1. Let A be a $(n \times n)$-matrix over the field F.

 (a) Define the nullspace N_A of A and the column space C_A of A.

 (b) Show that if $A^2 = 0$, then $C_A \subseteq N_A$.

 (c) Show that if $A^2 = A$, then $C_A \cap N_A = 0$ and $F^n = C_A + N_A$.

2. Let

 \[A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ -1 & 1 & -2 & 0 \\ -1 & 0 & -1 & -1 \\ 0 & -1 & 1 & -1 \end{pmatrix}. \]

 With N_A and C_A as in question 1, find $\dim N_A$ and $\dim C_A$. Determine a basis for $C_A \cap N_A$.

3. Let V be the vector space of complex polynomials of degree ≤ 2. For $z \in \mathbb{C}$, define

 \[\varepsilon_z : V \to \mathbb{C} \]

 by $\varepsilon_z(p) = p(z)$.

 (a) Show that ε_z is a linear map.

 (b) Let $z_1 = 1$, $z_2 = -1$ and $z_3 = i$. Let $\lambda_i = \varepsilon_{z_i}$. Show that $\{\lambda_1, \lambda_2, \lambda_3\}$ is a basis of the vector space \hat{V} of linear maps from V to \mathbb{C}.

 (c) Express ε_0 as a linear combination of $\lambda_1, \lambda_2, \lambda_3$.

4. Let A be the $(n \times n)$-matrix

 \[A = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ & & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}. \]

 (A has entries 1 just above and below the diagonal, i.e. $a_{ij} = 1$ if $|i - j| = 1$, and all other entries are zero.) Compute $\det(A)$ (in terms of n).
5. Let

\[A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

(a) Determine the characteristic polynomial \(\chi_A \), the eigenvalues of \(A \) and bases for the eigenspaces.

(b) Find the minimal polynomial \(\mu_A \) and determine the Jordan canonical form of \(A \). Justify your answer.

(c) Compute \(A^{10} \). Hint: \(A^r = ((A - I) + I)^r \).

6. Let \(V \) be \(\mathbb{R}^4 \) with the standard inner product. Let \(U \) be the subspace generated by \((1, 1, 1, 1)\), and \((0, 1, 1, 1)\).

(a) Find orthonormal bases for \(U \) and for \(U^\perp \).

(b) Find the vector \(u \in U \) that is closest to \(e_1 = (1, 0, 0, 0) \).

7. Find an orthogonal matrix \(P \) that diagonalizes the quadratic form

\[Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3. \]

8. Let

\[A = \begin{pmatrix} 0 & 0 & 3 + 4i \\ 0 & 0 & 0 \\ 3 - 4i & 0 & 0 \end{pmatrix}. \]

(b) Find a unitary matrix \(U \) so that \(U^*AU \) is diagonal. Give an a priori reason why this is possible.