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1. Let f(x) =

8>><
>>:

x + sin 3x

tan 4x
x > 0

(x� a)2

4
x � 0

, where a is a constant, to be determined.

(a) [6 MARKS] Determine each of lim
x!0�

f(x), lim
x!0+

f(x) or explain why either or

both do not exist.

(b) [3 MARKS] Use the information of part (a) to determine all values, if any, for
the constant a, which will make f continuous at x = 0.



( )

2. [8 MARKS] Let m(x) = xx
2 � (x2)

�3
. Determine the value of m0(1).



( )

3. [8 MARKS] If y is de�ned implicitly as a function of x by 2x2 � 3xy + 5y2 = 10,

determine the value of
d2y

dx2
when (x; y) = (1;�1).



( )

4. For the function h(x) = arctan
2 + x

1� 2x
,

(a) [1 MARK] State the (largest possible) domain.

(b) [5 MARKS] Determine
dh

dx
for all points x where the derivative exists.

(c) [2 MARKS] Give an example of a function di�erent from h which has exactly
the same domain and exactly the same derivative as h.



( )

5. The function u is de�ned by u(x) =
x

1 + x2
, for �1 < x <1.

(a) [3 MARKS] Determine the intervals where the function u is increasing, and
those where it is decreasing.

(b) [3 MARKS] Find all critical points. In each case determine whether the point
is a maximum or minimum point, or neither.

(c) [3 MARKS] Determine the intervals where the graph of u is concave upwards,
and those where it is concave downwards.

(d) [3 MARKS] Determine all in
ection points of the graph.

(e) [2 MARKS] Determine all horizontal or vertical asymptotes of the graph.

(f) [4 MARKS] Sketch the graph.

You may assume that u0(x) = �(x� 1)(x+ 1)

(x2 + 1)2
, and that u00(x) =

2x(x2 � 3)

(x2 + 1)3
.

(For each of parts (a) through (e) you are expected to show all your work and your
results, clearly marked by the question number, e.g., 5(c); it is not suÆcient to
provide information only on your graph.)



( )

6. [8 MARKS] Use the Intermediate Value Theorem and/or the Mean Value Theorem

and/or properties of G0(x) to show that the function G(x) = x2 � e
1

1+x assumes
the value 0 for exactly one real number x such that 0 < x < 2. Show all your work.
[Hint: You may assume that e

1

3 < 2:]



( )

7. [8 MARKS] Triangle OBC, in the �rst quadrant, has vertex O at the origin, vertex
B on the x-axis, and vertex C on the y-axis. If the vertices are constrained so that
the line joining B and C passes through the point (2; 3), determine the minimum
area for triangle OBC. Show all your work.



( )

8. Showing all your work, evaluate the following limits, if they exist:

(a) [8 MARKS] lim
x!1

(
p
x2 + x�

p
x2 � x).

(b) [8 MARKS] lim
x!0

tan x� sinx

x3
.



( )

9. [8 MARKS] Showing all your work, determine all lines with slope 3 which are
normal to the curve 64y + x3 = 0, (i.e. which are perpendicular to the tangent at
each point where they meet the curve).



( )

10. [9 MARKS] Showing all your work, determine the (global) maxima and minima
of the function R(x) = 3x4 + 4x3 � 6x2 � 12x on the closed interval �2 � x � 2.
[Hint: x3 + x2 � x� 1 = (x2 � 1)(x+ 1).]



( )

continuation page for problem number

You must refer to this continuation page on the page where the problem is printed!



( )

continuation page for problem number

You must refer to this continuation page on the page where the problem is printed!


