Final Examination

- One of the following functions [a) or b)] is the real part of an analytic function f(z) = f(x + iy) such that f(0) = 0. Find the imaginary part of that function.
 (a) x² + y², b) x² y².
- 2. Let $F(z) = \frac{(z+1)}{(z-1)(z^2-4)}$.
 - (a) Expand F(z) in a Laurent series valid for |z| > 2.
 - (b) Expand F(z) in a Laurent series valid for 1 < |z| < 2.
 - (c) Find $\mathbb{Z}^{-1}[F(z)] = f(nT)$ = the inverse \mathbb{Z} -transform of F(z). (State explicitly f(nT) in terms of n).
- 3. (a) Find all the values of 1^{π} .
 - (b) Find all the values of z such that $\cos z = i$.
- 4. Evaluate $\int_0^\infty \frac{dx}{x^{1/4}(x+2)}$. Explain your work. In particular, begin by stating the definition of this improper integral.
- 5. Let $f(z) = \frac{\log z}{(z^2 1)^2}$, where $\log z$ is the principal value of $\log z$.
 - (a) Find the residue of f(z) at z = 1.

(b) Compute
$$\int_C f(z)dz$$
 if C is the circle $|z-1| = 1/2$.

- 6. Find the Fourier Transform of $f(t) = \frac{1}{t^2 2t + 5}, \ -\infty < t < \infty.$
- 7. Find the Inverse Laplace Transform of

$$F(s) = \frac{e^{-2s}}{s(s-3)^2}$$

by using an appropriate complex line integral.

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATHEMATICS 189-381A

COMPLEX VARIABLES AND TRANSFORMS

Examiner: Professor I. Klemes Associate Examiner: Professor D. Sussman Date: Friday, December 20, 1996 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

Calculators Not Permitted Answer all 7 questions Each of the 7 questions is worth 10 marks

This exam comprises the cover and 1 page of questions.