1. (i) (10 marks) State and prove the Cauchy–Schwarz inequality.
(ii) (10 marks) Let \(a_1, a_2, \ldots, a_n \) be positive numbers. By writing \(a_1 = (a_1 a_2^{-\frac{1}{2}}) a_2^{\frac{1}{2}} \),
\[
a_2 = (a_2 a_3^{-\frac{1}{2}}) a_3^{\frac{1}{2}}, \ldots, a_n = (a_n a_1^{-\frac{1}{2}}) a_1^{\frac{1}{2}}
\] or otherwise, show that
\[
a_1 + a_2 + \cdots + a_{n-1} + a_n \leq a_1^2 a_2^{-1} + a_2^2 a_3^{-1} + \cdots + a_{n-1}^2 a_n^{-1} + a_n^2 a_1^{-1}
\]

2. (i) (6 marks) Describe Riemann’s Criterion for Integrability.
(ii) (7 marks) If \(f \) is a Riemann Integrable function on \([0, 1]\) show that the function \(|f|\) defined by \(|f| (x) = |f(x)|\) is also Riemann Integrable on \([0, 1]\).
(iii) (7 marks) Let
\[
g(x) = \begin{cases}
0 & \text{if } x \text{ is irrational}, \\
\frac{1}{q} & \text{if } x = \frac{p}{q} \text{ in lowest terms with } p \text{ and } q \text{ integers}.
\end{cases}
\]

Is \(g \) Riemann Integrable on \([0, 1]\)? Justify your answer.

3. (i) (5 marks) Let \(f(x) = e^{x^2} \int_0^x e^{-t^2} \, dt \). How is it possible to assert on theoretical grounds that \(f \) has a power series expansion about \(x = 0 \) with infinite radius?
(ii) (5 marks) Show that \(f'(x) = 1 + 2xf(x) \).
(iii) (5 marks) Find the power series expansion of \(f \) about \(x = 0 \) as far as the term in \(x^7 \).
(iv) (5 marks) Use the ratio test to verify that the radius of the series you have found is indeed infinite.

4. For each of the following sequences of functions defined on \(\mathbb{R} \) determine (a) if a pointwise limit exists everywhere on \(\mathbb{R} \), (b) if a uniform limit exists on each bounded subset of \(\mathbb{R} \) and (c) if a uniform limit exists on \(\mathbb{R} \).
(i) (7 marks) \(f_n(x) = \left(1 + \frac{x}{n}\right)^n \).
(ii) (6 marks) \(f_n(x) = \frac{x}{1 + nx^2} \).
(iii) (7 marks) \(f_n(x) = \cos(nx^2) \).

Justify your answers.
5. Let \(a_n > 0 \) and \(\sum_{n=1}^{\infty} a_n < \infty \). For each of the following statements, either provide a proof that the statement necessarily holds, or an example of a specific instance where it does not.

 (i) (7 marks) \(\sum_{n=1}^{\infty} n^2 a_n^3 < \infty \).

 (ii) (7 marks) \(\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \leq 1 \).

 (iii) (6 marks) \(\sum_{n=1}^{\infty} \frac{a_n}{1 + a_n^2} < \infty \).

6. (i) (6 marks) State the Fundamental Theorem of Calculus.

(ii) (7 marks) Let \(g \) and \(h \) be two differentiable functions such that

 - \(g(0) = h(0) \)
 - \(g'(x) \leq h'(x) \) for \(x > 0 \)

 Show that \(g(x) \leq h(x) \) for \(x \geq 0 \).

(iii) (7 marks) Suppose that \(f \) is a differentiable function such that \(f(0) = 0 \) and \(0 < f'(x) \leq 1 \) for all \(x > 0 \). Show that for \(x \geq 0 \)

\[
\int_{0}^{x} \left(f(t) \right)^3 \, dt \leq \left(\int_{0}^{x} f(t) \, dt \right)^2.
\]

Hint: Apply (ii) twice (at least).
INSTRUCTIONS

All six questions should be attempted for full credit.

This is a closed book examination.
Write your answers in the booklets provided.
No calculators are allowed.

All questions are of equal weight; each is worth 20 marks.
The exam will be marked out of a total of 120 marks
and subsequently scaled to a percentage.

This exam comprises the cover and 2 pages of questions.