1. Explain the method of Riemann sums to evaluate the definite integral \(\int_a^b f(x)dx \).

Illustrate your answer by evaluating \(\int_0^1 (1 + x)^2 dx \), using Riemann sums. Show that the answer is consistent with the fundamental theorem of calculus.

2. (a) Evaluate the following integrals:

 (i) \(\int \frac{dx}{x^2 + 6x + 10} \)
 (ii) \(\int x^3 e^{3x} \, dx \).

 (b) Derive the trapezoidal rule formula to estimate \(\int_a^b f(x) \, dx \).

3. (a) Evaluate the following integrals:

 (i) \(\int \sin^3 x \cos^5 x \, dx \)
 (ii) \(\int \frac{dx}{x^2 \sqrt{x^2 - 4}} \).

 (b) Find the area in the first quadrant bounded by the curves \(xy = 1 \) and \(2x + 2y = 5 \).

4. (a) Evaluate the following definite integrals or show divergence:

 (i) \(\int_0^1 x \ln x \, dx \)
 (ii) \(\int_0^\infty x^2 e^{-5x} \, dx \).

 (b) Consider the region in the first quadrant bounded by the curves \(y = x^2 \) and \(x = y^2 \). Determine the volume of the solid region formed by rotating this plane region about the \(y \)-axis.

5. (a) Graph the polar curve \(r = 1 - \sin \theta \) and determine the area enclosed by this curve.

 (b) Determine whether the following series converge. Name the tests you are using.

 (i) \(\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+5}} \);
 (ii) \(\sum_{n=1}^{\infty} \frac{1}{(n + 1)^2} \);
 (iii) \(\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3 + 1} \).

6. (a) Find the area of the surface formed by rotating the curve \(y = \cos x, -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), about the \(x \)-axis.

 (b) Find the radius of convergence and the interval of convergence:

 (i) \(\sum_{n=0}^{\infty} \frac{2^n x^n}{(n + 2)^2} \);
 (ii) \(\sum_{n=0}^{\infty} \frac{3^n (x - 4)^n}{n + 3} \);
 (iii) \(\sum_{n=0}^{\infty} \frac{(x - 2)^n}{(n + 1)(n + 2)} \).

* * * * * * * * *
McGILL UNIVERSITY
FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-141A

CALCULUS II

Examiner: Professor J. Turner
Associate Examiner: Professor W.G. Brown

Date: Monday, December 7, 1998
Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

Calculators may not be used.
Answer any FIVE questions.

This exam comprises the cover and 1 page of questions.