- 1. (a) Factor the polynomial $p(z) = z^3 + 1 + i$ as a product of linear factors, using polar form for the roots. Sketch a plot of the roots in the complex plane.
 - (b) Find the Principal Value of $\log(-1 i\sqrt{3})$.
 - (c) Determine whether or not

$$\lim_{z \to 0} \frac{z}{z}$$

exists and prove your assertion.

- 2. (a) Define the term Isolated Singularity of a function f(z), and the term Res(f(z), a)where z = a is an isolated singularity of f(z). Then find the residues of
 - (b) ^{z^{1/2}}/_{z³ 4z² + 4z} at all isolated singularities, using the principal value of z^{1/2}.
 (c) ^{z²}/_{1 e^z} at all isolated singularities.
- 3. Let the function f be defined by

$$f(t) = \frac{\sin 2t}{t} \quad , \ -\infty < t < \infty, \ t \neq 0,$$

and set f(0) = 2. Evaluate its Fourier Transform $F(\omega)$ for $-\infty < \omega < \infty$ (except at jump discontinuities of F), using contour integration. Include the detailed analysis of each part of your contour.

4. Given the complex function

$$F(s) = \frac{e^{-3s}}{s^2 + s + 1},$$

- (a) Find its Inverse Laplace Transform f(t), $-\infty < t < \infty$, using contour integration. Include diagrams of your contours for the cases t > 3 and t < 3.
- (b) Write down the integral for F(s) in terms of f(t) (the Laplace Transform). Determine the set of all complex numbers s for which this integral converges absolutely, and sketch the set in the s-plane.
- 5. For the complex function $f(z) = z^{-2}(z-1)^{-1}(z+3)^{-1}$,
 - (a) State the three domains in which a Laurent Series in powers of z is available. Is the series a Taylor series in any of these three cases ?
 - (b) Define Principal Part of a function f near an isolated singularity z = a. Determine the Principal Part of the given f near z = 0.
 - (c) Compute the Laurent Series referred to in (a) for the domain containing the point $\sqrt{2} + i\sqrt{2}$.

- 6. (a) For $f(t) = 1 + 3^t$, $t \ge 0$, find the Z transform F(z). Find all singularities of F(z).
 - (b) For $G(z) = z^{-3}(z-4)^{-1}$, find the inverse Z transform g(nT), $n \ge 0$.
 - (c) Write down the series for G(z) in terms of g(nT) in part (b) (the Z transform). Determine the set of all complex numbers z for which the series converges absolutely and sketch this set in the z-plane.

7. Let $f(z) = z^3 + z^2 + 3z + 16$.

- (a) Prove that if $|z| \ge 10$ then $f(z) \ne 0$. Hint: find a lower bound on |f(z)|.
- (b) Let γ be the closed contour shown below, consisting of the line segment from 10i to -10i plus the semicircle of radius 10 in the right half plane, traversed counterclockwise. Given that the image of γ under the mapping $z \to f(z)$ is as shown below, how many zeros of f(z) are on γ ? inside γ ? Explain.
- (c) How many zeros of f(z) are there in the whole right half plane ? in the left half plane ? on the y axis ? (Assume the results in (a) and (b) are correct).

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATHEMATICS 189-381B

COMPLEX VARIABLES AND TRANSFORMS

Examiner: Professor I. Klemes Associate Examiner: Professor D. Sussman Date: Thursday, April 29, 1999 Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

NO CALCULATORS PERMITTED Show all work and simplify answers. Answer all 7 questions. Keep this exam paper.

This exam comprises the cover and 2 pages of questions.