Final Examination

- 1. (a) Solve the Volterra integral equation $y(x) = x + \int_0^x y(\xi) d\xi$.
 - (b) Use the Fourier transform to solve the integral equation

$$y(x) = e^{-|x|} + \lambda \int_{-\infty}^{\infty} e^{-|x-\xi|} y(\xi) \ d\xi,$$

where y(x) is to remain finite as $x \to \pm \infty$ and $\lambda < \frac{1}{2}$.

2. Employ a Green's function to transform the following boundary-value problem into an integral equation

$$(1-x)y'' - y' + \lambda xy = 0, \qquad y(0) = y'(1) = 0.$$

3. (a) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

$$y(x) = \lambda \int_0^1 e^{x-\xi} y(\xi) \ d\xi$$

(b) Solve the integral equation

$$y(x) = e^x + \lambda \int_0^1 e^{x-\xi} y(\xi) \ d\xi$$

4. Use the Laplace transform to solve the Neumann problem for the heat-equation in a semi-infinite domain when there is an inward flux of heat at x = 0; i.e., solve

$$u_t = k u_{xx}, \quad 0 < x < \infty, \ t > 0$$

subject to the initial and boundary conditions u(x,0) = 0, $u_x(0,t) = -q(t)$ and $\lim_{x\to\infty} u = 0$.

Express your answer in the form

$$u(x,t) = \int_0^t g(t-\tau)f(x,\tau) \ d\tau$$

given that $\mathcal{L}^{-1}\{p^{-1/2}e^{-x\sqrt{p/k}}\} = (\pi t)^{-1/2} e^{-x^2/4kt}.$

5. In a two-dimensional problem involving forced wave motion, the dependent variable $\phi(x, y, t) = u(x, y)e^{-i\omega t}$, where u satisfies the Helmholtz equation with forcing

$$\nabla^2 u + k^2 u = -\frac{g(\vec{x})}{c^2}$$

and $k^2 = \omega^2/c^2$. Suppose that the region of interest is the half-plane x > 0, $g \to 0$ rapidly as $x^2 + y^2 \to \infty$ and $u_x = f(y)$ on the boundary x = 0.

- (a) Write down the solution u(x, y) in terms of integrals involving $G(x, y; \xi, \eta)$, f(y) and the non-homogeneous term in the equation for u.
- (b) What is the Green's function $G(x, y; \xi, \eta)$ and what is the boundary condition satisfied by G on x = 0?

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-585B

INTEGRAL EQUATIONS & TRANSFORMS

Examiner: Professor S.A. Maslowe Associate Examiner: L.J. Campbell Date: Friday, April 23, 1999 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

This exam comprises the cover and 1 page of questions.