1. (a) Let
\[f(x) = \begin{cases}
0, & -1 \leq x \leq 0, \\
1, & 0 < x \leq 1,
\end{cases} \]
and let
\[F(x) = \int_{-1}^{x} f(t) \, dt, \quad x \in [-1, 1]. \]
Is \(F \) differentiable on \([-1, 1]\)? Does \(f \) have an antiderivative on \([-1, 1]\)?

(b) Suppose that \(f \) is a continuous function on \([0, \infty)\) such that \(f(x) \neq 0 \) for all \(x > 0 \).
Show that if
\[(f(x))^2 = 2 \int_{0}^{x} f \text{ for all } x > 0 \]
then \(f(x) = x \) for all \(x \geq 0 \).

2. (a) State the Riemann Criterion for integrability.

(b) Let \([a, b]\) be a closed and bounded interval and let \(f : [a, b] \to \mathbb{R} \) be a bounded function with a finite number of discontinuities. Show that \(f \) is integrable on \([a, b]\).

3. (a) Let \(A \subseteq \mathbb{R} \) and let \((f_n) \) be a sequence of bounded functions on \(A \). Show that if \((f_n) \) converges uniformly on \(A \) to a function \(f \), then \(f \) is bounded on \(A \).

(b) Let \(f_n(x) = \frac{nx}{1 + nx^2}, \quad x \in [0, +\infty) \). Show that \((f_n) \) is not uniformly convergent on \([0, +\infty)\).

(c) Let \(\varepsilon > 0 \). Show that the sequence \((f_n) \) in (b) is uniformly convergent on \([\varepsilon, +\infty)\).

4. (a) State the Weierstrass M-test.

(b) Show that the series of functions
\[\sum_{n=1}^{\infty} \frac{x^2}{x^2 + n^2} \]
is uniformly convergent on any bounded subset of \(\mathbb{R} \).

(c) Is the series in (b) uniformly convergent on \(\mathbb{R} \)?

5. Given the power series \(\sum_{n=0}^{\infty} (n + 1)x^n \),

(a) find the radius of convergence.

(b) Find the sum of the power series on the interval of convergence.

(c) Is the series \(\sum_{n=1}^{\infty} \frac{n}{2^n} \) convergent? If yes, calculate the sum.
McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-243B

REAL ANALYSIS

Examiner: X. Zhang Date: Tuesday, April 25, 2000
Associate Examiner: Professor I. Klemes Time: 9:00 A.M. - 12:00 Noon.

INSTRUCTIONS

Each question is worth 20 marks.

This exam comprises the cover and one page of questions.