- 1. (a) Let (X, d_1) and (Y, d_2) be metric spaces. Define:
 - (i) Limit point of a subset S of X;
 - (ii) Cauchy sequence in X;
 - (iii) Continuous function $f: X \to Y$;
 - (iv) Equicontinuous family of functions;
 - (v) Complete metric space;
 - (vi) Compact metric space.
 - (b) Define: Differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$.
- 2. Let (X,d) be a metric space, (f_n) a sequence of continuous, real valued functions on X.
 - (a) If f_n converges uniformly on X to a function f, show that f is continuous.
 - (b) If further $x_n \to x$ in X, show that $f_n(x_n) \to f(x)$.
- 3. State Baire's Theorem. Suppose (X, d) is a complete metric space. Let G_1, G_2, \ldots be a sequence of open subsets of X. Suppose, in addition, G_n is dense in X, for each n. Prove that $\bigcap_{1}^{\infty} G_n$ is also dense in X.
- 4. Let (f_n) be a uniformly bounded sequence of functions which are Riemann integrable on [a, b]. If $F_n(x) = \int_a^x f_n(t)dt$, $a \le x \le b$, prove that there exists a subsequence (F_{n_k}) which converges uniformly on [a, b].
- 5. (a) Prove that every compact metric space (X, d) is separable.
 - (b) Prove that if (X, d) is a compact metric space, then C(X, ℝ) is a separable metric space.
 [<u>Hint</u>: Let {x₁, x₂,...} be a subset of X; if f_n(x) = d(x, x_n) for all x ∈ X, then {1, f₁, f₂,...} generates an algebra in C(X, ℝ).]

- 6. (a) State Tietze's Extension theorem.
 - (b) (i) Prove that in every infinite metric space there is an infinite sequence (x_k) such that no limit point of the set $\{x_1, x_2, \ldots\}$ is an element of the sequence.

(ii) Let (X, d) be a compact metric space and suppose that the bounded closed sets of $C(X, \mathbb{R})$ are compact; prove that X consists of a finite number of points.

7. (a) Let f be a bijection from the open set $U \subset \mathbb{R}^n$ onto the open set $V \subset \mathbb{R}^n$.

(i) If f and f^{-1} are differentiable on U and V respectively, prove that the Jacobian $J_f(x) \neq 0$ for all $x \in U$.

(ii) If in (i) we do not assume differentiability of f^{-1} , is the conclusion $(J_f(x) \neq 0$ for all $x \in U$) still valid?

(iii) Let f be differentiable in U and let f^{-1} satisfy a Lipschitz condition on V. Prove that f^{-1} is differentiable on V.

(b) Let U be an open set in \mathbb{R}^n , let $u_0 \in U$ and let $f: U \to \mathbb{R}^n$ be continuous on U and continuously differentiable on $U \setminus \{u_0\}$. If $\lim_{x \to u_o} Df(x) = L$, prove that f is also differentiable at u_0 and $Df(u_0) = L$.

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-354A

ANALYSIS II (PART I)

Examiner: Professor R. Vermes Associate Examiner: Professor W.O.J. Moser Date: Monday, December 19, 1994 Time: 2:00 P.M. - 5:00 P.M.

This exam comprises the cover and 2 pages of questions.