- 1. (10%) Formulate and prove the three rotations theorem.
- (10%) Let T be a reflection in the axis m and S any other isometry of E². What is STS⁻¹? Justify your answer.
- 3. (20%) Prove that there exists only two types of discrete groups of symmetries of finite figures, namely C_n and D_n .
- 4. (10%) Give a definition of the symmetric group S_n . Let $\sigma = (1527)(436)$ and $\tau = (165)(27)(34)$ in S_8 . Compute the product $\tau\sigma$. Write the following permutation

as a product of disjoint cycles.

- 5. (10%) Define the sphere S^2 and lines of S^2 . Prove that if l is a line of S^2 and P is a point, which is not a pole of l, then there is a unique line m through P perpendicular to l. Find m if $l = \{x | < x, \xi \ge 0, \xi = (-1/\sqrt{2}, 1/\sqrt{2}, 0)\}$ and P = (0, 1, 0).
- 6. (10%) Define the projective plane P^2 and the mapping $T: E^2 \to P^2 l_{\infty}$.
- 7. (10%) Define intersecting, parallel and ultraparallel lines of the hyperbolic plane H^2 . How does one find the point of intersection of two intersecting lines? If $\xi = (1, -1, 1)$ and $\eta = (0, -1, 0)$, what can you say about l_{ξ} and l_{η} ?
- 8. (10%) Prove that the angle sum for a right triangle in H^2 is less than π .
- 9. (10%) Give a definition of Minkowski space-time. Give the formulas for Lorentz' transformation. What is the light cone?

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-348A

TOPICS IN GEOMETRY

Examiner: Professor O. Kharlampovich Associate Examiner: Professor K.P. Russell Date: Monday, December 21, 1998 Time: 9:00 A.M. - 12:00 Noon.

INSTRUCTIONS

Calculators are not permitted. Answer all questions.

This exam comprises the cover and 1 page of questions.