December 12, 1996

- 1. Simplify:
 - a) (5 marks) $(2\sqrt{2}a^2b^{-1/4})^2(2a^{1/3}b^{-1/2})^{-3};$ b) (5 marks) $\frac{3^{-1}+2^3}{(-1)^3+(-3)^2}.$
- 2. (10 marks) In a certain mathematics class, the average weight for the girls was 64 kg, for the boys 80 kg and for the class as a whole, 73 kg. How many people are in the class given that there are 14 girls?
- 3. Solve the following inequalities:
 - a) (5 marks) |x+5| < 1;
 - **b)** (5 marks) |-2x+3| > 3.
- 4. (10 marks) Find the point of intersection of the two lines given below. Then write the equation of the line through that point perpendicular to the line given first.

$$5x - 2y = 5$$
$$-3x + 3y = 6$$

- 5. a) (8 marks) Sketch the graph of the curve $(x-1) = -4(y+2)^2$. Give the coordinates of at least three points on the curve including the vertex.
 - c) (2 marks) Could the graph of part a) be the graph of a function? (Explain your answer.)
- 6. a) (5 marks) Factor $3x^3 + 2x^2 12x 8$ over the integers.
 - b) (5 marks) Sketch the graph of the polynomial function $f(x) = 3x^3 + 2x^2 12x 8.$

Final Examination

7. a) (5 marks) Sketch the graph of the following rational function

$$f(x) = \frac{5-x}{5+x}.$$

- b) (2 marks) Give the equations of the asymptotes in the graph of part a).
- c) (3 marks) Is the function f(x) given in part a) one-to-one? (Explain your answer.)
- 8. Solve for x:
 - a) (5 marks) $\sqrt{x} = 12 x;$
 - b) (5 marks) $3^x + 3^{3-x} = 12$.
- 9. a) (2 marks) Which of the following two equations is an example of exponential growth, and which is an example of exponential decay? (Justify your answer.)

$$p(t) = 100(1.01)^t,$$
 $q(t) = 50(0.75)^t.$

- b) (2 marks) Is doubling time associated with exponential growth, or with exponential decay? How about half-life, is it associated with exponential growth or with exponential decay?
- c) (6 marks) Using the values for the ln function given below, estimate the half-life and doubling times (as appropriate) corresponding to the two equations of part a). You may assume that t is measured in years (\cong denotes "approximately equal.")

$\ln 200 \cong 5.3$	$\ln 100 \cong 4.6$	$\ln 50 \cong 3.9$	$\ln 25 \cong 3.2$
$\ln 1.01 \cong 0.01$	$\ln 0.75 \cong -0.3$	$\ln 2 \cong 0.7$	$\ln(1/2) \cong -0.7$

10. (10 marks) Fill in all the blanks in the following table.

$\sin t$	$\cos t$	$\sin(t+\pi)$	$\cos(t+\pi)$	$\sin(\pi - t)$	$\tan t$	$\sec t$
$\sqrt{3}/2$	-1/2					
	3/5	4/5				

- 11. (10 marks) Prove that $\sec t \sin t \tan t = \cos t$ is an identity.
- 12. Find the value of each of the following:
 - a) (5 marks) $\cos^{-1}(\sin(-\pi/3));$
 - **b)** (5 marks) $\sin(\cos^{-1}(4/5))$.