MATHEMATICS 189–236B

PART I

DO ANY THREE QUESTIONS FROM AMONG THE FOLLOWING SIX

- 1. Let F_q be a finite field with q elements.
 - (a) Show that there is a prime p such that $q = p^k$ for some positive integer k.
 - (b) Show that a vector space of dimension n over F_q has q^n elements.
 - (c) Find a formula for the number of ordered bases for a vector space V of dimension n over F_q .
 - (d) How many $n \times n$ matrices are there with entries from F_q ?
 - (e) How many invertible $n \times n$ matrices are there over with entries from F_q ?
- 2. Consider the matrix A whose entries are from the field F_2 of two elements (recall that in this field 1+1=0). The subspace U of \mathcal{R}^5 is spanned by the first three columns of A and the subspace V by the last three columns.

- (a) Find an invertible matrix B such that BA is in reduced row echelon form.
- (b) Find all dependence relations on the rows of A.
- (c) Find all dependence relations on the columns of A.
- (d) Find bases for U, V, U + V, and $U \cap V$.
- 3. Test each of the following sets to see if it is a subspace. In each case your answer must be justified-if yes, then why; if no then why not.
 - (a) $\{(x, y, z)^t | x + 3y z = 5\} \subset \mathcal{R}^3$.
 - (b) $\{\mathbf{v} | \text{ there is } \mathbf{w} \text{ with } S\mathbf{v} = T\mathbf{w} \} \subset \mathcal{R}^n \text{ where } S \text{ and } T \text{ are two matrices of suitable sizes.}$
 - (c) The set of sequences of complex numbers a_n with $\sum_{n=0}^{\infty} a_n^2 < \infty$ considered as a subset of the vector space of all sequences of complex numbers.
 - (d) i. Over the real numbers, the set of integrable functions f(x) which vanish at x = 0 considered as a subset of the space of all real valued functions.
 - ii. as above, but the functions such that f(0) = 1.
- 4. Let \mathcal{B} be a linearly independent subset of the vector space V whose field of scalars is \mathbf{F} and $\mathbf{v} \in V$ a vector in V.
 - (a) Prove that the following two statements are equivalent
 - i. $\mathcal{B} \cup \{\mathbf{v}\}$ is a linearly independent subset of V.
 - ii. $\mathbf{v} \notin \text{Span}\mathcal{B}$.

- 6. (a) State the definition given in class of a determinant function which assigns an $n \times n$ matrix with entries from the field **F** a scalar in the field **F** which is related to the behaviour of the determinant under elementary operations.
 - (b) State the formula for calculating the determinant (this involves the signs of permutations).
 - (c) Derive the cofactor expansion along the first row using the formula of part (b) of this question. Recall that $C_{ij} = (-1)^{i+j} M_{ij}$ whereby M_{ij} is the minor determinant of the ij position.

PART II

DO ANY THREE OF THE FOLLOWING FIVE QUESTIONS

1. For the matrix M given below, compute and factor the characteristic polynomial (one of its roots is -2), then using the idea of orthogonal idempotents and the Cayley–Hamilton theorem, find a basis of \mathbf{R}^3 which puts the matrix into Jordan canonical form (the block diagonal form discussed in class and on two assignments).

$$M = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & 4 & 2 \end{array}\right)$$

2. Let V be the vector space of polynomials of degree at most two over the real numbers \mathcal{R} equipped with the inner product

$$< f,g> = \int_{-1}^1 f(t)g(t)dt$$

- (a) Apply the Gram–Schmidt process to the basis $\{1, x, x^2 + x\}$ to obtain an orthonormal basis.
- (b) With respect to the standard basis $\{1, x, x^2\}$ find the **second** column of the matrix of the adjoint of the derivative operator D.
- 3. (a) Find a rotation matrix P which diagonalises the quadratic form

$$q(x, y, z) = x^{2} + y^{2} + 4z^{2} - 2xy + 4xz - 4yz$$

Note: zero is an eigenvalue of the associated symmetric matrix.

- (b) Prove that $\lambda = 1$ is an eigenvalue of the ROTATION MATRIX *P*. What is the geometric interpretation of the line of action of the corresponding eigenvalue?
- 4. Let T be a self-adjoint linear transformation on the finite dimensional inner product space V over C the field of complex numbers and U a T-invariant subspace.

Show that $U^{\perp} = \{ \mathbf{w} \in V | < \mathbf{w}, \mathbf{u} >= 0 \text{ for all } \mathbf{u} \in U \}$ is also a *T*-invariant subspace of *V*

5. Let T be a self-adjoint linear transformation on the finite dimensional inner product space V over C the complex numbers.

Show that there is an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of V consisting entirely of eigenvectors of T.

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-236B

LINEAR ALGEBRA I

Examiner: Professor W. Jonsson Associate Examiner: Professor J. Loveys

Date: Wednesday, April 30, 1997 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

There are three parts to this exam. Please read the instructions at the top of each section carefully.

This exam comprises the cover and 2 pages of questions.