- 1. Carefully state the following theorems.
 - (i) (5 marks) The Heine–Borel Theorem.
 - (ii) (5 marks) The Baire Category Theorem.
 - (iii) (5 marks) The Tietze Extension Theorem.
 - (iv) (5 marks) The Picard Existence Theorem.
- 2. (i) (5 marks) Write down the definition of the sequence space ℓ^{∞} and its norm.
 - (ii) (15 marks) Prove from first principles that ℓ^{∞} is complete.
- 3. (20 marks) Let X be a compact metric space and let $(U_{\alpha})_{\alpha \in I}$ be a arbitrary family of open subsets such that $X = \bigcup_{\alpha \in I} U_{\alpha}$. Show that there exists a strictly positive real number δ such that for each $x \in X$, there exists $\alpha \in I$ such that $U(x, \delta) \subseteq U_{\alpha}$. Here the notation $U(x, \delta)$ stands for $\{\xi; \xi \in X, d(x, \xi) < \delta\}$.
- 4. (i) (7 marks) Let A and B be disjoint closed subsets of a metric space X. Show that there necessarily exist disjoint open subsets U and V such that $A \subseteq U$ and $B \subseteq V$.
 - (ii) (6 marks) Construct explicitly disjoint closed subsets A and B of \mathbb{R} such that $\inf\{|a-b|; a \in A, b \in B\} = 0$.
 - (iii) (7 marks) Suppose that A and B are disjoint closed subsets of \mathbb{R}^d and in addition that B is bounded. Show that $\inf\{\|a-b\|; a\in A, b\in B\} > 0$. Here $\|\ \|$ denotes the Euclidean norm on \mathbb{R}^d .
- 5. (i) (10 marks) Let Ω be a connected open subset of \mathbb{R}^d . Prove that any two points of Ω can be joined by a piecewise linear path lying entirely in Ω .
 - (ii) (10 marks) Let Ω be a connected open subset of \mathbb{R}^d and let $f:\Omega \longrightarrow \mathbb{R}$ be a differentiable function with everywhere vanishing total derivative. Show that f is constant on Ω .
- 6. (i) (5 marks) State carefully the Implicit Function Theorem.
 - (ii) (5 marks) State carefully the Parametrization Theorem.
 - (iii) (10 marks) Show that the set of points $(x, y, z) \in \mathbb{R}^3$ satisfying the equation $(x + y + z)^3 + 396 + 20xyz = 0$ is an infinitely differentiable surface.

- 7. (i) (5 marks) What is meant by the *Hessian* of a real-valued function.
 - (ii) (5 marks) State and prove a theorem relating to the symmetry of the Hessian.
 - (iii) (5 marks) State a theorem relating the Hessian to local minimum points.
 - (iv) (5 marks) Show that the function $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by

$$\varphi(x,y) = (x - y^2)(x - 3y^2)$$

does not have a strict local minimum at the origin (x,y) = (0,0). Show that nevertheless the restriction of φ to every line through the origin does have a strict local minimum at the origin.

* * * * *