1. If A and B are two subsets of \mathbb{R}^n, define

$$A + B = \{a + b : a \in A, b \in B\}.$$

Prove the following

(a) If A is open B arbitrary, then $A + B$ is open.
(b) If A and B are both compact, then $A + B$ is compact.
(c) If A is compact, B is closed, then $A + B$ is closed.

2. Let (X, ρ) be a metric space, $\{f_n\}$ a sequence of continuous, real valued functions on X.

(a) If f_n converges uniformly on X to a function f, show that f is continuous.
(b) If further $x_n \to x$ in X, show that $f_n(x_n) \to f(x)$.

3. (a) If X is a connected metric space, and f is a continuous function from X to a metric space Y, show that $f(X)$ is connected.

(b) Let f be a continuous function mapping the closed unit interval $[0, 1]$ into itself. Prove that $f(x) = x$ for at least one $x \in [0, 1]$.

4. Let $\{f_n\}$ be a sequence of differentiable, real-valued functions on $[0, 1]$, and suppose there exists $M > 0$ such that

$$|f_n(x)| \leq M, \quad |f_n'(x)| \leq M, \quad \forall n \in \mathbb{N}, \ x \in [0, 1].$$

Show that $\{f_n\}$ has a uniformly convergent subsequence.

5. State the Stone-Weierstrass Theorem for $C(\mathbb{R},X)$, X a compact metric space.

Let C_0 be the (closed) subspace of $C([0,2\pi])$ consisting of continuous functions f such that $f(0) = f(2\pi)$. Show that C_0 can be identified in a natural way with the space $C(\mathbb{T})$ where \mathbb{T} is the unit circle centre the origin in \mathbb{R}^2 (i.e., the set

$$\{(x,y) : x^2 + y^2 = 1\}).$$

Hence show that if

$$\mathcal{T} = \left\{a_0 + \sum_{j=1}^n a_j \cos jt + b_j \sin jt : a_0, a_j, b_j \in \mathbb{R}, \ n \in \mathbb{N}, \ 0 \leq t \leq 2\pi\right\},$$

then \mathcal{T} is uniformly dense in C_0, i.e. every function in C_0 is the uniform limit of a sequence of functions in \mathcal{T}.
6. (a) State the inverse and implicit function theorems.

(b) Let \(f \) be a \(C^1 \) function \(\mathbb{R} \rightarrow \mathbb{R} \), and for \((x,y) \in \mathbb{R}^2 \), let \(u = f(x), \ v = -y + xf(x) \).

If \(f'(x_0) \neq 0 \) for some point \(x_0 \in \mathbb{R} \), show that the map \(g(x,y) = (u,v) \) is invertible near \((x_0,y) \) for all \(y \in \mathbb{R} \), and the inverse is given by \(x = f^{-1}(u), \ y = -v + uf^{-1}(u) \).

[State carefully what results you use, including results about functions of one variable.]

(c) Is it possible to solve the equations

\[
xy^2 + xzu + yv^2 = 3 \\
u^3yz + 2xv - u^2v^2 = 2
\]

for \(u = u(x,y,z), \ v = v(x,y,z) \) near \((x,y,z) = (1,1,1), \ (u,v) = (1,1) \)? Compute \(\frac{\partial v}{\partial y} \) at \((1,1,1) \).

7. Prove or disprove any 2 (two) of the following.

(a) A path connected metric space is connected.

(b) The space \(\ell^\infty \) is separable.

(c) In a metric space two disjoint closed sets are contained in disjoint open sets.
INSTRUCTIONS

NO CALCULATORS ARE PERMITTED.
All questions carry equal marks.
Attempt any 6 (SIX) questions.