1 (a) Define:
 (i) Least upper bound of a bounded set $S \subset \mathbb{R}$;
 (ii) $X = (x_k), x_k \in \mathbb{R}$, is a convergent sequence;
 (iii) $X = (x_k), x_k \in \mathbb{R}$ is a Cauchy sequence
 (iv) A function f defined on $S \subset \mathbb{R}$ is uniformly continuous on S.

(b) State the Least Upper Bound Axiom.

2. Let $A \subset \mathbb{R}, B \subset \mathbb{R}$ be two non-empty bounded sets. Show that the set

 $C = \{c \mid c = a + b, \quad a \in A \quad b \in B\}$

 is bounded and $\text{Sup } C = \text{Sup } A + \text{Sup } B$

3. (a) Let $a > 0$, prove that

 \[\lim_{n \to \infty} \sqrt[n]{a} = 1 \]

(b) Let $a_1, a_2, \ldots, a_{k-1}, a_k$ be k positive numbers. Prove that

 \[\lim_{n \to \infty} \left(a_1^n + a_2^n + \cdots + a_{k-1}^n + a_k^n \right)^{\frac{1}{n}} \max(a_1, a_2, \ldots, a_k) \]

4 (a) Show that every increasing bounded sequence (a_n) is convergent.

(b) Let f be defined and increasing on the interval (a, b). Prove that for all $c \in (a, b)$ we have that \(\lim_{x \to c^+} f \) and \(\lim_{x \to c^-} f \) exist.

5. (a) Let f be defined on the punctured neighborhood $N = \{x : 0 < |x - a| < \lambda\}$

 If $\lim_{x \to a^+} f(x) = A$, prove that f is bounded on a punctured neighborhood $\{x : 0 < |x - a| < \beta \leq \lambda\}$.

(b) Let g be defined and positive on $\{x : 0 < |x| < \lambda\}$

 Suppose that $\lim_{x \to 0} \left(g(x) + \frac{1}{g(x)} \right) = 2$.

 Prove that $\lim_{x \to 0} g(x)$ exists and it is equal to 1.
6. (a) State and prove the Intermediate Value Theorem
 (b) Let \(f \) be defined and continuous on \([0,1]\). If \(0 \leq f \leq 1 \), show that there exists a \(\zeta \in [0,1] \) such that \(f(\zeta) = \zeta \).

7. (a) State Rolle’s Theorem.
 (b) Prove the Mean Value Theorem.
 (c) Let \(f \) be continuous on \([0,1]\) and differentiable on \((0,1)\). Suppose that \(f(0) = f(1) = 0 \) and that there is an \(x_0 \in (0,1) \) such that \(f(x_0) = 1 \). Prove that \(|f'(c)| \geq 2 \) for some \(c \epsilon (0,1) \).
 (d) (This question is for extra points.) Show that in (c) the strict inequality \(|f'(c)| > 2 \) is true.

8. (a) State Taylor’s Theorem, with the Lagrange remainder.
 (b) Establish the inequality
 \[
 1 + rx + \frac{r(r-1)}{2}x^2 \leq (1 + x)^r
 \]
 if \(x \geq 0 \) and \(r \geq 2 \).