1. (a) Determine the domain of analyticity of \(f(z) = \log i(z - 1) \).
 (b) Make suitable branch cuts and define a branch \(f(z) \) of \((z^2 + 1)^{1/2}\) that is defined on the real axis and such that \(f(0) = -1 \). Find \(f(-1) \). Justify your answer.

2. Let \(f(z) \) be a complex function and \(z_0 \in \mathbb{C} \).
 (a) Define the following concepts:
 i. \(z_0 \) is an isolated singularity of \(f \).
 ii. \(z_0 \) is a removable singularity of \(f \).
 iii. \(z_0 \) is a pole of \(f \).
 iv. \(z_0 \) is an essential isolated singularity of \(f \).
 (b) Explain how to extend the definitions in (a) to the case \(z_0 = \infty \).

3. For the following functions \(f(z) \) determine the type of singularity at the point \(z_0 \) indicated.
 (a) \(f(z) = e^{-1/z} \sin z^2; \ z_0 = 0 \).
 (b) \(f(z) = \frac{1 + z}{1 - z}; \ z_0 = \infty \).
 (c) \(f(z) = \log \frac{z - 1}{z + 1}; \ z_0 = 1 \).
 (d) \(f(z) = \frac{1}{1 - \cos z}; \ z_0 = 0 \).

4. For the functions \(f(z) \) and points \(z_0 \) of 3), determine whether \(f(z) \) has a Laurent expansion at \(z_0 \). Where possible, find the order and the residue of \(f \) at \(z_0 \).

5. (a) Suppose \(f(z) \) has an isolated singularity at \(z_0 \in \mathbb{C} \). Show that the following are the same:
 i. the coefficient of \((z - z_0)^{-1}\) in the Laurent expansion of \(f(z) \) at \(z_0 \).
 ii. \(\frac{1}{2\pi i} \int_{|z-z_0|=\varepsilon} f(z) \, dz \) (for \(0 < \varepsilon \) sufficiently small).
 (b) Suppose that \(f(z) \) has a pole or removable singularity at \(z_0 \). Let \(g(z) = \frac{f'(z)}{f(z)} \). Show that \(\text{Res}(g(z); z_0) \) is defined and equals the order of \(f(z) \) at \(z_0 \).

6. Determine the following integrals. Use residues and contour integration where appropriate. Justify your steps.
 (a) \(\int_{|z|=2} \frac{1}{z^2 + z + 1} \, dz \);
 (b) \(\int_0^{2\pi} \frac{\sin \theta}{2 + \cos \theta} \, d\theta \);
 (c) \(\int_0^\infty \frac{\cos x}{x^2 + 1} \, dx \).
McGILL UNIVERSITY
FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-316A

FUNCTIONS OF A COMPLEX VARIABLE

Examiner: Professor K.P. Russell
Associate Examiner: Professor J.C. Taylor

Date: Thursday, December 10, 1998
Time: 2:00 P.M. - 5:00 P.M.

This exam comprises the cover and 1 page of questions.