions. Then, the
existence of all the partials df;/0x; as ¢ runs over 1 to k is equivalent to the
existence of the directional derivative D, f. In case that f is differentiable at x,

the k£ x m Jacobian matrix
ol (z)
Oz ) ij

is precisely the matrix representing the linear transformation df, with respect to
the usual bases in R™ and R*. Symbolically we have

fi(z +§) fi(z) g—ﬁ(x) %(gj) &1
folx +€) fal@) | L) - L@ || &

+ error term,

ox1 O0Tm

1
where the error term is little “0” of {Z;”Zl 5]2} 2.
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Ofi
LEMMA 19  The existence and continuity of all the partials 8—f for (1 <i <
x .

k,1 < j < m) implies the existence and continuity of the differential df, for all
x € Q.

Sketch proof.  The case k = 1, m = 2 is entirely typical and captures the idea of
the proof. We have

filer + &, 20 + &) — fi(xr, 22)
= (fl(-il?l + &, 00 + &) — file + 51,932)) + <f1(331 + &1, 22) — f1(931>$2))

gf; (w1 + &1, w0 +1262)60 + g—f(xl + €1, 12)6

by the Mean Value Theorem and where 0 < ¢,y <1,

8f1 af (_Qj17x2)§1 +O(||(€l 62)”)

a o (xlax2)€2 + — a

since for example the difference

oh
81’2

(1 + &1, o + 1262) 60 — a—fl(l"bxz)fz
X2

is 0(]&2|) since

0 0
8—2(931 + &1, 2 + 1abs) — a—g(ﬂfbxz)
ofy
tends to zero as (£, &) — (0, 0) by the continuity of —— e |
2

3.4 Complex Derivatives and the Cauchy-Riemann Equations

Let 2 C C be open and let f : 2 — C. Using the standard identification of C
with R?, we can write f = u + v, where u and v are real-valued functions on
2 and we write the variable z as z 4 ¢y with x and y real. In this way, we may
equate f(z) = u(x,y) +iv(z,y). The equations

— =—and — = —— (3.12)



are known as the Cauchy—Riemann equations. The Cauchy—Riemann equations
are a necessary and sufficient condition that the Jacobian matrix

is the matrix representing a complex multiplication.

THEOREM 20

() If the function f possesses a complex derivative at a point, then the Fréchet
derivative exists at that point and is a complex multiplication.

(i) Conversely, if f has a Fréchet derivative derivative at a point which is a
complex multiplication, then f possesses a complex derivative at the point.

(iii) If the function f possesses a complex derivative in €2, then the partials

%, g—z, %, g—z exist in 2 and satisty (B.12).
o ou 0u o0
oz’ Oy’ Ox’ dy
(B-I2), then f has a complex derivative in §2 and the derivative is continu-
ous in €.

(iv) If the partials exist and are continuous in ) and satisfy

Proof.

(i) Since f possesses a complex derivative, say at ¢, then for A complex, we
have

f(C+h) = Q)
h

— f(¢) (3.13)
as h — 0. Multiplying by h we see that

F(C+h) = F(O)+ f(Oh+ @(h) G.14)

where |@(h)| is o(|h|). So the Fréchet derivative exists at ¢. Furthermore
the linear mapping h — f’({)h is a complex multiplication.
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(ii) Conversely, if f possesses a Fréchet derivative A at ¢, then

F(C+h) = F(Q) + Ah) + ¢(h)

where |¢(h)| is o(|h]). But A is also a complex multiplication, then A is
multiplication by a complex number which we will designate f/(z). We

now have (B.14) and can divide by A to obtain (B.13).
(iii) Follows immediately from (i).

(iv) Since the partials are all continuous in €2, it follows from Lemma [[9 that
f has a Fréchet derivative in {2 and the derivative is continuous in 2. But,

now we apply (ii) to see that in fact f has a complex derivative at each point
of Q2

Next, we observe that if u and v satisty the Cauchy—Riemann equations and
have more regularity, then they are harmonic. before we can establish this, we
need the symmetry of the second derivative.

2 2

LEMMA 21 If f, gi g;j Gax éfy nd aay é}; all exist and are continuous in an
2

open subset () of the plane, then 8855 gy = aay é}; in €.

Proof. Let h and k be non-zero real numbers. Then consider

f(x+l<:,y+h)—f(x+k,y)—f(x,y+h)+f($,y)
(8f of

(&y+h) —5-(&y)) (3.15)
from applying the Mean Value Theorem to the function g given by

Ox

The point £ lies between = and x + k. Applying the Mean Value Theorem a second
time gives

2
Flat by ) = flo+ ko) = Flaay+ 1) + flay) = (5L (6 n).

32



where 7 lies between y and y 4+ h. An exactly similar argument yields

62

where & lies between x and x + k and 7, lies between y and y + h. For kh # 0
we now get

0 f B
ax—ﬁy(gl’m) =

Using the continuity of both second partials at (z, y), it suffices to let k and h tend
to zero to conclude that

P f
ayax(g’")'

OF ()= T 0y
Oxdy By = OyOx %Y

LEMMA 22 Ifu and v be C? (i.e. possess continuous partial derivatives of all
homogenous orders 0, 1 and 2) and if (3.12) holds, then

Pu Pu_ e o
oz oy? an ox2  oy?

Proof. 'We have

Pu Fu_oou 0o
ox2  Oy2  Oxdr  Oydy

om0
0z dy Oy ox

0? 0?
A similar argument shows that S ) |

ox?  Oy?
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3.5 Exact Equations and Conjugate Harmonics

In the theory of ordinary differential equations (ODE) we meet the concept of an
exact equation. This is an equation of the form

Az, y)dz + B(z,y)dy = 0

0B OF
which satisfies — = ——. We wish to find a function F'(z,y) such that — = A
Jdy O ox
F A B
and or = B. The exactness condition o4 = 0B is necessary since it ensures
dy Y ox
O*F O*F
that = :
Oxdy  Oyox

PROPOSITION 23 Let A and B be given as above and C'" in the rectangle x1 <
x < Ty, 1 <Y < Y. Then a suitable C* primitive F' can be found in the same
rectangle.

Proof. Let us assume without loss of generality that the origin lies in the rectan-
gle. Then we define

@ y
F(z,y) :/ A(t,O)dt+/ B(z, s)ds
t=0 s=0
which is effectively a line integral along the path from (0,0) to (z,0) along the

x-axis and then from (x,0) to (z,y) parallel to the y-axis. We get

oF

- B
o (z,y)

directly from the Fundamental Theorem of Calculus. We also get

OF Y 0B

A -z
e (x,0) + > (z,s)ds
from the Fundamental Theorem of Calculus and by differentiation under [
Y 0A
= A(x,0) + - g—y(x, s)ds

by the exactness condition

— A(2,0) + (A(z,y) — A(z,0)) = A(z,)
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from the Fundamental Theorem of Calculus again. Note that a little extra work
shows that F is continuous and hence, since A and B are supposed C'!, it follows
that F'is C?. ]

COROLLARY 24  Let u be a C* harmonic function defined in an open rectangle
with sides parallel to the coordinate axes. Then there is a C? harmonic function v
defined in the same rectangle satisfying (B.12)).

Proof. 'We need to solve

The exactness condition is just the fact that u is harmonic. By the previous result,
there is a C? solution v. The fact that v is harmonic follows from equating the
mixed partials of u. u

DEFINITION  Let Q2 be an open subset of C. Then f : 2 — C is holomorphic in
Q if it has a complex derivative f'(z) at every point z of 2 and the map z — f'(z)
is continuous on 2.

If u is the real part of a holomorphic function and is also C?, then the ma-
terial above shows how to construct the imaginary part v. Such a v is called the
conjugate harmonic of u.

EXAMPLE  Letu = 2* — 62%y? + y*, then for v we need to solve

0 0
6_:7 = 122%y — 4y> and 0_Z = 423 — 12zy?

and we can eyeball that v = 423y —4xy> + C where C'is a constant of integration.
The corresponding holomorphic function is u+iv = (x* —62%y? +y*) +i(4day —
4ry? + C) = (z +y)t +iC. O

EXAMPLE  Letu = 3 In(2? +y?). Then w is a nice function away from the origin
and somewhat tedious calculations show that u is harmonic away from the origin.

We wish to solve

v Y v x
ox x? + 92 oy  x2+1y?
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and again, we can find v = arctan(z"'y) + C' in z > 0. A solution can be
found locally anywhere in C \ {0}, but not globally in C \ {0}. We get u + iv =
log(x +1y) +iC. O

There is a more sophisticated way of looking at the Cauchy—Riemann equa-
tions that uses the differential operators

0 109N, 9 1(d 9

0z 2 \0x Oy 0z  2\0x Oy
There are two ways of understanding these definitions. The first is to point out
that with dz = dz + idy and dz = dz — idy, we get

O g+ W gz = 9 gy 91

0. Pt R gt g, =4

so that z and Z mimic a coordinate system on C.

0 0
This is not what is actually happening however. The vectors — and —

ox dy

evaluated at a point (z, y) of the plane form a basis of the tangent space M, 4 to
the plane at that point. The dual space M(, , is called the cotangent space and

the dual basis consists of dz and dy. Both of these spaces have complexificationsf].

0
The vectors —, — form a basis in the complexification of the tangent space and

z
the vectors dz and dz form the corresponding dual basis in the complexification
of the cotangent space.

The key point is that

of 1 6(u+iv)+i0(u+iv) 1 /0u v +li @+0_u
0z 2 ox dy - 2\0zx Oy 2 \Or Oy

.0 . . . .
so that the equation of = 0 is equivalent to the Cauchy—Riemann equations.

0z

'For V a real vector space, we may construct its complexification V' @ iV which becomes a
complex vector space when a complex scalar multiplication is defined by (z + iy)(u ® iv) =
(zu — yv) @ i(zv + yu). The dimension of V' @ ¢V as a complex vector space is the same as the
dimension of V' as a real vector space. Those familiar with tensor products of vector spaces can
think of the complexification as C ® V, the tensor product of real vector spaces, with the complex
multiplication defined by extending A(z ® v) = (Az) ® v by linearity.
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EXAMPLE  The function f(z) = |z|? has a complex derivative only at the origin.

Clearly f is infinitely differentiable and we check from f(z) = 2% that 5 =~

Thus, f possesses a complex derivative if and only if z = 0.
It is also worth pointing out that

Pf P 1(PF PF\ 1
6282_028z__<@+6—y2)_1Af’

A C? holomorphic function is necessarily harmonic! Short proof:
2 2
?f L Pf_ 008 0
ox? = 0y? 0z 0z 0z

We finish this section by showing how Cauchy’s Theorem can be obtained
from Green’s Theorem. Green’s Theorem can be stated as

THEOREM 25 (GREEN’S THEOREM)  Let Q2 be a bounded connected open sub-
set of R? such that OS2 consists of a finite number of piecewise smooth closed
curves. Let P,Q be C' functions defined on an open subset containing cl(f2).

Then
Pdx + Qdy = — — — | dzdy
I /(&%)

Applying this yields

/(u—l—w (dx +idy) = // <6u av)dxdy+z// <@—@)da:dy
o0

so that if f = u + iv is holomorphic in an open subset containing cl(€2), then we
have

fdz=0.
o0
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4

Complex Integration

We want to define complex integrals along curves. In this course we will work
with curves that have a piecewise C'! parametrization. A more general theory,
which we do not attempt, deals with rectifiable curves. Before we can approach
this subject, we need to define the standard Riemann integral of a complex-valued
function.

DEFINITION  Let f : [a,b] — C be continuous. Then we define

/ab F(#)dt = /ab Rf()dt + i /b Sf(t)dt.

a

It is easy to see that this definition is complex linear — we check in turn
that it is additive, stable under real scalar multiplication and stable under scalar
multiplication by 7. We have

LEMMA 26

/ bf(t)dt’ < [ 1)

Proof. Write f; f(t)dt = rw where r > 0 and |w| = 1. Then
r:w/bf(t)dt: /bwf(t)dt:%/bwf(t)dt: /béﬁ(wf(t))dt
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and so

/abf(t)dt':7’S/:|§R(wf(t))|dt§/ab\wf(t)‘dt:/abv(t”dt

using the inequality (.)) for real-valued functions.

We will say that a function ¢ — z(t) from [a, ] to C is a C'! path if it is one-
to-one and continuously differentiable. The underlying set I' of the path is the
direct image z([a, b]). If we have two distinct points z; and 2, of the underlying
set then they arise uniquely from ¢4, 5 such that z; = 2(¢;) for j = 1,2 and we
can determine whether ¢; < t5 or ¢ty < ¢y, i.e. we have a concept of order along
the path.

Let f : I' — C be continuous. Then we define the integral along the para-
metrized path by

b
dz
/ f(2)dz = / f(z(t))d—(t)dt (4.2)
r a t
and initially the integral appears to depend upon the parametrization of the path.
The integral on the right is defined because the integrand is continuous (compo-

sitions and product of continuous functions are continuous). A Riemann sum for

the integral on the right of ({.2) is
5= 3 He() % () (e~ )
— dt

where a =t) <t < --- <t, =band 7 € [ty_1,tx) for k =1,2,... n. There
is a related Riemann sum, namely

Se =D S((m)(2(tr) — 2(t-1))-

By the Fundamental Theorem of Calculus (take real and imaginary parts)

b dz

2(tk) — 2(tp—1) = /t E(t)dt
and so

2(ty) — 2(th—1) — %(Tk) (th —tp1) = /t K <%(t) - %(Tk)) "
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Leading to

dz

2(t) — 2(tk-1) — — (7k) (be — th-1)

7 <ty — tk—l‘W%(‘tk —tp—1]) (4.3)

if the partition has step less than § > 0, then this leads to

S = Sr| < sup | f(2)[[b— alwe (9)
zel t

b
Letting 6 — 0, we have that the Riemann sum S — / f (z(t))%(t}dt and
b dz '
hence also Sp — / f(z(t))a(t)dt.

Since the Riemann sum St can be written in the form

Sr = f(G)(zk — k1)

for node points z; and tag points (j related appropriately to the order on the
curve, we see that the path integral could have been defined in terms of such
Riemann sums and that our definition is independent of the C'! parametrization
used.

The definition is easily extended to curves which are obtained by joining a
finite number of segments each of which has a C'' parametrization end to end.
As we have defined path integrals (with a one-to-one parametrization), the use of
piecewise parametrizations is strictly necessary for path integrals around loops.

We also note that the definition (f.2)) of the integral along a parametrized path
is also perfectly valid for paths which are not one-to-one and indeed it is easy to
see from the real change of variables formula that if s — t(s) is a C'' map of [c, d]
onto [a, b with ¢(¢) = a and ¢(d) = b, then

[ s =D a - [ par

In some instances (such as in the construction of homotopic parametrized curves),
the parametrization may not be one-to-one, but this is of no consequence. The
purpose of insisting that parametrization be one-to-one above is merely for the
purpose of establishing an intrinsic definition for an ordered curve.
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EXAMPLE Letm € Z. We have

/F(z—c)deZ{O ifm# —1

2ri ifm=—-1
where T is an anticlockwise circle centred at . To see this we set z = ( + re?
where the constant r is the radius of the circle and 6 is the parameter for the curve.
Technically, since this is a closed curve, we should integrate over two pieces [0, 7]

and [, 2|, but in practice integrating over [0, 2| will also yield the correct result.
Since dz = ire®df, we get

2T
/(z —(Q)"dz = / rme™ire?dp
r 0
2
= gt / <cos((m +1)0) + isin((m + 1)0))0[9
0
which yields the stated result. O

LEMMA 27  Let f : I' — C be continuous. Then we have the estimate

/Ff(z)dz

d
d—j(t)‘ dt is the pathlength of " and will be denoted

zel

gamﬂm[b

dz
= (t) ‘ dt 4.4)

b
and the interpretation of /
length(T). ’

Proof.
Starting with

Ajww:/fwm%®w

b

d
e < 1o
from (E.1)). The inequality (#.4) follows. n

we clearly get

%(t)' dt
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n

dz dz
E(t)‘ dt would be kz:; =

(), this quantity differs from the Riemann sum Y, _, |z(tx) — z(tx—1)| by at
most |b — a|w% (0), where ¢ is the step of the partition. We can define the path-

b
A Riemann sum for / (1) (tx — tg—1). By

length of T" as sup > _;_, |2 — zx—1| where z; are points on I' written in order
along the curve, the sup being taken over all such finite sets of points. Since,
from the extended triangle inequality, the quantity under the sup increases as the

%(t) dt may be

b
partition gets finer and |b — alwﬁ_z (0) — 0, the quantity /
interpreted as the pathlength of I'. ’
4.1  Fundamental Theorem of Calculus for Holomorphic Functions

THEOREM 28  Let Q2 be an open subset of C, let F' be holomorphic in §2. Then

[vaﬁ:mm—Fm>

where T is any C'" path contained in () starting at « and ending at 3.

Proof. Choosing a parametrization of the path I', we see that we must show
b dz
F'(2(t) 5 (t) dt = F(B) — F(a).

But the chain rule gives %F(z(t)) = F’(z(t))%(t). The interpretation of this
in terms of differentials is that d,(F' o 2) is d.) F o dz, diz is the multiplication

operator from R to C defined by d—j(t) and d ) F' is the multiplication operator
from C to C defined by F'(z(t)). Thus, it remains to show that

b d
tl@Fme:Fm—Fm»

and now it suffices to take real and imaginary parts and apply the real variable
Fundamental Theorem of Calculus. |

As in the real variable situation, there is a second version of the Fundamental
Theorem. This is more subtle however.
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DEFINITION  An open subset €2 of C is star shaped at  if and only if for every
point z of €, then line segment joining ¢ to z lies entirely in €.

THEOREM 29  Let 2 be an open subset of C which is star shaped at . Let f be
holomorphic in Q2 with complex derivative f'. Let

F(z) = /C " f(w)dw

the integral being taken along the line segment from ( to z. Then F' is holomor-
phicin Q2 and F'(z) = f(z) forall z € Q.

Proof. 'We may parametrize the line segment by ¢ +— ¢ + t(z — () as t runs from
Oto 1. So

F(z) = / F(CHtz— Oz — O)dt

We differentiate under the integral sign (possible since the integrand is a C'! func-
tion of 2) to get

o’ /Olg(ﬂut(z—oxz—o)dt:/Olodtzo

and

= [ (st 0)a

— /01 FCHt(z=O) + F(C+t(z — Otz = O)dt
= /;%(tf(CH(Z—C)))dt
— [tf(C+t(z — g))}; = f(2)

It will follow from these identities that 8_F and 6_F are both continuous in §2. So

ox dy
the Fréchet derivative of F' exists in €. Thus F' is holomorphic and F’(z) = f(z)

in . ]
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COROLLARY 30  Let §2 be an open subset of C which is star shaped at (. Let f
be holomorphic in €2 with complex derivative f'. Let

F(z) = /C " f(w)dw

the integral being taken along any C' path from ¢ to z lying in Q. Then F is
holomorphic in Q2 and F'(z) = f(z) forall z € Q.

Proof. First define F'(z) by the integral along the line segment, as in Theorem P9.
Then since F' is holomorphic, F'(z) = f(z), we can apply Theorem Pg. Taking
account of F'(¢) = 0, we get the desired conclusion. u

This now gives us a version of Cauchy’s Theorem

COROLLARY 31 Let §2 be an open subset of C which is star shaped at (. Let f
be holomorphic in Q). Let ' be a piecewise C'* loop passing thru ¢. Then

/Ff(z)dz = 0.

Proof. Choose a point (; on the loop different from ¢. Let I'y be the path from
¢ to (3 going forward along the loop and I's be the path from ¢ to ¢; going
backwards along the loop. According to the previous corollary

f(2)dz= | f(z)dz
I T2

and so

/F res = [ gz [ gz =o

We can generalize this result to loops that are nicely homotopic.

THEOREM 32 Let 2 be an open subset of C. Let (s,t) — z(s,t) be a mapping

of the rectangle [0,1] x [a, b] into Q continuous on the given rectangle. Let zy

for k = 1,...,n be the restriction of z to strips [0, 1] X [tx_1,tx]. Suppose that
azk azk 62Zk 62Zk

00 Bs’ 0sOl 0t0s

are all continuous on the strip [0, 1] X [tx_1,t;] on
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which it is defined. Suppose that z(s,a) = z(s,b) for all s € [0,1]. Let I'(s)
be the piecewise continuous loop defined by t — z(s,t). Then / f(2)dz is

I(s)
independent of s and consequently

fz)dz= [ f(z)dz

(1) I(0)

Proof. 'We consider

o ras = [t
/ ( >gt<8 t) + f(z(s, ))aajgt(&t))dt
- [ (

<f gz(s t))dt
= T3 B) o (5,D) = F((5,0) (5, a) = 0

0z 0z
since z(s,b) = z(s,a) and — 5 —(s,b) = 5 — (s,
s
ting up the range of integration [a, b] into its constituent intervals [tj_1, tx] and
applications of differentiation under | and the Fundamental Theorem of Calculus
on each constituent interval. |

(s,t)dt

a). A detailled proof requires split-

In case that t — z(0, t) is constant, we get

/F 0=

Why is this an extension of Cauchy’s Theorem for star shaped regions? Well,
given a region 2 star shaped at ¢ and a piecewise C! loop ¢ +— 2(t) in Q, it
suffices to consider (s,t) — (1 — s)( + sz(t). The star shaped condition implies
that (1 — s){ + sz(t) € Qforall s with 0 < s < 1 and all ¢ and we observe that
fors =0, (1 —s)(+sz(t) =Cand for s =1, (1 — s)¢ + sz(t) = 2(t).

It is awkward to deal with C' homotopies. Usually homotopies are required
only to be continuous. We settle this with the following technical theorem.

45



THEOREM 33 Let (s,t) — z(s,t) be a continuous map from [0, 1] X [a, b] to
the open subset €2 of C such that z(s,a) = z(s,b) forall s € [0,1]. Suppose
that t — z(0,t) and ¢t — z(1,t) are piecewise C' loops I'y and T'y. Let f be
holomorphic in ). Then

f(z)dz = f(2)dz.

r(1) r'(0)

Proof. Without loss of generality, we can always assume that a = 0 and b = 1.
The ambient space of the ¢ variable is then the interval [0, 1] with the points 0
and 1 identified, in other words, the circle. We realize the circle in the form R/Z
and treat it as a quotient group. The group operations + and — that appear in
the integration formula below are to be taken in this group, i.e. modulo 1. Since
the image of z is compact and C \ Q2 is closed it follows that there is some wiggle
room say 7 > 0 between the two sets. Formally

r= intf diste\o(2(s, 1)) >0

because the minimum is attained. Since z is uniformly continuous, there exists
1 > 6 > 0 such that

‘81 — 82‘ < 5, ‘tl — t2| <= |Z(81,t1) — Z((SQ,tQ)‘ <r

Next, for 0 < u < % let ¢, be a nonnegative function on R/Z zero outside a
interval of halflength u about 0, with integral 1 and continuously differentiablef].
We can easily build ¢,, from parabolic segments as follows

2u73(x +u)?  for —u <z < —3u,
ut —2u 32?2 for —%u <z< %u
2u3(x —u)?  for %u <z <u,

0 otherwise

Spu(x) =

Now construct a new homotopy byf]

1 1
w(s,t) = / Os(1—s)s(x)2(s,t — x)dx = / Os(1—s)s(t — )2(s, x)dx
0 0

'The family (¢4 )u>0 is an example of a summability kernel on the circle group as u — 0+.
My MATH 355 notes give more detail on this topic.

2This is an example of a convolution integral. We can write the formula as ws = Ps(1—s)5 * 2s
with * denoting the convolution product. My MATH 355 notes give more detail on this topic.
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Figure 4.1: The function ¢,, for u = 0.25.

for 0 < s < 1, a change of variables showing that the two expressions are equal
and by w(0,t) = 2(0,t) and w(1,t) = z(1,¢) for the cases s = 0, 1. Differentiat-
ing under the integral sign (in ¢) in the second expression, we see that t — w(t, s)
is C'! for each s € [0, 1]. We leave it to the reader to check that (s,t) — w(s, t) is
continuous on |0, 1[x[0, 1]. A reader familiar with more advanced material would
express this by pointing out that s — z, is continuous from |0, 1 to C(R/Z),
that s — @s1_s)s is continuous from |0, 1[ to L'(R/Z) and that convolution is
continuous as a map L'(R/Z) x C(R/Z) — C(R/Z). A key point is that

w(s,t) — z(s,t) = /0 Os(1—s)s(x)(2(s,t — x) — 2(s,t))dx
so that

wls.t) = 25,01 [ euacos(ols(o,t =) = 2(s. 0o

< sup  z(s,t—x) —z(s,t)| <7
|z|<s(1—s)d

showing that w(s, t) € Q. It remains to check that (s,t) — w(s, t) is continuous
ons = 0and s = 1. Since the two cases are similar, we restrict attention to
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s = 0. The continuity is equivalent to showing that w, converges to wy uniformly
on [0, 1] as s — 0+. This follows since

Ws — Wo = Ps(1—s)6 ¥ Zs — 20 = Ps(1—s)6 ¥ (Zs - ZO) + (908(1—5)5 * 2o — ZO)

leading to

lws = wolloo < llpsa—s)sllallzs = 20lloo + [[@s(1-5)5 % 20 = 20lloo

< lzs = 20lloc + w2 (s(1 = 5)9) 0 0

since zp is uniformly continuous and uniform continuity of z implies that z, —
29 as s — 0+ uniformly. The new homotopy w has now been shown to satisty
all the conditions of the original homotopy z and the map ¢ — w(s, t) is C'! for
all swith 0 < s < 1.

We will now assume that the original homotopy z has this additional property
and maintain the definitions of r and ¢ for this new z. Then we can finish the proof
quickly by showing that two C! loops which are sufficiently close are homotopic
by a highly regular homotopy. We choose a finite sequence 0 = sy < 57 < -+ <

sp = 1 with s, — sy < dfork=1,2,... n. Itisenough to show that
f(z)dz :/ f(z)d=.
T(sk) T(sk—1)
for k = 1,2,...,n. Let us fix k. Note that |z(sg,t) — 2(sk_1,t)| < r and it

follows that the piecewise linear homotopy w(s, t) = sz(sg,t) + (1 — s)z(sg_1, 1)
(defined for 0 < s < 1and 0 <t < 1) remains in 2. But this homotopy satisfies
all the regularity conditions of Theorem B2 and the result follows. |

We are now almost ready to establish another version of Cauchy’s Theorem.
DEFINITION  An open subset € of C is contractible if there is a point ¢ in 2

and a continuous map ¢ : [0,1] x Q@ —  such that ¢(1,z) = z for all z € Q
andp(0, z) = ( forall z € Q.

THEOREM 34 (CAUCHY’S THEOREM FOR CONTRACTIBLE OPEN SETS) Let €2
be a contractible open subset of C. Let F' : { — C be holomorphic. Let I" be a

C* loop in Q. Then / F(z)dz = 0.
r
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4.2 The Winding Number
The following concept is of great importance in the sequel.

DEFINITION  Let I be a piecewise C'! loop in C. Let ( € C\T, then the winding
number windr(() is defined by

1 d
windr() = o /F - —ZC'

PROPOSITION 35 In the above situation windr () is always an integer.

Proof. Suppose I' is C! and fix a C' parametrization ¢ — z(t) of T say over
a <t <band define

We get by applying the fundamental theorem of calculus to calculate ¢'(t)

d

10 =) exp(=g() } = 2 () exp(—g(1) = (=(1) = ¢)g'(1) exp(~g(1)

=0,

So, (z(t) - C) exp(—g(t)) is independent of ¢t. Hence

(#(a) = ¢) exp(—g(a)) = (2(6) = ¢) exp(—g(b)

and since z(a) — ¢ = z(b) — ¢ # 0, we find exp(g(b) — g(a)) = 1 It follows that
g(b) — g(a) € 2miZ and the result follows. The case of a piecewise C'* loop is

only slightly more complicated. |
It’'s also necessary to understand the winding number from an intuitive point
. dr . L do
of view. Putting z(t) — ¢ = r(t)e?®)  we get d_i = d—:ew + z'rewa and
dz do
Cx 1) — —1_> _ 7
30 -07) =7
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Figure 4.2: A loop and the winding number for points not on the loop.

so that ,
) 1 do
Wlndp(C) = % /a Edt

viewing 6 as a multivalued function. The interpretation is that 27 windr(() is the
angle that z(¢) winds about ¢ (in the anticlockwise sense) as ¢ runs from a to b.
We clearly have

windp(¢;) — windp () = — /F ( ! L )dz

% Z—<1_Z_<2

_ 1 G =G

2w /1" (2 —Ci)(z — <2)dz
|G — Gof length(T')

7 distr (&) distr(Co)

so that ¢ +— windp(() is continuous on C \ I". A continuous function that takes
only integer values is locally constant. For those who understand the concept
of connected component, this can be expressed by saying that ¢ +— windrp(() is
constant on each connected component of C \ I".

|Windp(<1) — Windp(CQ) | S 2
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4.3 Cauchy Integral Formula

Let 2 be open in C. Let {p € Q and let p = dist((p,C\ 2) > 0. Let 0 < 7 < p.
Then the closed disk D = {z; |z — (| < r} is contained in 2. Let I" be the circle
|z — (o| = r traversed anticlockwise.

R IC)

= dz f
2mi Jrz —( = or

THEOREM 36  Let f be holomorphic in §2. Then f(()
¢ = Col <.

f(z) = f(©)

Proof. The function g(z) = is holomorphic in Q\{(}. Let 0 < s <

r — |z| and we imagine that s is very small. It is easy to see that I' is homotopic
to the circular loop of radius s about ¢ in the region Q2 \ {¢}. Therefore

/ g(2)dz = T se) = 1 o gg
T

6=0 se?

and we get

2 )
< / F(C + s¢) — F(O)] do
0

=0

/Fg(z)dz

But f is uniformly continuous on D, so letting s — 0 gives / g(z)dz =0. We
r

< 27wa\D(3)

now get

RO N ([

271 FZ—C 27 FZ_C

as required. |

This result has far reaching consequences for

1 1 g ) §
il S A RaD DI OB ()

We note that if |z — (o| =7, | — (o| < u < r, then

n=0

un

‘f(z)(z —C) ¢ - CO)”‘ < ilelg 1f(2)|r~? (_)

r
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It follows that
FIO =" an(¢ = o) (4.5)
n=0

with uniform and absolute convergence on | — (o| < u where

1 f(2)

= omi o G — Gt

and |a,| < sup,cp |f(2)|r~™. Given any fixed u with |u| < p, we may always
choose r with u < r < p and hence (f.5) must have radius at least p. Uniqueness
considerations for the coefficients of power series guarantee that the a,, derived
from two different values of r would have to be the same.

Effectively then, Theorem @ has the following corollaries.

dz

COROLLARY 37  Let€) be open in C and let f be holomorphic in Q2. Let (y € §2
and let p = dist((p, C \ Q) > 0. Then there exist complex numbers (a,,)3, such
that the power series

Z an(C - CO)n
n=0

has radius at least p and converges to f(C) in |¢ — (o] < p.
In particular, the concepts analytic and holomorphic are equivalent.

COROLLARY 38  Let ) be openinC. Let (s € 2 and let p = dist(p, C\2) > 0.
Let0 < r < p. Let T be the circle |z— (| = r traversed anticlockwise andn € Z*.

Then ' ()
() = <

Proof. 1t suffices to differentiate n times with respect to ¢ the result of Theo-
rem (g under the integral sign. In the special case ( = (p, it can also be deduced
from the formula for the coefficients of a power series in terms of the derivatives
of the function it represents at the central point. |

COROLLARY 39 (CAUCHY’S ESTIMATE) Let €2 be open in C. Let (y € €2 and
let p = disteva(Co) > 0. Let 0 < r < p. Letn € Z*. Then
n!

F® (G0 < — sup [f(2)].

r |z—Co|=r
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5

Holomorphic Functions — Beyond Cauchy’s
Theorem

In the last chapter, we saw that as soon as a function has a continuous complex
derivative in an open set, then locally about every point in the open set, it has
a power series expansion about that point with strictly positive radius of con-
vergence. The corresponding result in the real setting is far from being true. In
fact there are infinitely differentiable functions that do not have a power series
expansion at a point. The most well known example is

et = {57 {20

is infinitely differentiable on the whole of R and has ¢™(0) = 0 for all n € Z*].
If ¢ had a power series expansion about 0 it would have to be

0+ 0z 4 0z® + - --

and it is clear that ¢ is not identically zero in any neighbourhood of 0. This
example does not work in C since exp(z~2) tends properly to infinity as z tends to
zero along the imaginary axis. The corresponding function is not even continuous
at 0.

So, holomorphic functions are very special and have many unexpected prop-
erties that we try to investigate in this chapter.

—1 _92 .
ITo prove this show by induction that (™ (z) = {g” (27) exp(a™) 1? T# 8 foralln €
ifz=0.

Z* where p,, is a polynomial.
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5.1 Zeros of Holomorphic Functions

The situation with regard to zeros is summarized by the following theorem.

THEOREM 40  Let f be holomorphic in an open subset 2 of C. Let ¢ € €.
Then there is a “number”m € Z* U{oo} called the order of ( as a zero of f such
that

e m = 0 if f does not have a zero at ¢, i.e. f(¢) # 0.

e m = oo if f vanishes identically in a neighbourhood of (.

| ('i_o_mf(z) if z # ¢,
e meNifg(z) = — () ifz=¢.
tion in Q and g(¢) # 0.

defines a holomorphic func-

Proof. The assertion of the Theorem is that one of the cases listed must necessar-
ily hold. By Corollary B7] we have

f(2) =) an(z=Q)"

valid in |z — (| < r forsome 7 > 0. If a,, = 0 forall n € Z* then we are clearly in
case m = 00. So, if we are not in this case, there exists n such that a,, # 0. Now
the nonempty subset {n;a,, # 0} of Z* has a least element by the Well Ordering
Principle. Let this least element be m. If m = 0, then f({) = ag # 0 and f does
not have a zero at . So we are left with the case m € N and then f({) = ao =0
so that f does have a zero at (. We consider the function defined by

Sz = Omm ]z ¢l <,
g(Z) - n=m
(z=Q)"f(z) ifz € Q\{C}.
We note that Z an(z — ¢)" ™ agrees with (z — ()7 f(2) in0 < |z = (| < r
since ao, . . ., @y all vanish. The function z — Z a,(z — )" ™ is holomor-

n=m

phic in |z — {| < r because it is given by a convergent power series expansion.
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The function z — (z — ()~ f(2) is holomorphic in © \ {(} since it is the prod-
uct of two holomorphic functions in that open set (i.e. by the Cauchy—Riemann
equations). Note that g(¢) = a,, # 0. n

COROLLARY 41 Let € be a path connected open subset of C, f holomorphic
inQ and f(¢) = 0 for a point ¢ € Q. Then either f vanishes identically in €2 or ¢
is an isolated zero of 2.

Proof. 'We apply the previous result. If f(z) = (2 —()™g(z) with g holomorphic
in Q, m € Nand g(¢) # 0, then the continuity of g at ¢ implies that g(z) # 0 in
some neighbourhood V' of ¢. It is then evident that if f(z) = 0 and z € V, then
z = (,i.e. the zero ( is isolated.

Therefore, if the zero is not isolated, then f vanishes identically in a neigh-
bourhood of ¢. Suppose that ¢; € 2 with f({;) # 0. Since € is path connected,
there is a continuous path

0:10,1] — Q

with ¢(0) = ¢ and ¢(1) = (;. Unfortunately we wish to avoid situations in which
¢ has an interval of constancy containing 0. Consider first

o=inf{t;0 <t <1,p(t) # (}.

The point ¢ = 1 is an element of the set, so the inf is well-defined. By continuity
of p, we see that 0 < o < 1. Now replace ¢ by ¢1(t) = ¢((1 —t)o +¢). In
this way, we can assume that there a points ¢ > 0 arbitrarily close to 0 such that

o(t) # ¢

Now consider

T=inf{t;0 <t <1, f(p(t)) # 0}

Since f(p(1)) # 0, this is the infimum of a nonempty set. By continuity of ¢ at
t = 0 and since f vanishes in a neighbourhood of { we have 7 > 0. Fort < 7,
f(¢(t)) = 0 and therefore by continuity f(¢(7)) = 0. By the previous part of the
proof, either f vanishes in a neighbourhood of ¢(7) or (7) is an isolated zero of
f.

Suppose first that ¢(7) is an isolated zero of f. Then, there exists § > 0 such
that 0 < |z — ¢(7)] < 0 = f(2) # 0. But, by definition of 7, f(¢(t)) = 0 for
0 <t < 7 and it follows that

0<t<7= either |p(t) — p(7)] = 0or|p(t) — (1) > .
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But the Intermediate Value Theorem yields that |¢(¢) — ¢(7)| = 0 forall ¢ € [0, 7]
for else, the value 38 would have to be taken by ¢ ~— [p(t) —¢(7)| on this interval.
But this means that ¢ has [0, 7] as an interval of constancy, a situation that we were
careful to eliminate earlier.

So we are left with the case that f vanishes in a neighbourhood V" of ¢ (7). But
then f(¢(t)) = 0 for ¢ in a neighbourhood of 7. This contradicts the definition
of 7 unless 7 = 1. Let us understand this in detail. By continuity of ¢ there exists
k > 0 such that |t — 7| < k implies that ¢(¢) € V and hence that f(¢(t)) = 0.
Since we know already that f(p(t)) = 0 for 0 < ¢ < 7, this yields f(¢(t)) =0
for 0 <t < 7+ & provided always that ¢ < 1. This gives a contradiction to the
definition of 7 unless 7 = 1.

But then we have f(p(7)) = 0 as before which contradicts f({;) # 0. |

We need to understand this result in context. If {2 is a path connected bounded
open subset of C and f holomorphic in 2 then f can have infinitely many zeros
in €2, but necessarily the zeros accumulate only at the boundary of 2.

5.2 Bounded Entire Functions

DEFINITION  An entire function is a function that is holomorphic in the entire
complex plane.

THEOREM 42 (LIOUVILLE'S THEOREM) A bounded entire function is neces-
sarily constant.

Proof. Suppose that | f(z)| < M for all z. Then applying Corollary B9 (Cauchys
Estimate) we get

M
)<

for all » > 0. It suffices to take r sufficiently large to see that f/(z) = 0 for all
z € C. Since f can be recovered from its derivative by means of

ﬂa:ﬂm+4f@w

where T"is a C'! path from 0 to z (for example a line segment), it follows that f is
constant.
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COROLLARY 43 (FUNDAMENTAL THEOREM OF ALGEBRA) Let p be a monic
polynomial of degree m > 1, then there exist oy, . . ., oy, such that

p(z) = H(Z — ag) (5.1

both in the sense of functions (i.e. that and in the sense that (5.1) holds for all
z € C) and in the sense of polynomials, (i.e. in the ring C[z]).

Proof. The proof is by induction on m. For m = 1 the result is evident. Suppose
that the result has been proved for monic polynomials of degree m — 1 and let p
be a monic polynomial of degree m. We claim that p has a zero in C. If not, then
consider

in C. This function is the composition of two holomorphic functions z +— p(z)
and w — w™!, the latter being defined on C \ {0}, where p takes its values. So

m
f is entire. But f is also bounded. to see this, we observe that if p(z) = Z "
k=0

with p,,, = 1 we get

m—1

()] = 121" = D [pell=f*

k=0

m—1
> [2|™ (1 - \pkHZ\’“‘m)
k=0

> 2|2|™ for |2| large,

since the quantity in brackets exceeds j if |z is large enough. Since f is contin-
uous, it is necessarily bounded on any bounded set and hence is bounded on the
whole of C. So f is constant and f(0)p(z) = 1 for all z € C which contradicts
the fact that p has degree > 1.

Thus, p vanishes somewhere, say at «,,. Then the fact (easily verified) that
z — a, divides 2% — of for every k € ZT yields that z — a, divides p(z) =
p(z) — p(ay,). So we may write p(z) = (2 — au,)q(z). We see that ¢ is a monic
polynomial of degree m — 1 and the induction hypothesis finishes the proof. The
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fact that polynomial functions and polynomials are identical concept on C is an
easy consequence of the standard formula for the vandermonde determinant. We
leave the details to the reader. |

Similar to Liouvilles Theorem we have the following proposition.

PROPOSITION 44 Let f be entire and satisty |f(z)| < C(1 + |z|)* where C
and « are absolute constants, m € Z* and o < m+ 1. Then f is a polynomial of
degree at most m.

Proof. Again, Cauchy’s Estimate (Corollary B9 gives

(m+1)!

< R s (5(0)
)l
e

Letting 7 — oo, we get f™*1(z) = 0 forall 2 € C. Integrating up m + 1 times
now shows that f is a polynomial of degree at most m. |

5.3 The Riemann Sphere and Mobius Transformations

There are various ways of thinking about the Riemann Sphere which will be de-
noted Co,. Asa set, it is the abstract union of C with {oo}, the singleton consisting
of the point at infinity. From the metric or topological space point of view it is the
one point compactification of C. This means that we can put a metric on C, for
which a sequence (z,) converges to infinity if and only if (z,,) diverges properly
to oo. If you want an explicit metric that embodies this, you could take

|21] _ |22
L+ |z1] 14 |2

||
—1
"H\zl

21 Z9
T+ ]z12 14 |2/

Y

d(z1, ) = max ('

with the specific interpretation

z
1422

d(z,00) = d(00, z) = max (‘
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The Riemann Sphere is compact. to see this take a sequence in C.. If the
sequence is bounded, then it has a convergent subsequence by the Bolzano-
Weierstrass Theorem. If it is unbounded, then it has a subsequence properly
divergent to ooff.

A more sophisticated way of thinking of C, is as the complex projective space
CPy, that is the space of one dimensional complex linear subspaces of C2. For
most of those subspaces, we can find a basis vector in the form (1, z), but the sub-
space {0} x C is the sole exception to this. If we identify z with linspan{(1, z)},
then the point at infinity is identified to the line {0} x C = linspan{(0, 1)}. There
is actually nothing special about the one-dimensional subspace {0} x C, to an im-
partial observer, it looks just like any one-dimensional subspace and consequently,
there is nothing special about the point at infinity in C.

Yet another way of viewing C is as a manifold. This is a complicated concept,
but one worth exploring a little bit. We start in the real setting. It is clear that one
can think for example of the sphere S? in R? and consider differentiable functions
defined just on S? (and not on R? \ §?). Here, the sphere and its differentiable
structure come from the fact that 5? is embedded in the space R3. We would like
to find a way of describing the differentiable structure of S? without reference to
this embedding. This is the concept of a manifold. Nicely embedded surfaces are
manifolds, but the manifold structure should not reference this embedding.

So, to define a manifold, we first decide upon a dimension d for the manifold
(in the case of S? this will be 2) and we insist that the manifold M is a metric
space. Sometimes additional conditions are imposed already at this point. The
manifold M has an atlas which is a collection of charts ¢, : U, — V, as «
runs over an index set I. The subsets U, are open in M and they cover M,
ie. U U, = M. The sets V,, are open subsets of R? and the mappings ,, are

acl
continuous bijections with continuous inverses. The analogy with the charts of a

real-world atlas is based on the idea that we do not try to understand the world
in its entirety. We understand it a bit at a time by examining individual maps
(charts) of specific regions. However, it's very important that where two charts
overlap, they carry the same information. So there is a compatibility condition
which concerns the overlap mapping

Yo 095" 1 9s(Ua NUp) — 9a(Ua N Up)

2We just showed that C, is sequentially compact. A well-known theorem tells that every
sequentially compact metric space is in fact compact.
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This mapping is certainly continuous, but we may impose additional regularity:.
If we are trying to define a C* manifold, we will insist that each overlap map is
C*. Observe that the overlap mappings are defined from one open subset of R?
to another and so questions of differentiability have a perfectly good meaning.

Once this has been done, we can define C* functions on M. Given say [ :
M — R, fwill be C* on M if and only if each of the mappings fopg' : Vs —
R is C*. Here we are using the C* regularity only as an example. The flavour of
the overlap mappings essentially determines the flavour of the manifold. More
generally it is possible to define C'* functions from one C* manifold to another.

This is just a very naive introduction to the subject. In practice there are all
sorts of problems that arisef].

So, to come back to the Riemann Sphere, it is a complex analytic manifold.
We can work with just two charts. Uy =V} = {z; 2z € C}, ¢ is the identity map.
Uy = {2 € G2 40} Ufoo}, V = Wi,

o= {77 45210

Both overlap mappings ¢, o ¢; ' and ¢ o ;' are the map z — z~! on the

punctured plane z € C;z # 0 which is holomorphic. Hence with this atlas,
Cw is a holomorphic manifold (complex analytic manifold). We have the right to
define holomorphic functions on C.

At first sight, it seems that we have gone to a lot of trouble here for nothing.
What are the holomorphic functions from C, to C? Well they are continuous and
Cx is compact, so they are necessarily bounded and they are clearly holomorphic
on the subset C of C,, so according to Liouville’s Theorem, they are constant on
C and hence by continuity on C,. However, there might be non-trivial holomor-
phic mappings from C,, to itself.

The Mobius transformations on C,, are the transformations induced on C,,
by invertible linear transformations of C?, viewing C,, as projective space in C2.

Let
«
voo
3>One for example that occurs almost immediately is that completely different atlases can define
equivalent structures (two real-world atlases from real-world publishers are supposed to carry the

same information, but the selection of charts will be different), so one needs a concept of equivalent
atlases.
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with det(7T") = ad — By # 0. Then

(3 9 6)= ()

so that the corresponding transformation of C, is

az+
vz + 9

VA el

it being understood that the point at infinity maps to ay~! and —dy~! maps to
the point at infinity. In case v = 0 the point at infinity is preserved and the
mapping is actually affine (constant plus linear) on C. Note that if ¢ € C\ 0, then
the matrix ¢ yields the same Mobius transformation as 7'. It is easy to check that
Mobius transformations are holomorphic on C,. To check analyticity at oo, we
must check that
aw '+ 08 a+pw
~ ywl+6 v+ dw

is analytic at w = 0 and this is OK unless v = 0 when we need to check that

. a+ Bw _1_7+5w_ ow
v+ dw a4+ pBw  a+pw

is analytic at w = 0. This is good since if v = 0 then the determinant condition
is violated.

LEMMA 45  Every Mobius Transformation can be expressed as a composition of
translations, dilations and inversions.

Proof. Throughout the proof, p denotes a generic non-zero complex number.
We have to build up every Mobius Transformation as a composition of Mobius
Transformations of one of the following forms:
Z = Z 4, Z = [z, 2271

Now every Mobius Transformation is given by a non-singular matrix and every
non-singular matrix is a product of elementary matrices (remember gaussian re-
duction). We need therefore, only work with Mobius Transformations that are
generated by elementary matrices.
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Cases 1 thru 4 are of the desired type and in case 5 we show how to build this
case out of the previous four cases. |

PROPOSITION 46 The group of Moébius Transformations is triply transitive on
Co.

Proof. Mobius Transformations clearly form a group since invertible 2 x 2 matri-
ces do. Let a, b, ¢ be distinct in C, then consider
c(b—a)z+alc—>b
(o) = =)z +ale—b
(b—a)z+ (c—1D)

then ¢ is a genuine Mobius Transformation and ¢ takes 0, 1 and oo to a, b and ¢
respectively. The definition of ¢ needs modification in certain special cases:

(cz+c—b )
- if a = oo,
zZ
plz)=4¢ &1 ifb= oo,
z—1
b-a)zta . _

\

Similarly, if o', ¥, ¢ are distinct in C,, there exists a Mobius Transformation 1)
taking 0, 1 and oo to @', & and . It follows that 1) o ¢! takes a, band cto @',
and ¢ respectively. |
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Actually, the Mobius Transformation that does this is uniquely determined. To
see this, suppose that x; and x3 both take a, b and c to @', b" and ¢’ respectively.
Then x = X' o X2 fixes a, b and c. Letting

()_ozz—l—ﬁ
X vz 46

we see that the equation x(z) = z has three distinct roots and it follows that the
quadratic equation 2%+ (§ — )z — 8 = 0 must vanish identically. Soy = 3 =0
and o = §. (Of course, ad — By # 0, so that o # 0 and o # 0. We find
X(z) = zforall z € C, or equivalently x; = xoa.

We next define the cross ratio of four distinct complex numbers 21, 25, 23 and
z4 to be
(21— 2)(23 — 24)
(21— z1) (23 — 22).
The order of the numbers is important. The definition can be extended to the case
of z; € Cy for j = 1,2,3,4 provided {21, 22, 23, 24} has at least 3 elements but
also takes values in C,.

[217 294 %3, Z4] —

LEMMA 47  We have [¢(z1), ¢(22), p(23), p(24)] = |21, 22, 23, 24] for ¢ a MObius
Transformation.

Proof. 1Tt suffices to check this in the case that ¢ is a translation, dilation or
inversion. In each of these cases, the verification is routine. [

It is worth observing that [2(1), 20(2), 20(3), Zoa)] = [21, 22, 23, 24] if 0 is a
double transposition in S,. For example, we have
(22— 21)(za—23) _ (21— 22)(23 — 24)

) ) (el )

Let A\ = [21, 29, 23, 24]. Now, it is well known that the set of double transpositions
together with the identity permutation form a normal subgroup H of S4 which
is clearly transitive in its action on the 4-tuple (21, 22, 23, 24), so each coset of
H will contain a permutation that fixes 1 say. There are six such permutations
which accounts for all the elements in the coset space (quotient). Now there is a
Mobius transform f with f(z2) =0, f(z3) = 1 and f(z4) = oo and since Mobius
transforms preserve cross-ratio, we have [z1, 29, 23, 24] = A = [),0, 1, 00]. Thus
f(z1) = A. It is therefore sufficient to compute

I\,0,1,00] = A, [\, 1,00,0] = (A — 1)/, [\, 00,0,1] = 1/(1— \),
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IX,0,00,1] = A/(A— 1), [A,00,1,0] = 1/A, [\, 1,0,00] =1 — A.

in order to determine all possible values of [25(1), Zo(2); 20(3), Z0(1)] @S 0 TUNS OVer
54.

By a circle in C, , we mean either a circle in C or a straight line in C together
with the point at infinity. (i.e. we interpret a straight line as a circle that passes
thru o0).

LEMMA 48 A Mobius transform maps circles to circles.

Proof. 1Tt is easy to see that any circle can be represented by the equation
plz]* —2R(@z) +¢=0

where @ € C, p,q € R and pg < |a|®. It is also easy to see that substituting
z=w+p, 2= pwor z=w ! into such an equation yields an equation of the
same type. Since these transformations generate all Mobius transforms, the result
follows. |

COROLLARY 49 Ifzy, 2, 23 and z4 are distinct points of C, then [z1, 22, 23, 24]
is real if and only if there is a circle to which all four points belong.

Proof. 'We use the fact that the group of Mobius transformations is triply tran-
sitive, preserves the cross-ration and maps circles to circles to show that without
loss of generality we may take zo = 0, 23 = 1 and 24, = oo. In this way, the
problem reduces to showing that (for z € C\ {0,1}, z = [2,0, 1, o0] is real if and
only if z lies on the circle thru 0, 1 and oo, i.e. the real axis. [

Of course, we usually think of a circle as having an inside and an outside.
So which is which. If we take 29, 23 and z4 in order and orient the circle S
thru 2o, z3 and z4 by traversing in that order, then it can be shown that the set
{z;2 € Cw, Sz, 29, 23, 24] > 0} is the connected component of C, \ S “on the
left” and {z; z € C, S|z, 22, 23, 24] < 0} is the connected component of Co, \ S
“on the right”.
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5.4 Preservation of Angle

At points where the derivative fails to vanish, holomorphic functions are orienta-
tion preserving. In fact, we can actually say much more.

PROPOSITION 50  Let f be holomorphic in a neighbourhood of a point ¢ and
suppose that f'(¢) # 0. Then the Jacobian matrix of f is a positive scalar multiple
of a rotation matrix.

Proof. This is an immediate consequence of the Cauchy—Riemann equations. We
can write the Jacobian as
qa P

ou U
where f = u 4+ v, uand v are real, — =p= — and — = ¢ = ——. In case

p and q are not both zero, we can write

p —q\ _ (cos(f) —sin()
qg p ) " sin(d)  cos(6)
for r = \/p% + ¢2 > 0 and suitable real 0. [

Note that the Jacobian determinant is 72 = p? + ¢® > 0, so that locally near
(, f preserves orientations. We can understand Proposition pQ in the following
way. Suppose that ¢ — «(t) and t — [(t) are two smooth curves thru ¢ with
a(0) = B(0) = ¢. Thent — f(a(t)) and t — f(B(t)) are also smooth curves
thru f(¢) with f o a(0) = f o 5(0) = f({). We have from the chain rule

(f o) (0) = J(a'(0))  (foB)(0)=J(5(0))

The angle between the curves o and (3 at ( is just the angle between the vec-
tors o’ (0) and 5'(0) and since J is a positive multiple of a rotation matrix, this
is the same as the angle between (f o «)’(0) and (f o 3)'(0) which is just the
angle between the image curves f o aand f o §at f({). Thus, where a holomor-
phic transformation has non-zero derivative, it preserves oriented angle between
curves.

Even at a point where the derivative vanishes, we can still say something about
angles between curves.
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Figure 5.1: Argument — modulus plot.

PROPOSITION 51  Let € be an open subset of C, ( € €2 and f a holomorphic
function on €2 with a zero of order m at (. Suppose 1 < m < oco. Then there
is a neighbourhood U of ¢ and a holomorphic function g defined on U such that

f(z) = (g(z))m for z € U. Necessarily; g has a single zero at ¢ (i.e. g'(¢) # 0).

Proof. Obviously, if m = 1 we can take U = Q and g = f. By Theorem fQ
we can write f(z) = (z — ¢)™h(z) with h holomorphic in a neighbourhood of
¢ and h(¢) # 0. Now consider an open disk A centred at h(¢) and of radius
|h(¢)|. Then we can define a holomorphic m™ root ¢ in A. In fact, with a
little trouble we could even write down a power series expansion for ¢ centred at
h(¢) and convergent in A. Now set g(z) = (2 — {)p(h(z)) defined in h=1(A).
Then g is holomorphic since it is the product of holomorphic functions (¢ o h
being the composition of holomorphic functions). Also we have (g(z))™ = (z —

O)™(p(h(2))™ = (2 — ()™h(2) = f(2) as required. -
What has this to do with angles? Well if f is holomorphic and at a point ¢
we have £/(¢) = 0,..., f"=(C) = 0 but () # 0, then = v f(2) — ()

has a zero of order m at (. Therefore, locally about ¢ we can write f(z) =
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f(Q)+(g(2))™ where g is holomorphic near ¢ and ¢'(¢) # 0. So, at (, g preserves
angles and it follows that at ¢ the function f multiplies angles by m. To be explicit
about this, if we take two curves av and 3 emanating from ¢ then the angle between
the curves f o a and f o 3 will be m times the angle between the curves o and
(. 1t has to be stressed that this occurs only at the point {. As soon as you move
slightly away from ¢ you will necessarily have a non-zero derivative and the usual
preservation of angles holds.

Figure shows an argument-modulus plot for a function f. To be more
explicit, the function shows in the z-plane, curves on which the argument and
modulus of w = f(z) are constant. The argument is constant on the red and
black curves and the modulus is constant on the blue curves. The increment in
the argument is /6 (i.e. 30 degrees) and the increments in In(r) are also /6
(for the curves |w| = r). Here are some questions that the reader might like to
consider.

e There are three zeros of f in the figure. Where are they?

e One of the zeros is a double zero. Which one? The other two are single
zeros. How can you be sure?

e In most places, the blue curves meet the red and black curves at right angles.
Why is this?

e The curviquadrilaterals of which most of the figure is composed are approx-
imately square in shape. Why is this?

e How can you be sure that it is not a mixture of zeros and poles that is being
displayed. What changes in the figure would you expect if the zero with the
largest y coordinate were replaced with a pole?

e Where approximately are the zeros of f’? Two of the regions depicted have
eight sides. How do you account for this and what conclusions can you
draw? If there were a region with twelve sides, what conclusion would you
draw?

e In argument-modulus plots in general, is it possible for a curve of constancy
of the modulus to be a smooth figure eight?
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THEOREM 52 (OPEN MAPPING THEOREM) Let €2 be an open path connected
subset of C. Let f : 0 — C be non-constant and holomorphic. Then for every
U open in ), f(U) is open in C.

Proof. It is enough to show that every point ¢ of {2 possesses an open neigh-
bourhood V' such that f(V') is open. If f'(¢) # 0, the we may apply the Inverse
Function Theorem (from MATH 354) to deduce the result. If not, then ¢ has finite
multiplicity as a zero of f’ (since if not then f” would vanish identically on €2 by
Corollary f]] and f would be constant on 2.

So, according to the previous result, we have f(z) = f({) + <g(z))m for z

in a neighbourhood of ¢ and ¢'(¢) # 0. It therefore suffices to show that if V' is
open in C, then W = {z™;z € V} is also open in C. If w € W \ {0}, then
w = 2™ with 2 € V and z # 0 and the result follows as above since mz""1 # 0.
If0 € W, then 0 € V and there exists § > 0 such that U(0,d) C V whence
U(0,0m) C W. [

5.5 Morera’s Theorem

Morera’s Theorem is a converse to Cauchy’s Theorem. It5s strength lies in the fact

that the only regularity imposed on the function is continuity.

THEOREM 53 (MORERA'S THEOREM) Let f be a continuous function defined

on an open subset (2 of C. Suppose that for every triangle T' we have / f(z)dz =0.
T

Then f is holomorphic in 2.

Proof. Being holomorphic is a local property, so it suffices to prove the result
on an open disk whose closure is contained in 2. Without loss of generality on

{z;2 € C,|z| < 1}. Define F(z) = / f(w)dw where L(a,b) denotes the
L(0,z)
line segment from a to b. Then consider F'(z + h) — F(z). Now the three point

0, z and z + h form a triangle 7" so the hypothesis | f(z)dz = 0 can be written
T

F(z+h) — F(z) = /L(O7z+h) f(w)dw — /L(o,z) fw)dw = /L(z7z+h) f(w)dw.
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Parametrizing L(z, z + h) by t — z + th for t running from 0 to 1, we get

1
/ Fw)dw = h/ =+ thdt.
L(z,z+h) 0

It now follows that
F(z+h) = F(=) + f(=)h + h/o (FC+ th) — £(2) ).

and

1

i [ (54 = 1) at] < g0
0

where K = {z;z € C,|z| < 1}. Since f is continuous on K it is uniformly

continuous and it follows that £ has a complex derivative f(z). But f is contin-

uous, so F' is holomorphic. But the derivative of a holomorphic function is again

holomorphic. |

Morera’s Theorem is not a curiosity, it is a powerful tool. It’s main application
is the following result which might be less easy to prove by other means.

COROLLARY 54  Let € be an open subset of C. Let ( f,,) be a sequence of holo-
morphic functions converging uniformly on the compacta of €2 to a function f.
Then f is holomorphic.

Proof. Let T be a triangle in 2, then we will show / f(2)dz = 0. Since T will
T

be arbitrary in {2 we can apply Morera’s Theorem to obtain the desired conclusion.

By Cauchy’s Theorem we have / fn(2)dz = 0. We can prove this either from the

T
Green’s Theorem version of Cauchy’s Theorem, or using the fact that triangles are
contractible. The uniform on compacta convergence yields the convergence of the
integrals.

/T F(2)dz — /T fo(2)dz

/T (F(2) = ful2))dz

< sup [f(2) — fu(2)[length(T') — 0

zeT

as n — o0o. This gives the desired equality / f(z)dz =0. n
T
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6

The Maximum Principle

The maximum principle actually applies to harmonic functions rather than ana-
lytic functions, so it makes sense to revisit the subject of harmonic functions. It is
also very little trouble to tackle this issue in R¢ rather than just in R?.

6.1 Harmonic Functions Again

We start with some motivational material in two dimensions. Let u be a real-
valued harmonic function defined in a neighbourhood of the closed unit disk
{z € C;|z| < 1}. Then we can find a conjugate harmonic function v defined
in a possibly smaller neighbourhood of the closed unit disk. Then, applying the
Cauchy Integral formula (Theorem Bg) we have

. 1 [ (u+iv)(e”) i
(U + Z’U)(Z) = % /t:O W@ tdt

1 2

=5 . (u +iv)(e") (Z e_mtz”> dt

n=0
for |z| < 1. Now from Cauchy’s Theorem we have

2
! (u+ iv)(e™) e™dt = L (u+iv)(¢) ¢" ¢ = 0,

2 Ji_o 2mi

where the path for the integral on the right is the unit circle oriented anticlock-
wise. We can therefore write

(u+)(z) = % /t 7T(u +iv)(e™) (Z et 4 Z ei"t2”> dt

=0 n=0
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again for |z| < 1. Computing the geometric sums in the brackets and combining,
we get

(u + iv)(z) = — /t o iv)(e“)%dt.

21 Ji—o
o 1—22 . . .
But the function [F is positive and taking real parts we get
z—¢€
1 2 y 1— ‘Z|2
= — ) ——dt
u(z) 27 /t:() u(e”) |z — et|?

which is the Poisson Integral formula for a harmonic function. The case z = 0 is

particularly important
1 2m ]
w(0) / u(e)dt

27 Ji=o

and tells that the average value of a harmonic function on a circle is the value at
the centre of the circle.

6.2 Digression — Poisson Integrals in R"

This whole theory works out almost as well in R?. So imagine that a real-valued
function f is continuous on the unit sphere S ! = {y € R% |y| = 1} in R%. We
will form the Poisson Integral of f,

Flo) = [ o) 6D

for |z| < 1 and where o is the d — 1 dimensional area measure on S~ and A, ;

denotes the d — 1 dimensional area of S¢ 1.
Let now y € S% ! be fixed and let p(x) = 1 — |z|? and ¢(x) = |z — y|~% We
Pv d—10v

find A(pq) = pAq+2Vp-Vq+qAp, using the formula Av = — +
or? o or

for radial functions. This gives A(q) = d(d+1)|z—y|~ " ?—d(d—1)|z—y| "2 =
2d|z — y|~*% and

A(pg) =2d(1 — |z|*)|z —y|7* + dd|z — y| Pz - (z — y) — 2d|z — y|

= 2d|z — y|_d_2<1 - \x|2 + 2\93|2 —2r -y — |:zc|2 +2r-y— |y|2>
= 2d|z — yl‘d‘2<1 - \yl2) =0,
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since |y| = 1. Hence, differentiating twice (i.e. applying the Laplace operator)
under the integral sign in (b.1)), we get AF = 0. The differentiation under the
integral sign is valid because so long a; ziskeptinaball [z] <rwith0 <r <1
1 — |z]
|z =yl
of all orders being bounded and continuous and the integral over the sphere will
somehow be built up out of iterated integrals involving d — 1 one-dimensional
Riemann integrals. It will therefore suffice to apply the regular differentiation
under the integral sign theorem, multiple times.
Our objective is

and |y| = 1, the function x +— is infinitely differentiable with derivatives

THEOREM 55  For f a continuous function on the unit sphere S~ we define
F(z) by @) if |z| < 1 and F(x) = f(x) if |x| = 1, thereby obtaining a function
on the closed unit ball. We claim that F' is continuous on the closed unit ball and
harmonic on the open unit ball. In the parlance of PDE, F' solves the Dirichlet
Problem on the unit ball.

Proof. In case d = 1 we proceed by direct calculation to verify that

F(r) = 3 (£ +2)+ F(-1)(1 - )

which is easily seen to satisfy the requirements of the theorem. Hence we may
always assume that d > 2.
Now consider the case where f = 1, we have

1 1—|z|?
A1 ) |z —yl?

G(z) do(y)

is harmonic in the open unit ball and it is clear from the definition that G(x)
depends only on |z|. This is ultimately a consequence of the fact that the area
measure o on S?! is rotationally invariant. But, we can solve for radial harmonic
functions and we obtain

_ JA+Bn(|z|) ifd=2,
Glz) = {A+ Blz|~? ifd > 3.

Since G is clearly bounded, we deduce in either case that B = 0 and therefore G
is constant. But G(0) = 1, so we find G(z) = 1 for all x with |z| < 1.
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To complete the proof of the theorem, we proceed to cut F' onto spherical
shells. The function f, will be essentially the restriction of F' to a sphere centred
at the origin of radius 7, but parametrized on the unit sphere, namely

Ji(2) = Flr2) 1/ﬂ%iiiw@mww1

T Ay, rz—yl
:/R@wmwmn

1 1—7?
where P.(z,y) = T We claim that P, is a summability kernel, ex-
Agq |rz —yld

plicitly

o P(z,y) >0, forall z,y € ST tand 0 <r < 1.

o /Pr(z,y)da(y) =1forallze S tand 0 <7r < 1.

e sup / P.(z,y)do(y) — 0forall § > 0.
2€84-1 J|z—y|>5 r—l-
The Summability Kernel Theorem then shows that f, — f uniformly on S¢~1
as r — 1—. A moments thought shows that this implies the continuity of F' on
the closed unit ball.
The first and second conditions for a summability kernel have been shown. It
remains to verify the third. We claim that

rz —yl > 31z —yl.
To see this, it suffices to show
A 2? = 2rz -y + yl*) > [2* = 22y + [y

or equivalently
4 +(2-8r)z-y+2>0.

When 0 < r < i the worst case is when z-y = —1. It boils down to 47(r+2) > 0
and when 1 < r < 1, the worst case is when z - y = 1 leading to 4(1 — r)* > 0.
The claim is established. Therefore

. 2\od
/‘ Bz, y)doly) < 1/ L= 02 ) = 295741 — 1),
|z—y|>6 Ad—l Sgd—1 (5
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The proof is complete. u

Let us now back up and establish the result on summability kernels. We will
state this in terms of a sequence of kernels ,, on a compact metric space X
and some “measure” p on X (this concept is made precise in MATH 355). We
first assume that ¢, is sufficiently regular on X x X. Continuity on X x X
is sufficient, but there are cases where one is interested in kernels that are not
continuous. Then come the three defining properties

e o,(r,y) >0forallz,y € X andn € N.

. / on(x,y)du(y) = 1forallz € X andn € N.
b

e Forall § > 0 we have sup/ on(z,y)du(y) — 0
d(z,y)>d

zeX n—oo

THEOREM 56 (SUMMABILITY KERNEL THEOREM) Let (¢,)32, be a summa-
bility kernel as above. Let f be a continuous real-valued function on X (complex-
valued will also work). Then

ful) = / onl,y) F W) du(y) — £(2)

uniformly on X asn — oo.

Proof. We have by the second condition
fule) = 1) = [ eula) (50) - @) )ty
and by the first
e = F@)| < [ oo w)| 1) - @) duty)

Let € > 0. Then, since f is uniformly continuous (it is continuous on a compact
space), we can find § > 0 such that w;(d) < Le. So

() = f(2)]
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< [ el s@luw s [ e - )i

< [ eule e @)duts) + 25 1o \/( ol 9)dn(y)

rzeX
1
<gerzswplf@l [ et <
2 zeX d(z,y)>
provided that n is large enough by the third condition. |

6.3 Maximum Principles for Harmonic Functions

PROPOSITION 57 (FIRST MAXIMUM PRINCIPLE) Let €2 be a bounded open

subset of R%. Suppose that f is continuous real-valued on cl(§2) and harmonic in
Q. Then

sup f(z) < sup f(z)

zecl(Q) €02

Proof. Suppose not. Then there is a point z € €2 such that

f(z) > sup f(z).

€N

Now 0f2 is bounded, so there exists € > 0 such that

e sup |z — z|* < f(2) — sup f(z).
€0 €0

Now define g(z) = f(z) + €|x — 2|?. We have

g(2) = (2) > sup f(x) +esup v — 22> sup glz)  (6.2)
€N €N €N

Now, cl(£2) is compact and ¢ is continuous on cl(£2), so it attains its maximum
value at a point y € cl(£2). But because of (6.2)), we see that the maximum cannot
be taken on 992. It follows that y € cl(£2) \ 0 = Q. It follows from basic calculus
that the Hessian of g at y is negative semi-definite. In particular the trace of the
Hessian is < 0. But the trace of the Hessian is just the Laplacian, so

0> Ag(y) =Af(y) + 2ed =2ed >0

a contradiction. ]

75



COROLLARY 58  Let 2 be a bounded open subset of R, Suppose that f is
continuous complex-valued on cl(2) and harmonic in §2. Then

sup |f(z)] < sup |f(z)]
€N

z€cl(Q)

Proof. Suppose not. Then there is a point z € €2 such that

[f(2)| > sup |f(z)]

€N

Let w be the complex sign of f(z). Thenlet g(x) = Rwf(z). Then g is continuous
real-valued on cl(£2) and harmonic in 2. But

9(z) = f(z)| > sup | f(z)| = sup g()
2€0Q 2€0Q

contradicting Proposition p7. u

A further corollary is now given.

COROLLARY 59  Let G be a function continuous on the closed unit ball and
harmonic on the open unit ball. Then

a2
/G =l ), (6.3)

(L’
|z —y|?

" A

for |x| < 1. In particular, putting x = 0, we have

— o | Gwiotw)

Proof. Let F(x) be the right-hand side of (p.3) for |z| < 1 and F(x) = G(x) for
|z| = 1. Then according to Theorem B3, F' is continuous on the closed unit ball
and harmonic on the open unit ball. We consider H(z) = F(z) — G(x). Then
by Corollary

the mean-value property:.

sup |H(z)| < sup |H(z)| = 0.

lz|<1 |z|=1
So, H vanishes identically and we have our result. |

Obviously, this last corollary can be scaled to any ball.
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PROPOSITION 60 (SECOND MAXIMUM PRINCIPLE)  Let €2 be a open connected
subset of R?. Suppose that f is real-valued harmonic in 2 and that f attains its
maximum in §2. Then f is constant in §2.

Proof. Let the maximum value be M. Let Z = {z € ; f(z) = M}. Then Z
is a non-empty subset of {2 which is relatively closed in 2. It is the inverse image
of a singleton by a continuous function and singletons are necessarily closed. We
will show that Z is open. Let x € Z and choose r > 0 such that U(x,r) C Q.
Consider 0 < ¢ < r and according to the mean-value principle scaled to a ball of
radius ¢ about x that

1
N /4d—l Sd—1

M = f(x) flz+ty)do(y). (6.4)
Now clearly f(x + ty) < M. Suppose that for some z with |z| = 1 we have
f(z +tz) < M, then, using the continuity of f, there is an ¢ > 0 and an open
neighbourhood V' of z in S4~! such that f(z + ty) < M — e forall yin V. But
now

flz +ty)do(y) < /

f(x + ty)do(y) + / f(x + ty)do(y)
Sd-1\y 1%

Sd—1

<M do(y) + (M — e)/ do(y)
Sd—-1\y \%4

[ doly)—e / do(y) < MAg
gd-1 1%

leading to a contradiction with (6.4). Hence f(z) = M on U(z, ). It follows that

Z is open relative to €. But 2 is a connected set and it follows that Z = €. |

COROLLARY 61  Let § be a open connected subset of R?. Suppose that f is
complex-valued harmonic in §) and that | f| attains its maximum in Q. Then f is
constant in §2.

Proof. Let |f] attain its maximum M at z € . Let w be the complex sign of
f(2). Then let g(x) = Rwf(x). Then g is real-valued harmonic in 2, g(z) = M
and g(z) < M for all z € 2. So, according to Proposition pQ, ¢ is constant in §2.
This says that Rwf(z) = M for all z €  and it follows that |f(z)| > M for all
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x e Q But|f(z)| < Mforall z € Qso|f(x)| = M forall z € Q. Combining
this with RO f (x) = M, we see that f(x) = Mw for all z € Q. |

Since in d = 2, holomorphic functions are examples of complex-valued har-
monic function, the results above for complex-valued harmonic functions also
holds in that context. We do have the following result.

PROPOSITION 62 Let f be holomorphic in a connected open set €2 of C and
suppose that |f| attains its minimum value. Then either f is constant, or the
minimum value is zero.

Proof. Suppose that the minimum value is not zero. Then |f(z)| > 0 for all
z € Q. Hence g(z) = (f(z))~" is holomorphic in 2 and attains its maximum
value. By Corollary p1], g is constant in 2 and hence, so is f.

We can now answer the question posed on page 7] concerning holomorphic
functions with constant modulus on a figure eight curve. Certainly the constant
modulus cannot be zero, for the zero set of a holomorphic function either consists
of isolated points unless the function is locally zero. Clearly the function is not
locally constant and by compactness it must attain its minimum modulus in each
of the closed loops of the figure eight. So, by Proposition p2, the function must
vanish somewhere inside each of the closed loops. So, let us try to construct such a
function and see what happens. We take f(z) = 1— 2% with zeros at +1. Atz = (
the function f takes the value 1. Where do we have |f(z)| = 1. We will use polar
coordinates. The equation |1—22| = 1 becomes (1—72 cos(26))2+r%(sin(26))? =
1 which simplifies to r* — 2r? cos(26) = 0 or, since the origin is on the curve
anyway, % = 2 cos(26). This curve is called a lemniscate and has exactly the form
of a figure eight. So the answer to the question is yes.

6.4 The Phragmen-Lindel6f Method

The first result is an extension of the maximum modulus principle to a strip.
Proposition 7] does not apply because a strip is unbounded.

PROPOSITION 63 Let 2 = {x + iy;x,yreal ,|y| < 5}, f be continuous on
the closure of 2, holomorphic in €2 and satisty |f(z)| < 1 for z € 0Q. Further,
suppose that there are constants a < oo and b < 1 such that

|£(2)| < exp(ae’™!) forall z € Q. (6.5)
Then |f(2)] < 1 forz € Q.
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The growth condition (p.9) is necessary. Consider for example f(z) = exp(e?).
Roughly speaking the proposition says that the growth has to be really wild before
the maximum modulus principle will fail on the strip.

Proof. Choose cwith b < ¢ < 1. let e > 0 be arbitrary, but fixed for the moment.
Let
he(z) = exp(—ecosh(cz))

an entire function. Then for z = x + iy € Q, with x, y real,
R cosh(cz) = cosh(cx) cos(cy) > 6 cosh(cx)
where § = cos(cm/2) > 0. Thus
|£(2)he(2)| < exp(ae’™ — €6 cosh(cz)) — 0
as |x| — oo since b < ¢. On 0N2
|f(2)he(2)| < exp(—ed cosh(cx)) < 1.

We now apply Proposition p7] on the open subset Qr = {z + iy; z,y real , |z| <
R, |y| < 5} where R is sufficiently large. The result is that

|f(2)he(2)] <1 forall z € Qp.
Letting R increase to infinity, we now obtain

|f(2)he(2)| <1 forall z € Q,

or equivalently |f(z)| < |e“*™3)|. Letting € decrease to zero now gives the

desired result. ]

The next step in this saga is the following theorem which turns out to play a
crucial role in functional analysis. To go into the details of why this result is so
important is unfortunately beyond the scope of this course.

THEOREM 64 (THE THREE LINES THEOREM) Let Q = {x +iy;x,y real ,0 <
x < 1}, f be continuous on the closure of §2, holomorphic in 2. Suppose that
there are positive constants My, M, a < oo and b < 7 such that

exp(aet)  for0 <z < 1,y € R,
|f(z +iy)| < § Mo forx =0,y € R,
M, forx =1,y € R.

Then |f(x +iy)| < My " M¢ for0 <z < 1,y € R.
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Proof. We start by adapting the previous result to the strip involved here. We
then apply that result to the function

g(2) = My ""* My f(2).

The desired conclusion follows. ]
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Isolated Singularities and Residues

Morally speaking, a singularity is a place where a function has bad behaviour
or is not properly defined, with the understanding that the function has good
behaviour nearby.

DEFINITION  Let ¢ € §2 where 2 is open in C. Then a function (defined on 2)
which is holomorphic in a punctured neighbourhood V' = {z € C;0 < |2 —(| <
r} of ¢ or radius r > 0 is said to have an isolated singularity at (. Here we are
assuming that V ={z € C; |z — (| <r} C Q

There is a classification of isolated singularities as follows — removable singu-
larities (i.e. singularities that aren’t really there at all), poles and essential singu-
larities (i.e. everything else). Here are the definitions.

DEFINITION  Let ¢ € €2 where Q2 is open in C. Let f be a function defined on §2
which is holomorphic in V'. Then

e ( is a removable singularity , if there is a number a € C such that the
function f defined by

= a ifz=¢,
1) = {f(z) ifze V.

is holomorphicin V.

e ( isa pole if the function f defined by

5 00 ifz=¢,
1) = {f(z) ifzeV'.
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is holomorphic as a map from V' to C.

e ( is an essential singularity if it does not fit into either of the two above
cases.

THEOREM 65  Let f be a function bounded and holomorphic in V'. Then f
has a removable singularity at (.

In fact, boundedness is too strong, one can get away with replacing the bound-
edness with the condition

lim |2 — (]| f(2)] = 0.
Proof. The idea is to define g in V' by

_J0 it 2z =(,
9(2) = { (z = C2f(z) =€V
Then clearly g has a complex derivative ¢'(z) = (2 — ¢)?f(2) +2(z — {) f(z) in

V' Also
A=) (- ) — 0

as z — (. Hence ¢'(¢) exists and equals zero. We claim that g is holomorphic in
V. Tt remains only to check that ¢’ is continuous in V. This is obvious, except at
(. Let € > 0. By hypothesis, there exists ¢ > 0 such that

0 <fw—([<d=|w—(]|f(w)] <e

Now choose z with 0 < |z — {| < 0. We apply the Cauchy estimate on the disk
{weC;lw—z] < 3lz— (]} C V' toget

9'(2)] < sup  [g(w)]
SRR PV T
2 2
<2 s =Pl

fw—z|=3 2|

<3 sup lw — C|| f(w)]

1
fw—z|=3]2—|

< 3¢
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since 0 < 3|z — ¢] < w —¢| < 2]z — ¢| < 26. it follows that ¢’ is continuous at

¢ and completes the claim.

But now we may expand g as a power series g(z) = Z an(z —¢)". Since

n=0

g(¢) = ¢'(¢) =0, it follows that ay = a; = 0 and therefore

f(2) =) analz = Q)"

n=0

forz e V'. n

COROLLARY 66  If f is holomorphic in V' and tends properly to oo at ¢, then
f has a pole at .

Proof. Consider g(z) = ﬁ defined on W' = {z € V’; f(2) # 0}. Then g is

holomorphic on W’ and tends to zero as = — (. Hence g extends to a holomor-
phic function g on W = {¢} U {z € V'; f(2) # 0} which is a neighbourhood of
¢. It follows that f has a pole at . |

Since ¢ has a zero at ¢ and g is not identically zero in a neighbourhood of ¢,
it follows that g has a zero of order m at ( where m is an integer m > 1. This
number is called the order of the pole . In case m = 1, we say that ( is a simple
pole or single pole . 1If m = 2, we say that ( is a double pole . 1f f has a pole of
order m at ¢, then z — (z — ¢)™ f(2) has a removable singularity at ¢. Also, if f
has a pole of order m at ¢ we can express f(z) in terms of an expansion

f(z) = Z an(z = ()"

n=-—m

valid in 0 < |z — (| < p for some p > 0. Such an expansion is called a Laurent
expansion . It will turn out that if f has an essential singularity at ¢, then it has a
Laurent expansion of the form

but this expansion does not terminate as we progress backwards through the neg-
ative powers.
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EXAMPLE  Let f(z) = sin(2)

. Then officially, f is undefined at z = 0, but is

holomorphic on C \ {0}. It is easy to see that 0 is a removable singularity and

indeed, we have
o

1
_ 1)k 2k
1) _;( RNCTES Y
with infinite radius. O
EXAMPLE  Let f(z) = : . Then officially, f is defined and holo-
exp(z) —1—z

morphic on {z € C;exp(z) — 1 — 2z # 0}. At every point ( # 0 where
exp(()—1—¢ = 0, there is a simple pole at ¢. This is because z +— exp(z) —1—z
has a simple zero at (. We can tell that the zero is simple, because if not then both
exp(z) — 1 — z and its derivative exp(z) — 1 both vanish at z = ¢ and this can
only happen if ( = 0. At { = 0, we see that z — exp(z) — 1 — z has a double
zero and z — 2z has a simple zero. Hence f also has a simple pole at z = 0. O

1
EXAMPLE  Let f(z) = exp (z + —), a holomorphic function on C \ {0}. It is
z

fairly clear that f has an essential singularity at z = 0. To prove this rigorously, let
y be real with |y| large and solve the equation z + 2z~ =4y, or 22 —iyz +1 = 0.
The sum of the two roots is iy so at least one of them has absolute value > 1|y|.
The product of the two roots is 1, so the other root has absolute value < 2|y|~*.
As iy tends to oo, the smaller root tends to zero and the value of f at the smaller
root is cos(y) + sin(y) which does not converge to anything, nor does it properly
diverge to oo. O

We can also discuss the concept of singularities at co. We are thinking of the
Riemann Sphere and using the chart z +— 27! which acts as the chart mapping
near 0o. So, f has a removable singularity (respectively pole) at oo if the function
z +— f(z7!) has a removable singularity (respectively pole) at 0. We see that such
a function has an expansion

f(z) = Z a, 2"
with m an integer m < 0 in the case of a removable singularity and m > 1 in the
case of a pole (in which case, m is the order of the pole).
A function holomorphic on C, except at finitely many points (if the singular-
ities of f are isolated, this will force them to be finite in number by compactness)
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where there are poles is necessarily a rational function (i.e. quotient of polynomi-
als). To see this, let f be such a function. Now construct a polynomial ¢ whose
zeros match the poles of f in C. If a pole of f has order m, then we insist that the
corresponding zero of g has order m. Then p = ¢f has no poles in C (they have
become removable singularities). At infinity, it has a pole of order m where m is
the order of the pole of f at oo plus the degree of ¢. It now follows that there is
a constant C' such that |p(z)| < C(1 + |z|)™. Now apply Proposition 4] to show
that p is a polynomial.

7.1 Laurent Expansions

Laurent expansions are more general than the expansions introduced earlier. They
apply to holomorphic functions defined in annuli. For convenience, we will take
our annuli centred at 0.

THEOREM 67 Let 0 < r < R < oo and let §2 be the annulus defined by
r < |z| < R. If f is holomorphic in €2, then we may find a,, € C forn € Z such
that

[e.e]

fz)=) an" (7.1)

n=—00
where convergence is uniform on the compacta of €. Furthermore, we have

1 2

f(pe®ye=™m%dp (7.2)

a, =
2mp™ Jo=o

for all p withr < p < R.

Proof. Let zy be fixed. Choose 1 and Ry such that r < r; < |z| < Ry < R.
We start with a small circular contour I' of radius s oriented anticlockwise and
centred at 2y and lying in {2. By the Cauchy Integral Formula, we have

1) =5 [ Hac

Comi Jr (-2
for all z such that |z — z9| < s. Now consider the following contour, I';. Let
2z = pe'®. We start at —R;e"® make an anticlockwise loop around |z| = Ry,

85



Figure 7.1: Contour used in the proof of Theorem p7.

returning to — Ry, then along the straight line path to —r;e* then a clockwise
loop around |z| = ry, returning to —re*® and finally back along the straight line
path to —R;e%. Tt is fairly clear that I" and I'; are homotopic in 2\ {z; |z — 2] <
55}. So again for |z — 29| < s, we get

10 =5 [ L

T 2mi (—z

L T Rye? i 2 pet? y
2w </0 Ry — 5 e )de_/o e AT )de)

since the integrals over the straight line portions of I'y cancel

_ i /27r f(R_lleze) 50 N /27r 2—17,162'9_]47(“?2‘9) 50
21 \Jo 1—Rj ez 0 1 —z"1re?

(o]
= g anz"”

n=—oo

where

1 2 ) )
f(Rl 610)6—2n0d9

[0
2 RY Jo=o

86



forn > 0 and
1 21

f(r ew)e_mede

T2 Josy
for n < 0. If M is an upper bound for |f| on 7y < |z| < Ry, then we have
la,| < R{"M forn > 0and |a,| < r{"M for n < 0 and the series converges
uniformly on the compacta of < |z| < R;. So, the series converges to a
holomorphic function ¢ on the annulus r; < |z| < R; by Corollary f4. Also f
and g agree on |z — zp| < £s and therefore, they agree on ry < |z| < Ry. So (T
holds for r < |z| < Rj.

Since we can choose 7 as close to r (but with 7y > ) as we please and R,
as close to R (but with R; < R) as we please, this gives that (1) holds on
r < |z| < R and also that the series converges uniformly on the compacta of
r <|z| <R.

We can also see that foralln € Z,

1),

n - .
2mi | 2ntl

with the integral taken round |z| = p anticlockwise is independent of p so long
asr < p < R. This is because the circular paths corresponding to different p are
homotopic and the integrand 2"~ f(2) is holomorphic in r < |z| < R. n

The formula (7.2) shows that the coefficient of the Laurent expansion are re-
lated to the Fourier coefficient of the function restricted to a circle.

The uniqueness assertion is straightforward. Suppose that the series ([-1]) con-
verges uniformly on compacta to zero. Then we obtain by uniform convergence
of integrals that for any p withr < p < R

N
( Z anpnein0> p_k€_ik6d9 = a
n=—N

2m
0= lim
0
as required.
EXAMPLE  Here is a simple example. Let
1 1
G-D(+27 9
In the region |z| < 1 we write
1

fle)=—g (1-2)" - % (142/2)7% - 1_18 (1+2/2)"

f(2) = (-1 -5 G+ g )
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giving
1
= =2 — (1" (n+1)27" = —(~1)"2"

forn > 0 and a,, = 0 for n < 0. For the region 1 < |z| < 2, the series expansion
for (1 — 2)7! is no good, we need to use

_ L -1\ 1 1 -2 1 -1
f(z)—gz (1 z ) 5 (14 2/2) e (1+2/2)
1 — 1 S 1 S
=5 n;mz -5 ;(—1) (n+1)27" = ;0(—1) 27"z
giving
a2 - e
@ =719 " 18

forn > 0and a, = 5 for n < 0. Finally, for 2 < |2|, then we write

1 11 o 1 -

f(z) = 5 27t (1 — z_l) to 3 z? (1 + 2z_1) g ) z! (1 + 22_1) '
_ 1 f:z_" — 12_2 i(—l)"(n +1)2"7" — 1,2_1 f:(—l)”?%‘"
9 n=1 3 n=0 9 n=0
giving a,, = 0 forn > 0 and
1 1 1
n==+-—=(-1)" 27"+ —(-1)"2™"
=g+ 5 (L D27 (1)

for n < 0. This last expansion is a little bit misleading since the first two terms
vanish. Numerically, it looks like

273 304092799230 4 5777 — 135278 4+ 313277+ - -
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EXAMPLE  Find the Laurent expansion of cosec(z) in 0 < |z| < . since sin has
a simple zero at z = 0, cosec has a simple pole. We can use the identity

z
cosec(z) = cot <§> — cot(z)
and the expansion for cot (from one of the assignments) to get

- 4k — 2)B2k 2k—1

cosec(z) = 271 + Z(—l)k((T)!z

k=1

7.2 Residues and the Residue Theorem

First, let’s state a more powerful version of the Cauchy Integral Theorem. We
could have used this theorem in the proof of the existence of Laurent expansions.

THEOREM 68  Let 2 be a bounded connected open subset of C with piecewise
smooth boundary. Let 02 denote the oriented boundary of 2. Let ( € €2 and f
continuous on cl(§2) holomorphic in €). Then

f(z)dz

o0 2—C

— 27 f(()

Proof. The idea is to cut a small closed disk D out of Q. Let U = Q \ D. Then
OU = 092 — 0D. We apply the Green’s Theorem version of Cauchy’s Theorem to
get

fed
v Z—G
since z — /() is holomorphic in U. This gives
f(2)dz f(2)dz .
o9 Z(—)C - oD Z(—)C = 2mif(¢)
from Theorem [3§. n
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DEFINITION  Let ¢ be an isolated singularity of a function f holomorphic in a
punctured neighbourhood of (. Then f has a Laurent expansion about (. The
coefficient of (z — ¢)~! in this Laurent expansion is called the residue of f at ¢
and will be denoted Res(f, ().

EXAMPLE  Let f(z) = + Then f has a simple pole at 0. This makes it
ee—1—=z
easy to calculate the residue as lim,_,g zf(z) = 2. O

ExaMPLE  The case of poles of higher order is trickier. For example let g(z) =
2

] - Then we will expand the denominator far enough
e#—-1—-z—-3z

z

1,34 1 44 ...
5% + 5720 +

9(z) =

1

=623(1— -2+

=622z 4

and the residue is seen to be —%. O

EXAMPLE  Even in case of an essential singularity, the concept of residue is still
valid. For example, if h(z) = exp(z + 27!) we can calculate the residue as an
integral

1 2 ) ) 0 1
Res(h,0) = — e =y e =1(2
s 0) = 5o | e+ =3 = 2
where I; is one of the Bessel function family. O
e

EXAMPLE  Find the residue of

at z = 0. Clearly, ] s analytic in a

—z
neighbourhood of z = 0. This means that the desired residue is also the residue

—1
e —a . . .
of _—, at z = 0 and we choose a = e to kill the singularity at z = 1. Then,
— 2z
with w = 27!, we have

=w (7.3)



w

e’ —e _ . .
and w — is entire after we have resolved the removable singularity at
W —
el —e . . .
w = 1. The value at w = 0 is 01 e — 1, this is also the coefficient of w in
(73) and hence the desired residue. O

21

e
EXAMPLE  Find the residue of g atz = 0. We need the coefficient of w

(161: 2)
w17 So with f(w) = e, we have
FO)+ M) =1) + 5/ (1)(w = 1)* = ge(w” +1).

So, since the singularity of flw) = ) + f’(l()i}w_—l)lg) /" 1)) is

removable at w = 1 and the resulting function is entire, the coefficient of w in

L) = G+ f(w = 1) +5£(1)(w —1)%)

in the Laurent expansion of w?®

(w—1)3
22 +1
is zero. Hence the desired residue is also the residue of %ei. But
22(1—2)3
ﬂ =2243271 —2( —1)_3—1-2( —1)_2—3( —1)_1
20— =z z z z z
) . . 3e
and the desired residue is 5 O

Before tackling the Residue Theorem, we need the version that applies to a
single singularity and a small circle centred at the singularity.

PROPOSITION 69  Let f be continuous on the punctured disk 0 < |z — (| <r
and holomorphic in 0 < |z — (| < r. Then

/f(z)dz = 2mi Res(f, (),
r

where I" denotes the circle |z — (| = r traversed anticlockwise.
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Proof. 1f we had taken I'(s) the circle |z — (| = s traversed anticlockwise with
0 < s <r,then

/ F(2)dz = 2mi Res(f, ¢)
I'(s)

would follow from the Laurent Expansion Theorem. It's enough to show that

/F e — /F F(2)dz

as s — r— and this is any easy consequence of the fact that f is uniformly con-
tinuous on {z € C; 3r < [z < r}. n

THEOREM 70  Let 2 be a bounded connected open subset of C with piecewise
smooth boundary. Let OS2 denote the oriented boundary of€). Let f be continuous
on cl(2) holomorphic in 2\ F, where F is a finite set of singularities. Then

f( dz—27rzZRes 1, 0)

CeF
Since the set of singularities is finite, it follows that each singularity is isolated.

Proof. The proof is similar to that of Theorem [68. For each ¢ € F make a small
closed disk D¢, centred at ¢ and such that all the disks are disjoint and contained
in Q. Let U be the set obtained from excising these disks from 2. Then f is
holomorphic on U and this yields

f dz-Z f(z dZ—QWZZReS £, Q)
cer 7/ 0D¢ CEF

from proposition B9 n

To get to the more advanced versions of the Residue Theorem, we will have to
look again at the winding number.

PROPOSITION 71 Let ' be a piecewise C'* loop in C. Then for ¢ in the un-
bounded connected component of C \ T', windr(¢) = 0.
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Proof.  Since

windr(() ! / dz
r

2 Jrz—C
it is easy to see that | windr(¢)| — 0 as ( — oo. But windp(+) takes integer
values and is constant on the connected components of C \ I". Hence the result.m

We now come to the winding number version of the Cauchy Integral Formula.

THEOREM 72 Let Q be an open subset of C. Let T'y,...,T,, be piecewise C
loops in §2 such that

W(¢)=) windr,(¢) =0 V(eC\Q.
k=1

Let f be holomorphic in Q. Then for z € Q\ U], I'x

kz:; L w0 Zdw = 27 (; Wlndpk(2)> f(z) (7.4)

Proof. Let
-1 L
plz,w) = w2z
f'(z) if z =w.

then, it is easy to see that ¢ is continuous on €2 x {2 (use power series expansions to
establish continuity at points on the diagonal) and holomorphic in each variable
separately. Let

U={CeC;(¢ Urk,W(OZO}

k=1
an open subset of C containing the set {¢ € C;|(| > R} for R sufficiently large
and which by hypothesis satisfies Q U U = C. Let

( m
Z/ o(z,w)dw ifz € Q,
k=1"T%

. (w)

9(z) =

dw ifzeU.

[ =1 ka—z
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We will need to check that this is well-defined. In case ¢ € 2 N U we have

£ (1 e £

=2mif(z Z windrp, (¢) =0

It is easy to see that g is everywhere holomorphic (i.e. entire) and also that
g(z) — 0as z — oo since we can use the definition for { € U for this pur-
pose. Since g is a bounded entire function, Liouville’s Theorem (Theorem f2))
asserts that g is constant and therefore zero. But then, repeating the above argu-
ment assuming that z € Q \ [ J;—; I'x, we get (.4) as required. u

COROLLARY 73 (WINDING NUMBER VERSION OF CAUCHY’S THEOREM) Let 2
be an open subset of C. Let T'y, ..., T, be piecewise C* loops in € such that

Zm:vvindpk(() =0 V¢eC\Q.

Let h be holomorphic in Q. Then forz € Q\ U, T
Z/ h(w)dw = 0 (7.5)
k=1"Tk

Proof. Choose z € Q. Apply Theorem [[2 with f(w) = (w — z)h(w). n
Finally, we now come to

COROLLARY 74 (WINDING NUMBER VERSION OF THE RESIDUE THEOREM)
Let Q2 be an open subset of C. Let 'y, ..., T, be piecewise C'! loops in §) such
that

zm:vvindpk(() =0 V(eC\Q

Let f be holomorphic in Q\ F', where F' is a finite set of singularities not meeting
Ui, Tx. Then

Z w)dw = 2mi Z W (z) Res(f, z) (7.6)

zeF
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where W (z) has its usual meaning W (z) =Y _;" , windr, (z) as the total number
of times that the contours wind about z.

Proof. For each z € F, we strip out a small disk D,. These disks are chosen so
small that they avoid the contours I'y, are contained in €2 and avoid each other.
We would like to replace 2 by €y = Q\J,.p D-. We have that f is holomorphic
on 24, but we have messed up the winding number condition. To fix this, for each
z € F we introduce an additional loops L, winding around each of the disk D,
—W (z) times. The loop L, is located in €2, so very close to D, that it does not
interfere with anything else. Applying Corollary [/.5 we now get

Z/F flw)dw+Y : flw)dw =0

Proposition p9 now gives

f(w)dw = 2mi Res(f, z) windy, (z) = —2mi Res(f, 2)W(z)

L.

and (7.9 follows. n

7.3 Method of Residues for Evaluating Definite Integrals

This section is all examples.

sin x

EXAMPLE ~ We wish to evaluate / dx. We proceed by integrating a func-
0

x
tion related to the given one around a contour. Ler » > 0 be very small and
1z

e
R > 0 be very large. In this case, we choose f(z) = — and integrate around the
2

contour comprising four sections
1. Along the real axis from r to R.
2. Around the semicircle 6 — Re® from 6 = 0to § = 7.
3. Along the real axis from —R to —7.

4. Around the semicircle  — re® from 6 = 7w to § = 0.
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®sinx

dz.

Figure 7.2: Contour for /
0 i

Thisisa C'! loop and f has no singularities “inside” the loop. The only singularity
of fisat z = 0 and the contour has winding number zero about z = 0. So, we
obtain

6

R 61’:(: T eiRew ) —r eiz 0 eire ]
0= / —dx + __iRe"dh + / —dx + / _iredl
. Ret? . ret

T 0 _R X

Reix [T i Reif Re_iz Y )
:/ —dx+z/ eledQ—/ dx—z/ et do
r x 0 r x 0

R . .
zgi/ Smxderi/ 6iRcos(0)e—Rsin(0)d9_2./ Jire® g
T 0 0

T

Obviously, we are going to let 7 — 0+ and R — oo. Asr — 0+, we have

eire’ 1 uniformly in 6 (since re®® — 0 uniformly in #) and so

™
e cos(0) e sm(O)de T
0 r—0+

We also have

/ eiRcos(G)e—Rsin(G)dQ — 50
0

R—o00
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but this is less obvious. To justify this we proceed by

/ echos(G)e—Rsm(O)de‘ S/ €_Rsm(0)d¢9
0 0
1
R 2 T—R 2 w
g/ d6+/ 1 e—Rsm<9>d9+/ 1 df
0 R 2 T—R 2

Finally, this gives

and we conclude

The next example is computationally more intensive.

df .
. h ill = ¢ and
32 — 18 cos 6 + 5sin 20 ere we will put 2 ¢ an

integrate over the unit circle anticlockwise — call it I". We get dz = ie®df and it
follows that df = —iz~'dz. So, the integral becomes

27
EXAMPLE  Find /
0

/ dz
—1
r2(32 =9z — 9271 — 2iz? + 2iz7?)

/ 2dz
= —1
r—2i2t — 923+ 3222 — 924+ 54

The roots of the denominator are at —g + %Z + % V31 — %z 31, —g -+ 15—21 —
% V31 + % iv/31, % — é 1, and 2 — 7. The first and third roots listed are in the unit
circle and the second and fourth are outside it. Only the residues coming from
the first and third roots will contribute. So the integral is

N, o 16} T
2 — = 2174 13v31
o) (e + 537 = T 21T+ 19V
where v and 3 stand for the first and third roots and g(z) = — giz4 —9234+322%2—
9z + 2i. m
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The next example is useful in the theory of Fourier integrals and can be used
to establish the Plancherel Theorem and Inversion formula for Fourier Integrals.

EXAMPLE  We start with the formula

o
/ 6_§x2dl’:\/2ﬂ'

[e.e]

which is proved in the MATH 255 notes. Unfortunately, there does not seem to be
any way to establish this with contour integrals. What we would like to evaluate

1S
o o
1q 1 N2 Lo
/ ¢ I iy = / 2 gy

[e.e] o)

o

1,
for w real. We will show that / e~ 2 (@) g0 v 27 and it follows that

—0o0

o0
1o .1,
/ e 2% e " dy =/ 2me ‘2"

[e.e]

_Lpe ,
So here, we take f(z) = e 2° and integrate around the rectangle from —R to
A
-R+iu R+iu
R R

Figure 7.3: Rectangular contour for Fourier Integral example.
R along the real axis, from R to R + 7u along a vertical line, then from R + iu

to —R + tu horizontally and finally from —R + iu to —R vertically. Cauchy’s
Theorem yields

B 1, Y Llipiing. L SRS Yl pyin?.
/ e2xdx+/e2( +’)2dt—/ 62(I+Z“)d:)§—/e2( HO%dt = 0
“R 0 “R 0
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We estimate the second and fourth integrals by
“ —l(iRHt)?
e 2 dt| =
0

Both these integrals tend to zero as R — oo while keeping u constant. Thus,
letting R — oo, we get

° —l(r—i-iu)Q > _lxz
e 2 dr = e 2% dx
—00 —0o0
as required.

The application of this (with most of the details beyond the scope of this
course) is to the Fourier integral of a function f defined on the line, continuous
and with compact support say.

w _Llpo Rt Lo Lo _lpo
e 2% e e dt| < |ule2" e 2
0

fu) = [ e ptaan

o0

is the Fourier transform of f defined for w real. Then for ¢ > 0
1 [ . 1 1 o 1 -
Py ‘f(U)P@_QtQquU =5 /// e_wmewye_2t2“2f(z)f(y)dxdydu
T

2 J_ o
1 . . 1o o —
= — /// e ur giuy o= 5w duf(x)f(y)dxdy
2
1

- # // t7e 2" f @) Fy)dady

Letting ¢ — 0+ we get Plancherel’s Theorem

L™ f) P = / " () Pda

% —00 —00
1 1.
using among other things, the fact that k;(x,y) = \/Tt_le_f @9 s 3 sum-
T
mability kernel on the line as ¢ — 0+. O
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a

EXAMPLE Consider/ Y _drfor—1<a<1 The integral has to be
0 (1 + x)2

treated as an improper integral at the upper limit and in case —1 < a < 0 also
as an improper integral at the lower limit. The integrand looks like 2 for small
x, so the condition a > —1 is needed for the integral to converge near x = 0.
The integrand looks like 2272 for large x, so the condition @ < 1 is needed for
convergence at infinity.
Now the standard way of approaching this is to integrate the function
2

f(Z):m

around the famous keyhole contour. Doing this depends on selecting a non-
standard branch of the power 2, namely one that has a cut along the positive real
axis. The conceptual difficulties that arise can be avoided by making a substitu-
tion in the original integral before considering how to embed the problem in the
complex domain. Our first step is to put © = €' and then the desired integral

becomes
e ¢} 6at d
—dt.
/_ we+2+et

and we integrate over the rectangular contour

a

az

We now take f(z) = P pp—
e? e?

from — R to R along the real axis, from R to R+27i along a vertical line, then from
R+ 2mi to —R + 27 horizontally and finally from —R + 27i to — R vertically. In
some obvious sense, this is equivalent to integrating the original function around
the keyhole contour.

The function f has its poles, where (1 + cosh(z)) = 2 cosh® (%) has its zeros
and the only zero of 1 4 cosh(z) inside our new contour is at iw. To find the
residue, substitute z = iw + w. We find

f(z) = eliFam aw gw _ 1)-2
— (b (4 Ly )
= 6i(1+a)7rw—2(1 +(1+a)w+--)(1+ %w 4.2
= 0™y =2 (1 aw + - - )

and the residue is seen to be ae!(+o)7
Thus, we get

(14a) R et 2w ea(R—i—is)
2miae YT = —dt+ , —ids
/_R el +2+et /0 eRtis 42 4 e—R—is
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R ea(t+2iﬂ') 4 2m 6a(—R+is) y
- —dl — , —1
/_R e+ 2+et /0 e Ftis 9 4 ghis

As R — oo, the second and fourth integrals tend to zero giving

) 3 et oo ea(t+2i7r)
omiae’ 1T = / ——dt — / ——dt
€2+t o€+ 24 et
which simplifies to

w246t 1 — e2iar elam — e~iam  gin(7Ta)

/°° e 2migetttam 2mia Ta

O

a

EXAMPLE Consider/ 1 " _dvfor—1 < a < 1. The integral has to be
0

+x
treated as an improper integral at the upper limit and in case —1 < a < 0 also

as an improper integral at the lower limit. The integrand looks like 2 for small
x, so the condition a > —1 is needed for the integral to converge near x = 0.
The integrand looks like z2~2 for large x, so the condition @ < 1 is needed for
convergence at infinity.

Our first step is to put # = e’ and then the desired integral becomes

00 eat
/ Eap——_
_ €&t e
az

€ .
———— and we integrate over the rectangular contour from
e* +e-

2

We now take f(z) =

—R to R along the real axis, from R to R + ¢ along a vertical line, then from
R + mi to —R + mi horizontally and finally from —R + 7i to — R vertically.
The function f has its poles, where cosh has its zeros and the only zero of cosh
iam/2
inside our new contour is at iw/2. The residue is m/ze—/—m/z = —%iem”/ 2
eim/2 —e
Thus, we get

. R et ™ ea(R—i—is)
melem™/? = ﬁdt—k = 7 ids
_pet+e g efttes 4 e—timus
R 6a(t—|—2'7r) ™ ea(—R—i-is)
— —dt — . —1ids
/—R —et — et 0 e—R—Hs + 6R—zs
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As R — o0, the second and fourth integrals tend to zero giving

) ) oo at 0o a(t+im)
/2 — 27ri< — %iem”m) = / eidt +/ eidt

t —t t —t
o €'t e o €'t e

which simplifies to

00 eat " 7.‘.eia7r/2 T <CL7T)
EE—— = - = —SeC | —
oo €t et 1+ etam 2 2

7.4 Singularities in Several Complex Variables

The situation as regards isolated singularities in several variables is bizarre. First of
all, we need to agree on what a holomorphic function is. We give two definitions,
one minimal and the other maximal and in fact, they agree. We will leave this as
an exercise.

DEFINITION  Let Q C C%. Let f : Q — C. Then

e f is holomorphic if it is continuous and holomorphic in each variable sep-
arately.

e f is analytic if for each ( € €2, there is a neighbourhood U of ¢ in ) and
a, € C forn € Z*¢ such that the series

converges unconditionally uniformly on the compacta of U to f(z).

In the second definition, n is a multiindex and we interpret

d
(=" =] - o).
j=1
The result that we wish to prove here is the following.
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PROPOSITION 75  Let = {(21,22) € C*1 < |z1]* + |22*> < 9}. Let f
be holomorphic in Q. Then f extends to a holomorphic function in {(z1, z2) €
C?; |z1]? + |22]* < 9}

In other words, the whole of the inner ball is a removable singularity!

Proof.
For | 21|, |z2| < 2, let us define

1 2m f(26i0,22)
27 o 2 — 2z

g(z1,20) = 26" df

It is easy to see that g is continuous and holomorphic in each variable sepa-
rately (use differentiations under the integral sign) on {(z1,25) € C?%|z| <
2, |z9| < 2}. Now suppose that 1 < |23 < 2, so that z; — f(z1, 22) is holo-
morphic on {z1;|21] < /9 — |22/2}. Then the Cauchy Integral Formula shows
that f(z1,22) = ¢g(z1,22). Now free z5 and fix z; such that |z;] < 2. Then
f(z1,22) = g(21, 22) for \/1 — |21]? < |z2] < 2in case |z1]| < 1 and for |z9| < 2
in case |z;| > 1 since it is already known to hold for 1 < |z3] < 2. We have just
shown that f and g agree where both are defined. It follows that we can fabricate
a glued function h holomorphic on the union of the domains of definition. But
this is just {(21, z2) € C?; |21]? + |22|* < 9} as required. u

In the Proposition above, we have chosen the domain between balls or radius
1 and 3, but the same result is true for the domain between balls of radius r and
Rsolongasr < R.
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3

Variation of the Argument and Rouché’s Theorem

We will start with the path lifting lemma

LEMMA 76 Let f : [0,1] — T = {z € C;|z| = 1} be continuous. Then
f possesses a continuous lift, i.e. a continuous mapping f : [0,1] — R such
that f(t) = e/® for allt € [0,1]. Furthermore, if f(0) is specified (satisfying
/0 = £(0)), then f is uniquely determined.

Proof. 1Tt is clear that if f maps into a closed interval on T, then the result is
obvious. This is because for every such interval K, there is an interval [ in the
line such that the map s — € is a bijection from I onto K continuous in both
directions. We now handle the general case. Since f is continuous on [0, 1] it is
uniformly continuous. So there exists § > 0 such that w;(d) < V2. So every
closed interval of [0, 1] of length less than § gets mapped onto an interval in T.
We can therefore break up

k-1 k

0,1] = v

0= Y[
where nd < 1 and then for each k there will exist a continuous lift g, defined on
[2=1, E] such that €' = f on this interval. Now

elor(k/n) — f(k/n) = et9r+1(k/n)

and it follows that g+1(k/n) = gi(k/n) + 2mym, for some integer my,. We then
adjust the lifts by setting new continuous lifts

hi(t) = gi(t) — 2 (Sm]) Le [kglﬂ




which are coherent in the sense hy1(k/n) = hi(k/n). The gluing lemma allows
the hy, to be glued into a single continuous function f which satisfies the required
conditions.

The uniqueness assertion amounts to showing that if g : [0, 1] — R is con-
tinuous € = 1 and g(0) = 0, then g is identically zero. Since g takes values in
277 and g is continuous, it must be constant. [ ]

This is of course the start of some interesting topology. We say that a path
connected metric space X is simply connected if every continuous loop in X is
homotopic to a constant map. We will leave the following theorem as an exercise.

THEOREM 77  Let X be a path connected, locally path connected, simply con-
nected metric space. Let f : X —— T be continuous. Then f possesses a
continuous lift f : X — R.

Before we can prove this result, we will need several lemmas.

LEMMA 78  Let X be a simply connected metric space. Let o, 3 be two paths
in X (i.e. continuous maps from [0, 1] to X) such that a(0) = §(0) and a(1) =
B(1). Then « and 3 are homotopic via a homotopy that respects the endpoints.
Explicitly, there is a continuous map H : [0, 1] x [0,1] — X such that H(0,t) =
at), H(1,t) = B(t), H(t,0) = «(0) and H(t,1) = «(1) forall t € [0, 1].

Proof. 'We make a loop 7y by adjoining o with the reversal of 3, explicitly

[ a(2t) ifo<t<i,
7(t)_{ﬂ(z—zlt) ifl<t<l

Note that ¥(3) is well-defined and that (0) = ~(1). Let K be the homotopy
linking +y to a constant loop with value £. We have K (0,t) = ~(t) and K(1,t) =¢
forall ¢ € [0, 1] and also we have K(s,0) = K(s,1) forall s € [0, 1] since this is
a homotopy of loops. We now cut this mapping apart and reassemble it.

K(2s,1t) ifo<s<i
L(S’t)_{K(Q—Qs,l—%t) ifl<s<l.

The definitions agree for s = 1 since K(1,¢) = & forall t € [0,1]. Also for
0<s<g3,

L(s,0) = K(2s5,0) = K(2s,1) = L(1 — s5,0),
L(s,1) = K(2s, 5) = L(1 — s, 1).
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Unfortunately L does not satisfy the necessary requirements, because for s —
L(s,0) and s — L(s, 1) are not constant. We fix this by waisting L. That is, we
define

L(r,0) for0 <t <s(l—s)and where r(1—r)=t,

1) for0<1—1t<s(l—s)and wherer(l1—r)=1-t¢,
(s,r) fors(l—s)<t<1-—s(1-5s)
and where (1 —7)s(1 —s)+7r(1 —s(l —s)) =t.

One can check that H is continuous by using the glueing lemma. We note also
that the choice of root r satisfying (1 —r) = ¢ in the first case is irrelevant because
if r is a root, then the other root is 1 — 7 and we know L(r,0) = L(1 — r,0).
Similarly for the second case. We have H(s,0) = L(0,0) = K(0,0) = «(0) for
all s € [0,1] and similarly H(s,1) = «(1) for all s € [0, 1]. On the other hand
H(0,t) = L(0,t) = K(0,5t) = a(t) and H(1,t) = L(1,t) = K(0,1 — 5t) =
B(t) forall t € [0, 1]. u

LEMMA 79  Let av and 3 be homotopic paths in T (via a homotopy that respects
the endpoints). We are assuming that o(0) = 3(0) and a(1) = 3(1). Let & and
3 be lifts to R such that a(0) = 3(0). Then a(1) = 3(1).

Sketch proof.  If a and ﬂ are uniformly close, say |a(t) — 3(t)| < /2 for all
t € 10,1], then |1 — «(¢)~* ()\ < V2 or R(a(t)™'B(t)) > 0. It is then easy to
lift this path to a path in | — 2, 27| in R. The lifted path therefore takes the value
zero at t = 1. The uniqueness assertion of Lemma 76 shows that @(1) = 3 (1).
In general, o and [ are not uniformly close. Let H : [0,1] x [0,1] — T be
the homotopy between them satistying H(0,t) = «(t), H(1,t) = 3(t), H(t,0) =
a(0) and H(t,1) = a(1) for all ¢ € [0,1]. Then H is uniformly continuous and
for k = 1,2,...,n, the paths t — H(*2 t) and ¢ — H(%,¢) are uniformly
close. The result follows. |

Sketch proof of Theorem 7.  Let f : X — T. Fix a point g € X. Let
wo = f(x9) € T and find ¢y € R such that wy = €. Now for every z; € X,
find a continuous path « from z to x;, possible smce X is path Connected Then
foaisapath in T which therefore has a unique lift f o asuch that f o a( ) = to.
Then we define f(z;) = f o a( ).

Now if 3 is another continuous path from z to 1, then by Lemma [[g, o and
(3 are homotopic via a homotopy that respects the endpoints. The same is then
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true for foa and f o 3. It then follows from Lemma [/9 that ]Q/a(l) = fopB(1).
This shows that f(z;) is independent of the path chosen.

It remains to show that f is continuous. Let 7 > € > 0, then the open neigh-
bourhood | f(z1) — €, f(x1) + €[ of f(z1) lives above a interval neighbourhood
V of f(x1) in T. Since X is locally path connected and f is continuous, we can
find a path connected neighbourhood U of z; in X such that f(U) C V. Let
x9 € U. Let 7y be a continuous path from z; to x5 lying entirely in U. Then we
make a continuous path from z( to 2 by adjoining o and ~ to produce a new
pathnp = a-v. Then fon = (foa)-(fo~). Then m = (m) : (m) and
we can compute m directly by lifting from V to | f(z1) — €, f(21) + €[. Thus

f(x2) = fon(l) = fory(1) €f(ar) — ¢ flz1) + €]

This shows that f is continuous. |

8.1 Meromorphic Functions
Here is another definition.

DEFINITION  Let €2 be a connected open subset of C and f : 2 — C,. Then
f is meromorphic if it is not identically infinite and is holomorphic as a map
from € to C, in the sense of complex manifolds. Thus f is allowed to have
isolated singularities (they cannot accumulate in €2 since then 1/ f would have a
non-isolated zero and f would be identically infinite). Each isolated singularity is
necessarily a pole corresponding to the zeros of 1/ f. Both the zeros and poles of
f can accumulate on the boundary of (2.

8.2 Variation of the Argument

THEOREM 80 (VARIATION OF THE ARGUMENT) Let 2 be a connected open
subset of C and f :  — C, be meromorphic. Let T be a closed piecewise C'!
loop in ) not passing through any zero or pole of f. Then

i ') z = win m
peel Tt 2{: dr(€) m(()

where the sum on the right is over the zeros and poles of f. If { is a zero, then
m(() is the order of ¢ as a zero of f. If ( is a pole, then —m(() is the order of ¢ as
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a pole of f. Since windr(¢) = 0 for all ¢ in the unbounded component of C\ T,
it follows that all but finitely many terms in the sum vanish.

Proof. The function z +— is holomorphic except at the zeros and poles of

f(2)
f. If ¢ is such a zero or pole, we write f(2) = (z — ()™g(z) where ¢g(¢) # 0 and
where g is holomorphic in a neighbourhood of . The we get locally near ¢

FE_ m g

and z — 2 ((Z)) is holomorphic in this neighbourhood. The result now follows
g(z
from the Residue Theorem. |

This result is called the variation of the argument because of the way that

% / ff((Z; dz can be interpreted. Let f(I') be the C'! loop in f(Q) defined by
™ Jr z
t — f(2(t)) where I is the loop defined by ¢ — z(t). Then a change of variables

gives

1 [ () 1 1 ,
2w e 7 T 2w gy w0 (0)

COROLLARY 81  Under the same hypotheses as Theorem [B(, we have

Z windp(¢) m(¢) = wind yy(0),
¢

where the sum on the left is over the zeros and poles of f and is interpreted in the
same way.

8.3 Rouché’s Theorem

It is now possible to establish Rouché’s Theorem, which is a seat of the pants way
of counting zeros.
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THEOREM 82  Let Q2 be a connected open subset of C and f,g : 2 — C be
holomorphic. Let T be a closed piecewise C'* loop in §) not passing through any
zero of f. Further, suppose that |g(z)| < |f(2)| forall z € T'. Then wind sry(0) =
windyr) (0) where h = f + g and consequently

> windr(Q)mp(Q) = > windp(¢) ma(C).

cef~1({0}) ¢eh=1({0})

Proof. We have

e) = 1)+ 9() = 1) (1495

f(2)
*(0) = (i)

where we have used the fact |w| < 1 = (1 + w) > 0. Now parametrize the
loop I' by ¢ +— z(t). Then let

sen(f(z(t)) = i) and sen(h(z(t)) = e (t)

and we find
R(ePWe) >

and it follows from

{s e R;Re” > 0} = [ J]1(2m — D)m, (2m + J)x],

meZ

the fact that ¢ — 6 is continuous and the Intermediate Value Theorem that there is
an integer m such that (2m — )7 < ¢(t) — 0(t) < (2m+ 3)7 for all ¢. It follows
that =27 < (p(1) — (1)) — (p(0) — #(0)) < 27. But the quantity in the middle
is an integer multiple of 27 since f(2(0)) = f(2(1)) and h(2(0)) = h(z(1)) and
so it follows that wind (1) (0) = windr(0) as required. n

EXAMPLE  Let h(z) = 10 + 72% + 223, Then on |z| = 1 we take f = 10,
g="T722+22% weget | f| =10, |g| <9 < 10. So h has no zeros in |z| < 1. Then,
on|z| = 2wetake f = 72% and g = 10+223, we get |f| = 28 and |g| < 26 < 28.
So h has exactly two zeros in |z| < 2. Then, on |z| = 4 we take f = 223 and
g =10+72% we get |f| = 128 and |g| < 122 < 128. So h has exactly three zeros
in |z] < 4.
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Using other facts one can say considerably more. The single root in 2 < |z| <
4 must be real since otherwise there would be at least two roots with the same ra-
dius. Clearly this root is negative and you can locate it easily with a search as lying
between -3.84 and -3.83. The product of all roots is positive, so if the remaining
roots are real, then one is positive and one is negative. This is impossible, since A
is increasing on the positive axis and h(0) = 10. So the it is a complex conjugate
pair of roots a + ib that liein 1 < |z| < 2. Since the sum and product of all three
roots are known, it is easy to find approximate locations. O

EXAMPLE  Consider the power series

fl) =2 37"
n=0

which clearly has infinite radius and defines an entire function. Consider the
circle |z| = 9%, On this circle, |37¥*2*| = 3¥*. On the other hand

Z 3—n2 o

n#k

<) 3R < gkt gy et < 38

n#k m=1

It follows that for & = 0,1,2,... f has exactly k zeros in |2| < 9*. Further
analysis shows that all the zeros are real and negative. O

EXAMPLE  Suppose that a and b are real constants such that |[b| < 1 and |a £
b7 < 1. We will show that h(z) = sin(z) — (a + bz) has only one zero in
—% < Rz < 7, namely the one on the real axis. The idea is to apply Rouchés
Theorem on a rectangular contour with sides corresponding to x = 47 and
y = 1Y where Y is a large number. We take f(z) = sin(z) and g(z) = a + bz.
We have |f(z + iy)|? = (sinz)? + (sinhy)? and |g(x + iy)|* = (a + bz)? + b*y?
for z and y real. On a side of the form 2z = £7 + iy with =Y < y <Y,
it is easy to see by the hypotheses 1 + (sinhy)® > (a & b3)* + b*y*>. On
a side of the form 2 = z £V with —§ < 2 < 7, it is easy to see that
(sinz)? + (sinhY)? > (a + bx)? + b*Y? since for Y sufficiently large, we will
have (sinhY)? —b°Y? > sup (a+bx)* — (sinz)?). O

us us
—§§I§§

8.4 Hurwitz’s Theorem

Hurwitz’s Theorem can be obtained as a corollary of Rouché’s Theorem.
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THEOREM 83  Let §2 be open in C and let (fx)?2, be a sequence of holomor-
phic functions converging uniformly on compacta to a (necessarily holomorphic)
function f. Let ¢ € ) and suppose that f has a zero of finite order m at {. Let
€ > 0. Then there exists p > 0 and K € N such that

o p<e.
e (zlz-Cl<prcQ

e Fork > K, fi has exactly m zeros in {z; |z — (| < p}.

Proof. We write f(z) = (2 —()™g(z) where g is holomorphic near ¢ and g(¢) #
0. Now choose p > 0 smaller than € and such that |z — (| < p = |g(2)] >
319(¢)]. Such a p exists by the continuity of g at . Now choose K such that

k> K= sup |f(z) = fu(2)| < 3p™[g(O)] < inf [f(2)]
lz=—¢l=p [2=Cl=p

Applying Rouché’s Theorem now yields that f and fj have the same number of
zeros in {z; |z — (| < p}. Hence the result. n

COROLLARY 84  Let €2 be connected open in C and let ()72, be a sequence of
one-to-one holomorphic functions converging uniformly on compacta to a (nec-
essarily holomorphic) function f. The either f is constant or one-to-one.

Proof. Suppose that f is not one-to-one. Then There exist z; # 29 in {2 such that
f(z1) = f(zq). Subtracting f(z;) from both f and fj we can assume without loss
of generality that f(z;) = f(22) = 0. Now if either z; or 2 is a zero of infinite
order, then f is identically zero. We can therefore assume that they are zeros of
finite order (> 1). Choose the € of Hurwitz’s Theorem to be half the distance
from 2; to 2. Then we obtain two disjoint disks D; and D, centred at z; and 2,
respectively and such that for £ sufficiently large, f; has at least one zero in both
Dy and D-. But this implies that fj is not one-to-one contrary to hypothesis. m

There is of course an inverse function theorem for suitably differentiable func-
tions defined on subsets of R?. The following version is particular to holomorphic
functions and the proof uses the ideas of this section.
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THEOREM 85 (INVERSE FUNCTION THEOREM FOR HOLOMORPHIC FUNCTIONS)

Let Q2 be open in C, ( € Q and f : @ — C be holomorphic. Suppose
that f'(¢) # 0. Then there is a neighbourhood U of ¢, a neighbourhood V' of
f(€) such that f maps U onto V bijectively. Furthermore the inverse function
g:V — U C C is holomorphic.

Proof. By subtracting f(¢) from f we can assume without loss of generality that
f(¢) = 0, and in view of f'(¢) # 0, C is a single zero of f. As in the proof
of Hurwitzs Theorem, we can find p > 0 such that & = inf|,_¢—,[f(2)] > 0.
Let V. = {w;|w| < 3x}. Then V is certainly open in C. For w € V, the
function z +— f(z) — w has a single zero in {z;|z — (| < p} again as in the
proof of Hurwitz's Theorem. Let this single zero be designated g(w). Then U =
{z;]z = ¢| < p} N f7Y(V)is open in Q and f is one-to-one on U.
Now fix w € V and consider

1 2f'(2)
— [ ———d 8.1
27riAf(z)—wZ ®.1)
where I is the circle |z — (| = p traversed anticlockwise. The integrand has a

single simple pole at z = g(w) and we compute the residue by the usual method
for simple poles

2f'(z) V) 9 flgw)
Res (75 00

Therefore (B.1) evaluates to g(w). To show that g is holomorphic, it suffices to
differentiate under the integral sign. We obtain

dg

% _
L[
g(w)‘zm/p<f<z>—w>2d

and we note that g’'(w) is clearly a continuous function of w for w € V since f(z)
for z € T'and w € V are always separated by at least 3 x. |

0

COROLLARY 86  Let €2 be open in C and f be a holomorphic function on €2
which is one-to-one. Then f’ cannot vanish on €).
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Proof. 'We suppose the contrary, namely that there exists ¢ € € such that f'({) =
0. Then by Proposition 1], we can write f(z) = f(¢) + (h(z))™ locally near ¢
where m is an integer m > 2, h is holomorphic near ¢, A(¢) = 0 and h'(¢) # 0.
According to Theorem B3, A is bijective in a neighbourhood of (. Fix A = e2™/™
Hence, for r > 0 small, there exist 21, 2o such that h(z;) = r and h(z9) = r\.
Clearly 2z, # zo. However, f(21) = f(z2) contradicting the fact that f is one-to-
one. n
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9

Conformal Mapping

We start with the Schwarz Lemma , a simple result with far reaching consequences.

LEMMA 87  Let f be a holomorphic mapping of the open unit disk to itself.
Suppose that f(0) = 0. Then

@ |f(2)| < |z| for |z| < 1. Furthermore if equality |f(¢)| = |¢| holds for a
single ¢ with 0 < |¢| < 1, then there exists w € C with |w| = 1 such that
f(z) =wz forall |z| < 1.

(1) |f'(0)| < 1. Furthermore if equality |f'(0)] = 1 holds, then there exists
w € C with |w| = 1 such that f(z) = wz forall |z| < 1.

Proof. 'We can always write f(z) = zg(z) where g is holomorphic. Let 0 < r <

1. Then on |z| = r we have |g(z)| < % < r~!. Therefore by the maximum
z

principle |g(z)] < r~! for |z| < r. Letr — 1—, then [g(2)| < 1 for |z| < 1, and
the result of (i) follows.

If | £(¢)| = |¢| for ¢ such that 0 < |¢| < 1, then |g(¢)| = 1. By Corollary p1], g
is constant (it attains its maximum modulus at an interior point). Call the constant
w. Then using |f(¢)| = |C| again we see that |w| = 1. We have now f(z) = wz
as required.

The assertion (ii) follows in the same way from the Cauchy Estimate for f'(0)
based on the values of f on |z| = r and by letting  — 1—. Clearly f'(0) = ¢(0),
so the case of equality is also handled similarly. |
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COROLLARY 88  Let f be a bijective holomorphic mapping of the open unit
disk onto itself, with f(0) = 0, then there exists w € C with |w| = 1 such that
f(z) =wz forall |z| < 1.

Proof. Let h be the inverse mapping. By Corollary Bf], f’ does not vanish on
the open unit disk. Hence, by Theorem B3, & is holomorphic and also a bijective
mapping of the open unit disk onto itself. Applying the Schwarz Lemma B7], we
get |f(2)] < |z| and |h(w)| < |w| for all z and w in the open unit disk. Putting

w = f(2), we find |f(2)] = |z| for |z| < 1. Now let g(2) = @ then g is
holomorphic with constant modulus. We differentiate |g(2)|?> = g(2)g(z) with
respect to z to get

dg ——0Jg

0= g(z)£(2) + 9(2)£(2) =g(2)g'(2)

If both g and ¢’ are not identically zero on the open unit disk, then both have a
most countably many zeros and we have a contradiction. So at least one of these
functions is identically zero and either way, g is constant. it follows that there
exists w € C with |w| = 1 such that f(z) = wz forall |2] < 1. n

COROLLARY 89  Let f be a bijective holomorphic mapping of the open unit
disk onto itself, then there exists w € C with |w| = 1 and a € C with |a| < 1

such that
zZ—a

forall |z| < 1.

Proof. Let a be the point of the open unit disk that gets mapped to 0. Then
define

_atw

Cl+aw

We remark that ¢ is a Mobius transformation preserving the open unit disk, so
that ¢ is a bijective holomorphic mapping of the open unit disk onto itself with
g(0) = f(a) = 0. By Corollary B, there exists w € C with |w| = 1 such that
g(w) = ww. Put

g(w) = f(p(w)) where p(w)

Z—a

wW = —
1—-az
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and we discover that ¢(w) = z (this is the inverse Mobius transformation) and

hence
zZ—a

£(2) = glw) = ww = w2

n

This result tells that the group of bijective holomorphic mappings of the open

unit disk onto itself (under composition) consists of the Mobius transformations

that have the same property. Each Mobius transformation ¢ is associated with an
invertible linear transformation A of C? via

o(z) = P Where Az, 1) = (wy, ws)
W

and we think of A as acting on the one-dimensional subspaces of C?. The fact
that ¢ preserves the open unit disk corresponds to the fact that A preserves the
lines that live in |w;| < |ws|, or what amounts to the same thing, the sign of the
quadratic form |ws|? — |w;]?. So, in our case, the matrix U of X will be

w —aw
U_(—a 1 )

If we let the matrix of the quadratic form |ws|? — |w;|? be

1= ()

We will have the matrix relation U*JU = (1 — |a|?)J or in longhand
@ —a) (-1 0\ (w —aw) _ [(—(1-]a]) 0
—aw 1 0 1 —a 1 ) 0 (1—1al*) )"

9.1 Some Standard Conformal Maps

The really obvious ones are translations, rotations and scalings. Let’s look at some
of the less obvious ones. Usually, we are trying to map onto a disk or a region that
we already know how to map conformally onto a disk.

EXAMPLE  The halfspace. We can map the right halfspace {z € C;Rz > 0}
onto the open unit disk by the Mobius transformation

z—1
f(z):z+1
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EXAMPLE ~ We can map a sector with opening angle 2« (with o < 7) say {z €
C; —a < arg(z) < a} onto the right halfspace with f(z) = z2a. This is the
principal branch that is intended here, i.e.

f(re') =r2aeita r>0—-mT<6<m.

The same transformation can also be used to a sector {z € C; —a < arg(z) <
a,|z] < 1} to the intersection of the unit disk and the right halfspace {z €
C;Rz> 0,z < 1} O

EXAMPLE  The intersection of the unit disk and the right halfspace {z € C; Rz >
0,]z] < 1} can be mapped conformally onto the first quadrant {z € C; Rz >
0,38z > 0} by
zZ+1
fz) = ——
Note that —i gets mapped to 0 and ¢ gets mapped to the point at infinity. The first
quadrant is a sector so that can then be mapped conformally onto a halfspace.
More generally, the eye-shaped region between two circles can be mapped to
a sector by

z-«

f(Z) - ”— ﬁ
where o and [3 are the points where the circles intersect. This is a Mobius transfor-
mation, so that the angle of the resulting sector is the same as the angle between
the two given circles. a

EXAMPLE A strip can be mapped to a sector by the exponential mapping. For
example, the strip {z € C;a < Rz < b} can be mapped to a sector by f(z) = €'
with ¢ real and suitably chosen.

The region given by {z € C;0 < Rz < 1,3z > 0} can be mapped to a sector
by f(z) = e'3* =

Finally lets look at examples with slits. The general strategy is: first move the
slit to where you want it (the ends should be either at 0 or at co or both) and
second open the slit by taking a square root.

EXAMPLE Let —1 < a < 1. Consider the unit disc with the segment of the real

Z—a

axis from —1 to a removed. First use the Mobius transformation f(z) = ]
—az
which preserves the unit disk and will reduce to the case @ = 0. Then the princi-
pal square root will map onto {z € C; Rz > 0, |z| < 1}. O
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ExaMPLE  The final example is Co, \ [0, 1]. Map first with the Mobius transfor-
mation f(z) = 1_—Z which maps onto Co, \ [—00,0]. Then take the principal
—z

square root to map onto the right halfspace. O

9.2 Montel’s Theorem

The objective of this section is to apply the Ascoli-Arzela Theorem in the context
of spaces of holomorphic functions. There is an advanced version of the Ascoli—
Arzela Theorem that applies more directly in the present context, but we will
make do with the version established in MATH 354.

THEOREM 90 (ASCOLI-ARZELA THEOREM)  Let K be a compact metric space.

We denote by C(K) the space of bounded complex-valued continuous functions
on K.
Let F C C'(K). Then the following are equivalent statements.

e F' has compact closure in C(K).

e ["is bounded in C(K) and F is equicontinuous.

We start with the following Lemma.

LEMMA 91 Let K, L be a compact subsets of C, § > 0 such that K + D(J) C
L C Q C C where ) is open in C. We have denoted D(0) the closed disk centred
at 0 of radius 6. Let f be holomorphic in 2, then

1f(21) — f(22)| <407z — 2| sup | f(2)] for 21,2, € K.

z€L

Proof. 1In case that |21 — 2| > £, we simply use the estimate

[f(z1) = f(z)| < [f(z)] + 1 f(22)] < QSZEIL)WZ)"

So, we can assume that |z; — 29| < %5 . In that case, L contains the union of
the two disks centred at z; and z, respectively of radius ¢ and therefore L also
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contains the disk centred at 3(z; + 22) of radius 25. We apply the Cauchy Integral
formula on the boundary I" of that disk to get

Fe = e = o [ (2 - 20 ) s
1 (21— 2)f(2)

T2 Jr (2= 21)(2 — 22)

£ = f()] < 5 /'Zl =l/E
27 \z—lez—zﬂ

1
< —(2 6 —
27T( T—0)|21 zﬂigv( )|(%5)2
since for z € " we have |z — z;| > 36 for j = 1,2. Hence the result. u

PROPOSITION 92 Let €2 be an open subset of C, F' a family of holomorphic
functions on 2. Suppose that for every compact subset of €2, the family

Flg ={flx; f € F}

is a bounded subset of C'(K), then for every compact subset K of Q, F| is
equicontinuous in C(K).

Proof. For every n € N we define
) 1
K, = {z distc\a(2) > —, |2] < n}.
n

Then K, is a closed bounded (and hence compact) subset of C contained in €2.
On the other hand, if K is a compact subset of C contained in €2, then distc\o
attains its minimum value and z +— |z| attains its maximum value on K. It
follows that there exists n € N such that K C K,,. If as a shorthand we denote
F,, = F|k,, then our hypothesis is that F}, is bounded in C'(K,) for every n € N
and the desired conclusion is that F}, is equicontinuous in C'(K,) forevery n € N.
However, K,, + D(n(n +1)) C K, and it follows immediately from Lemma P1|

that the boundedness of F,;; in C(K, ;) implies the equicontinuity of F), in
C(K,). |
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THEOREM 93 (MONTELS THEOREM) Let ) be an open subset of C, F' a fam-
ily of holomorphic functions on 2. Suppose that for every compact subset of €2,
the family F|k is bounded in C(K'). Then every sequence (f,)%, in F' pos-
sesses a subsequence that converges uniformly on the compacta of €2 to a function
holomorphic in 2.

Montel's Theorem is the Heine—Borel Theorem of complex function theory. If
we let H(2) be the space of holomorphic functions on 2 with the convergence
of uniform on compacta convergence (which can in fact be realised as a metric
space), then every closed bounded subset of H(£2) is compact.

Proof. With the same notations as in Proposition P2, we use the Ascoli-Arzela
Theorem to extract a subsequence (fi(1.n))ne; Of (fa)oy With (fian) |k, )ee,
converging uniformly on K. Then from that subsequence, a further subsequence
(fmn))pz, of functions such that (fy,2,n)|k, ), converges uniformly on K.
Then from that subsequence, a further subsequence ( fy,(3.n))52; of functions such
that (fim@n) |k, )ne, converges uniformly on Kj...and so forth. Finally we see
that the diagonal subsequence (fim(mn))ne; converges to a limit f uniformly on
each K, and hence on all the compacta of §2. The reason for this is that the
sequence (f(m.n))ney is in fact a subsequence of the sequence ( fo(k,n))ne), Which
is known to converge uniformly on K. Finally, let us note that the limiting
function f is holomorphic in €2 by Morera’s Theorem. |

9.3 The Riemann Mapping Theorem

THEOREM 94 (THE RIEMANN MAPPING THEOREM) Let €) be an open con-
nected proper subset of C which is simply connected. Let ( € €). Then there
is a unique bijective holomorphic map f : Q@ — {z € C;|z| < 1} such that

f(¢) =0and f'(¢) > 0.

The theorem stated under the additional assumption that the boundary of €2 is
piecewise smooth was established by Bernhard Riemann in 1851. The first proof
of the theorem in the generality given above is due to Constantin Carathéodory in
1912.

The uniqueness assertion is easy. It follows directly from Corollary Bg. It is
clear that the whole of C is not conformally equivalent to the open unit disk, since
the latter has non-constant bounded holomorphic functions and the former does
not.
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LEMMA 95  Let §2 be a connected simply connected open subset of C and h :
2 — C\ {0} be holomorphic. Then h has a holomorphic square root.

Proof. 'We have that ) is path connected, locally path connected and simply

connected. The map
h(z)
2z k(z2) = —=
|7(2)]
is a continuous map from €2 to T. Therefore, by Theorem [7], there is a lift k(z)
and therefore a logarithm z +— ¢(z) = In(|h(2)|) + ik(z). Clearly h(z) =
exp({(z)) and since the exponential map is locally invertible, we see that ¢ is
holomorphic. A desired square root is given by exp(35£(2)). u

PROPOSITION 96 It suffices to prove the Riemann mapping Theorem in the
case where (2 is a connected simply connected bounded nonempty open subset

of C.

Proof. Leta € C)\ 2. Then by the previous lemma, there exists a holomorphic
mapping ¢ : Q@ — C such that (p(2))? = 2z — a. Then 21,20 € Q,(21) =
+¢(2z9) implies that z; = 29 so that ¢ is one-to-one. Now ¢ is non-constant and
therefore () is open in C by the Open Mapping Theoremp2]. There is a small
disk V' centred at (¢) contained in p(€2). We will show that —V is disjoint from
©(Q). Indeed, if z € V and —z = ¢(z1) with z; € €, then there also exists
29 € Q such that z = ¢(22). But then 23 = 23, 2 = 0, p(21) = 0 and z; = a. This
is a contradiction since z; € 2 and a ¢ ). Hence there is a whole disk disjoint
from ¢(£2). Tt suffices to compose ¢ with a Mébius transformation to map €2
conformally onto a bounded open subset of C. Since the resulting conformal
transformation is continuous and has a continuous inverse, it is connected and
simply connected (as well as being nonempty). |

PROPOSITION 97  Let €2 be a bounded nonempty open subset of C and let
¢ € Q. Let F be the set of holomorphic functions from §2 to the open unit disk
such that f(¢) =0, f'(¢) > 0 and f is one-to-one. The F' is nonempty. Let

a=sup f'(¢) > 0.
feF

Then the supremum is attained.
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Proof. Taking f(z) = e(z — () for € > 0 but sufficiently small shows that F
is nonempty. Let (f,) be a sequence of functions in F' for which the sup is ap-
proached. Then by Montel's Theorem (f,,) possesses a subsequence converging
uniformly on compacta to a holomorphic function f. We rename the subsequence
to (fn). Clearly f'({) = a since uniform on compacta convergence will also imply
uniform on compacta convergence of the derivative. Also f({) = 0 and f takes
values in the closed unit disk. Now suppose that z1, 20 € Q and f(z1) = f(22),
we will produce a contradiction. Let D be a closed disk centred at zo with z; ¢ D
and D C Q. Then z — f,(2) — fu(21) does not vanish on D. By Hurwitz’s The-
orem, since f,, — fn(z1) converges uniformly on compacta to f — f(z1), either f
is identically f(z1) on D or f — f(21) never vanishes on D. But z; € D and so it
must be that f is identically f(z;) on D and hence also on 2. But then f/({) =0
a contradiction. Hence f is one-to-one on §2.

But now, from the Open Mapping Theorem, f(€2) is open in C and hence f
takes values in the open unit disk. So f € F as required. |

Proof of the Riemann Mapping Theorem. ~ We can assume that €2 is bounded and
with the notations of Proposition P7]let f be a function in F' for which the supre-
mum is attained. It suffices to show that f maps onto the open unit disk.

Let @« € C, |a] < 1 and suppose that f does not take the value or. Then
applying Lemma P3| again, there is a holomorphic function & in € such that
f(z) —a
h(2))? = —2——. 9.1
(h(e)? = S ©1)

Clearly h takes values in the open unit disk and is one-to-one on 2. However, h
does not necessarily map ¢ to 0. We therefore define

o) = 1) < h(z) = h(¢) ) ©

W) \1=n(O)h(z)
and clearly ¢ is one-to-one holomorphic from €2 to the open unit disk and ¢(¢) =
0.
Differentiating (B.1)) and setting z = ( yields
2h()N'(¢) = (1= laf*) f'(¢)
and processing (0.2) similarly gives

O] (A= ORHON Q)
9 =50 ( (SGIEE )‘1—\a|‘
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Therefore

1— |a‘2 f/(€> _ 1+ ‘O./|

)= a1 —Jal N

F'©) > Q).
since |a| < 1. Hence g € F and we have a contradiction with the definition of f.
n

9.4 Conformal maps between Annuli

In this section we let 0 < r; < 1forj=1,2andlet A; = {2z € C;r; < |2] < 1}
be the corresponding annulus. We ask what conformal maps are possible from A,
onto A,.

THEOREM 98  Let ¢y be a conformal map from A; onto As, then 1 = r9 and

there exists w € C with |w| = 1 such that either p1(z) = wz or p1(2) = riwz"1.

Sketch proof [].

Let ¢y be the inverse map to ¢1. Let S; = {# € C;In(r;) < Rz < 0}
be open strips in the complex plane for j = 1,2. The exponential map takes
S; onto A; but is not one-to-one. By Theorem [/7] and the fact that strips are
simply connected, we can construct a continuous map 7 : S; — Sy such
that ¢y o exp = expoyy;. Since locally 1), = log oy, o exp where log is some
branch of the logarithm, 1); is holomorphic. Let s; € S;. Let so = 11(s1) € Ss.
Similarly, we may construct a holomorphic mapping 5 : So — 57 such that
g 0 exp = exp oty and additionally we may arrange that ¥, (ss) = s1.

Clearly 19 0 91(2) = z for all z near s; and hence for all z € S;. Similarly,
11 0 g(2) = z forall z € 5. Hence v is a conformal map from S; onto Ss.
We know how to classify these, but before we get into that aspect of the proof, let
us consider 11 (z + 2mi) — 11 (z) which takes values in 27iZ. Since a continuous
mapping from a connected space to a discrete one is necessarliy constant, there is
an integer my such that ¢ (z 4 2mi) = ¢1(z) + 2mymi for all z € Sy. Similarly,
there exists my € Z such that 19(z + 27mi) = 1o(z) + 2mami for all z € Sy. We
now have (with some details omitted)

Z 4 2mi = 1y 0y (2 + 27i) = Pa(1(2) + 2mymi) = by 0 Py (2) + 2mymami

=z 4+ 2mimami

'With thanks to Paul Koosis for suggesting this approach.
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forcing myms = 1 and therefore m; = my = +1.
Let H = {z € C;32z > 0}, the upper halfspace. The conformal mapping
X; 1 Sj — H is given by

\u(2) = exp (1?—>) |

Defining 1, = Y2 0 ¢1 o x; ' we have a conformal map s, of H onto H. We

272
define ¢; = exp <—m
that p; (tyw) = t5" py (w) for all w € H. Now by Corollary B9 and the standard
conformal equivalence between disk and halfspace, we see that 141 has the form

) > 1, so that x;(z + 2mi) = t;x;(z) and it follows

aw + b
cw +d

pa(w) =

with a, b, ¢, d real and ad — bc > 0. We now obtain the identity

atiw + b

B aw + b
ctlw—i—d—'ul

(tw) = 6" (w) =" ——.

We multiply out and equate the coefficients of 1, w and w? to get ac = t5" ac,
adt; + be = t3" (ad + bety) and bd = t5"'bd. So, either a = 0 or ¢ = 0 and either
b= 0ord = 0. Two of the resulting four cases violate ad —bc > 0. The remaining
two are

e b =c=0,1t =ty and since t1,to > 1, my = 1, t; = to, 1 (w) = aw

with a > 0.
e a=d=0,t =t," and since t;,t, > 1, my = —1, t; = to, iy (w) =
—aw ™ with a > 0.

Tracing this information back and using the fact that 1/, preserves S; (now known
to equal Ss) shows that ¢, assumes one or other of the forms

U(z) =z +1if or 1(z) =1In(ry) — 2+ 140,

with 8 € R and finally tracing back to ¢, establishes the result. |

In the same vein, we can show the following theorem.
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THEOREM 99  Let ¢, u be continuous functions from T to |0, co[ such that { <
u everywhere. Let Q) be the open subset {re?; {(e?) < r < u(e)}. Then there
exists s €]0, 1[ such that €2 is conformally equivalent to the annulus {z € C; s <
|z] < 1}.

Sketch proof.  The proof follows a very similar line to the proof of Theorem P8
Let U = {z;exp(z) € Q} and V' = {exp(iaz);z € U} where a > 0 is chosen
sufficiently small that a(In(supu) — In(inf ¢)) < 7 which forces V' to lie in a
halfspace. Now clearly, U is contractible and so is V, so by the Riemann Mapping
Theorem, V' is conformally equivalent to the upper halfspace H. There is some
freedom for the choice of this mapping which we will exploit later. Let ¢ : V' —
H be such a conformal equivalence. Now 2z € U <= 2z + 21 € U, so z €
V <= e %™z € V. Since the only conformal transformations of H onto H are
Mobius transformations, we have
az+0b

—2ra, .—1 —
ple () =

forall z € H and where a, b, ¢, d are real and ad — bc > 0. Equivalently
oray _ 0P(2) +0
ple2) = cp(z)+d
for all z € V. We now exploit the freedom in the choice of the mapping ¢. This
allows us to replace the matrix
a b
1= (0 )

a b
S S
c d
where S is a matrix with real entries and positive determinant. Therefore, using

the Jordan canonical form for real matrices, we can are arrange that the matrix A
has one or other of the special forms

A0
(0 M),)\,MER,)\,LL>0

(9.3)

with the matrix

(3 i\),)\eR\{O}

(“ _/f),u,vER,V%O

14
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Thus (P3) can always be rewritten in one or other of the following forms
1) ple?mz) = A\p(2) with A > 0.

(i) @(e?™2) = ¢(z) + p with u € R\ {0}.

ora pz) —v
= 2 with R\ {0}
(i) p(e”"2) Vo) T 1 with v € R\ {0}
We can eliminate case (iii) immediately. Let z € V be the point such that
©(z) = i. Then
Y B
vi+1

@(6_27m2) — i,

and since ¢ is one-to-one, ¢~2

since 0 ¢ V.

Next we consider case (ii). We define ¢(z) = 2mip~'p(exp(iaz)) and it
can be shown that % is a conformal map of U onto the right or left halfspace
(according as > 0 or u < 0) and it satisfies ¥(z + 2mi) = ¥(2) + 2mi. It
therefore respects the exponential mapping and factors down onto a conformal
map of Q onto either {z € C;0 < |z| < 1} or {z € C;|z| > 1}. In either case we
find that 2 is conformally equivalent to a punctured disk and it is easily seen that
this is not the case.

In case (i), we first observe that A # 1 for else ¢ is not one-to-one. Let us
assume that A < 1, then we choose b > 0 such that —7b~* = $In()\) and define
1 by the relation

Tz = z resulting in z = 0 which is not correct

p(exp(iaz)) = exp(iby(z))

The 9 is a conformal map of U onto the strip —mb~! < Rz < 0. Furthermore
W(z + 2mi) = (z) + 2mi. Again v respects the exponential map and factors
down onto a conformal map of €2 onto the annulus {z € C;s < |z| < 1} where
In(s) = —wb~" (i.e. s = v/A). The case A > 1 is similar, but it is necessary to flip
the boundaries of the annulus. |
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10

Odds and Ends

10.1  The Schwarz Reflection Principle

The Schwarz Reflection Principle addresses the question of analytic continuation.
Thats the situation in which a holomorphic function in one domain is extended to
a holomorphic function in a larger domain. We have seen instances of this already
in these notes and it is a very common theme in complex analysis. A systematic
treatment however is beyond the scope of this course.

Here we present just one theorem in this vein.

THEOREM 100  Let 2 be an open subset of C with the property that z € §) <=
z € Q. Let f be defined on {z € Q;3z > 0} and be continuous on that set, as
well as being holomorphic in {z € ;32 > 0}. Suppose that z € €2, z real
implies that f(z) is real. Then f extends to a holomorphic function f : Q — C.

Proof. We define

f(z) ifzeQ,Sz>0,

f(z) =

f(z) ifzeQ,32<0.

The two definitions agree by hypothesis. We see that f is a continuous map from
2 to C by the Glueing Lemma, the subsets {z € ©; 3z > 0} and {z € ;32 <
0} being closed subsets in the relative topology of €.

It remains to show that f is holomorphic. We do this using Moreras Theorem.

We need to show that if 7" is a solid triangle contained in €2, then f(2)dz =0.
oT
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This is obvious (by Cauchy’s Theorem) if 7" is contained in either of the sets {z €
;32 > 0} and {z € ©; Iz < 0}, but is not immediately obvious in the case that
the triangle straddles the real axis, or in fact even touches it. In this situation, the
idea is to write the triangular path 07" as the sum of two closed polygonal paths
Py and P, with P; in the upper half space Sz > 0 and P, in the lower half space

Sz < 0. It will be enough to show that / f(z)dz=0forj=1,2.
Bj
To see this for j = 1, we observe by Cauchy’s Theorem that / f(2)dz=0
Pj+iA
for A > 0 since now the translated path P; + i\ lives in the strict upper half space
Sz > 0 where f is known to be analytic. But

/PjﬂA f(z)dz = /Pj f(z+iN)dz — /Pj F(2)dz

as A | 0, since the values of z under consideration form a closed bounded subset

and f is uniformly continuous on such a subset. It follows that f(z)dz=0
Py

and the case j = 2 is exactly similar. |

10.2 The Gamma Function
The Gamma Function I' is defined by

['(2) :/ e 't — :/ e '* 1 dt
0 t 0

for Rz > 0. The integral always converges at co. The condition Rz > 0 is
imposed to make it converge at ¢ = 0. In the right halfplane I is a uniform on

n
compacta limit of / e "t*"'dt as n — o0, so I' is holomorphic in the right
n—1

halfplane.
It is easy to prove by integration by parts and by induction that for n € N and

x>0 |
" t\" n® n!
1——) t*ldt =
/0 ( n) rz+D)(z+2) - (x+n)

We claim that
2t2 t\"
et (1 — —) < <1 — —) <et (10.1)
n n
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forn € Nand 0 < ¢ < n. The right-hand inequality boils down to 1 — z < e
for 0 < < 1. The left-hand one is more subtle. Taking logs, we need

t 22
gn(t)=n1n<1——) +t—ln<1——) >0
n n

for0 <t < \/g , the inequality being obvious otherwise. Clearly ¢,,(0) = 0, so it
will suffice to show that g/, () > 0. We have

t 4t t(3n — 4t + 2t%)

() = — = >0
9n(t) n—t+n—2t2 (n—1t)(n—2t2) —

in the desired range since 3n — 4t > 3n — 2v/2yn > 2v/2(n — /n) > 0.
From([[0.])) it follows that

n n n 2 2 [e'e}
'F(x) —/ (1 - f) tr—ldt' g/ ie_ttz_ldt—l—/ e "Mt — 0
0 n o M n n—oo

for x > 0. It follows that

. n® n!
[(x) :r}ilzlox(x+1)(m+2)---(:v+n)’

again for x > 0.

1
We set about defining —— for all complex z by means of

I'(2)
rm = T ((+ ) ) 10

where 7 is Euler’s constant. For |w| < 5 one has
fog(1 + ) — ul < | 3D Tk < Lo
k=2
and consequently )
z, 2z 2
‘log(l + 5) -] s %
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for n > 2|z|. Thus, the product ([[0.2)) converges uniformly on compact of C to
an entire function. We find for x > 0

N
2" H <<1 + %)6_%) _ Jf(lE + 1)(1}]\—;;2])\” . (Z‘ + N)€I(7+1H(N)_Eg:1%>

with the consequence that the two definitions of I' are both holomorphic and
agree on the positive real axis. Therefore they agree everywhere on Rz > 0.

We note that m has zeros only at 0, —1, —2,... and these are therefore the
z

only poles of I'. This is an example of analytic continuation. A function defined
intitially only in a halfspace turns out to have a holomorphic extension to a much
larger region.
Next consider
I'(z+1) . n® (n+1)!

2 _nl—>noloz(z+1)(z+2)---(z+n+1)

= (n-nu) (z(z+1)(zf2+)1-7!(z+n+1)) =)

So that I'(z + 1) = 2I'(2) (except where I has its poles).

From (10.2)) we also have
1 i 22
- _ 1-— 2
F0(—2) H( n)
or equivalently
1 ad 22
- = 1-—. 10.3
tori-s 1l ( n) (o2

It turns out that we can relate the infinite product on the right of ([0.3)) to the sin
function.
We will need the following lemma

LEMMA 101  Let a, € C and suppose that limy_,o @y = a,, forallm € N.
Suppose further that |a,, ;| < M, for all n and k and that Z M,, < oo. Then

n=1
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(i) h_)ngoﬁ <1 + amk) = ﬁ (1 + an).
n=1 n=1

Proof. This is Analysis 2 stuff, well almost. Let € > 0 Then since

N
< ang —an| +2) M,
n=1

n>N

o [o.¢]
lim A — E an,
k—oo

n=1 n=1

we first choose N so large that >, _ v M,, < € and then K so large that

n>N

1
oN*
holds forn =1,2,..., N and k£ > K. We obtain

|an e — an| <

o0 o0
limg ank—g an| < €
k—oo ’

n=1 n=1

for K > K. This proves assertion (i).
For assertion (ii) we first choose N so large that M,, < % forn > N. It will be
enough to show that

lim 1 (1+an,k)= ﬁ <1—|—an>.

Equivalently, we can assume without loss of generality that M,, < % for all n. But
now, using the principal branch of the logarithm we have

|log(1 + ank)| < 2|lanik| < 2M,

using | log(1 + z)| < 2|z| for |z| < 3, and the result follows from (i) since exp is
continuous. u
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PROPOSITION 102 We have

00 2
Tz H (1 — %) = sin(7z) (10.4)

n=1

forall z € C.

Proof. Let m = 2{ be an even integer. Consider the polynomial

o= 5 (0+2)"- (0-22)).

and note that it has degree m —1, since the term in 2™ will cancel when the brack-

. . . . Tz ,
ets are expanded, but the term in 2! will not. Since lim mlog(1 + —) = i
m

m—00

(the left hand side is the derivative of z — log(1 + miz) at z = 0), it follows that

lim mP,,(z) = sin(wz).

m—00

(As an exercise, show that this is a uniform on compacta limit). On the other

hand, the roots of P, satisfy
m+4miz\" .
m—miz)

m + miz

and hence have the form
— eQm'k:m_l

m — iz

fork=0,1,2,...,m — 1. Solving for z gives

m(e2™* ™ _ 1) m (kﬂ')

m

Wi(e%rik’m—l _ 1) - ? tan

z =

We now realise that £ = ¢ does not yield a root and that we have our full comple-
ment of m — 1 roots. We can therefore write

-1

Pu(2)=Cz]] (1 - mQ(ta:j/jjT/m))Q)

k=1
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for suitable C'. From the coefficient of z obtained from the binomial expansion,
we see that C' = 7. Hence

Pr(z) = T2 ﬁ <1 B m2(ta171r(2/j72r/m))2)

k=1
We now apply Lemma [[0]] with
7222
- ifn <k
4k = §  Ak2(tan(nm/2k))2
0 ifn > k.
2
Ap = — ﬁ
|21
Mu="%
to show that ([I0.4) holds.
COROLLARY 103~ We have
1 _ sin(mz)
rr(1—z o«

forall z € C.

g
One can also point out that since I'(%) = / t~2¢7'dt > 0, it must be that
0

1
I'(1) = 72. Putting ¢t = 15 in the integral, this provides confirmation that

o0
1o T
e 2% ds=4/—.
0 2
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Index

absolute value,

affine, P3

analytic, §

argument, [j

Ascoli—Arzela Theorem, [[ 18

Cauchy’s Estimate,
Cauchy’s Theorem, g, P4
Chain Rule, g

complex conjugate,
complex plane, [
conjugate harmonic, B3]
cross ratio, p3

derivative, P2
differentiable,
differentiable at vy, 24
differential,

direction vector,
directional derivative,
Dirichlet Problem,
double pole, B3

entire function,
essential singularity,

First Maximum Principle, [
Fréchet derivative, P3

Fundamental Theorem of Algebra,

Green’s Theorem, B7]

Inverse Function Theorem,
isolated singularity, BT]

Jacobian matrix, R9

Laurent expansion,
Liouville’s Theorem,
Lipschitz at vg, B3

Little “0” of the norm,

meromorphic, [[07
modulus,

Montel’s Theorem, [[T9
Morera’s Theorem,
Mobius transformations,

Open Mapping Theorem,
order of a zero, B4
order of the pole,

pole, BT]

principal branch of the logarithm,

radius of convergence, f
real analytic, f§
removable singularity, B1]
residue,

Residue Theorem, P4
Riemann Mapping Theorem, [[2Q
Riemann sphere,

Schwarz Lemma,
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Second Maximum Principle, g

simple pole, B3
simply connected, [[03

single pole, B3

star shaped, 3]

Summability Kernel Theorem, [[4
Three Lines Theorem, 79

Variation of the Argument, [[07]
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