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Abstract

In [Iha86b], Ihara constructs a universal cocycle

Gal
(
Q/Q

)
−→ Zp[[t0, t1, t∞]]/ ((t0 + 1)(t1 + 1)(t∞ + 1)− 1)

arising from the action of Gal
(
Q/Q

)
on certain quotients of the Jacobians

of the Fermat curves

xp
n

+ yp
n

= 1

for each n ≥ 1. This thesis gives a different construction of part of Ihara’s

cocycle by considering the universal deformation of certain two-dimensional

representations of Π
Q

, where Π
Q

is the algebraic fundamental group of

P
1(Q)\{0, 1,∞}. More precisely, we determine, with and without certain de-

formation conditions, the universal deformation ring arising from a residual

representation

ρ̄ : Π
Q
−→ GL2(Fp).

Bely̆ı’s Rigidity Theorem is used to extend each determinant one universal

deformation to a representation of ΠK , where K is a finite cyclotomic exten-

sion of Q(µp∞). For a particular ρ̄, we give a geometric construction of one

such extended universal deformation ρ, and show that part of Ihara’s cocycle

can be recovered by specializing ρ at infinity.
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Résumé

Dans [Iha86b], Ihara construit un cocycle universel

Gal
(
Q/Q

)
−→ Zp[[t0, t1, t∞]]/ ((t0 + 1)(t1 + 1)(t∞ + 1)− 1)

provenant de l’action de Gal
(
Q/Q

)
sur certains quotients des jacobiennes

des courbes de Fermat

xp
n

+ yp
n

= 1

pour chaque n ≥ 1. Cette thèse présente une construction différente d’un

cas particulier du cocycle d’Ihara en considérant la déformation universelle

de certaines représentations de dimension deux de Π
Q

, où Π
Q

est le groupe

fondamental de P1(Q) \ {0, 1,∞}. Plus précisement, nous décrivons, avec et

sans certaines conditions de déformation, l’anneau de déformation universelle

provenant d’une représentation residuelle

ρ̄ : Π
Q
−→ GL2(Fp).

Le théorème de rigidité de Bely̆ı est utilisé pour étendre chaque déformation

universelle de déterminant un à une représentation du groupe ΠK , où K est

une extension cyclotomique de degré fini de Q(µp∞). Pour un ρ̄ particulier,

une construction géométrique d’une de ces déformations universelles étendues

ρ est fournie. Ceci permet de récupérer un cas particulier du cocycle d’Ihara

par spécialisation de ρ à l’infini.
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1 Introduction

One approach to studying the absolute Galois group GQ = Gal
(
Q/Q

)
has

been via its canonical representation in the outer automorphism group of

the algebraic fundamental group Π
Q

of P1(Q) \ {0, 1,∞}. Let M denote the

maximal algebraic extension of Q(t) unramified outside t = 0, 1,∞. Conju-

gating in Gal (M/Q(t)) by a lift of γ ∈ GQ gives rise to an automorphism of

Π
Q

whose class modulo the group of inner automorphisms depends only on

γ. Thus GQ acts on Π
Q

= Gal
(
M/Q(t)

)
as a group of outer automorphisms,

and we obtain a representation

φ : GQ −→ Out
(
Π
Q

)
.

By a theorem of Bely̆ı, φ is injective; as a result, studying the full represen-

tation φ seems to be too difficult. However, as a first step in this direction,

Ihara considered, for each prime p, the representation

ψ : GQ −→ Out (F/F ′′) ,

where F denotes the maximal pro-p quotient of Π
Q

, and F ′′ = [[F ,F ], [F ,F ]]

denotes the double commutator subgroup of F . We define a Zp-algebra A

by

A = Zp[[t0, t1, t∞]]
/

((t0 + 1)(t1 + 1)(t∞ + 1)− 1) .
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Letting χp : GQ −→ Z
×
p denote the p-cyclotomic character, GQ acts as

Zp-algebra automorphisms on A by

γ · (1 + ti) = (1 + ti)
χp(γ)

for each γ ∈ GQ, and each i = 0, 1,∞. In [Iha86b], Ihara shows that ψ is

encoded by a cocycle

F : GQ −→ A×.

For each n, F describes in a precise way the action of GQ(µpn ) on the p-adic

Tate module of the primitive quotients of the Jacobian of the Fermat curve

Fn : xp
n

+ yp
n

= 1 (see Theorem 5.4).

Let r : A −→ Zp[[T ]] be the Zp-algebra homomorphism which maps t0

and t1 to T . In this paper, we describe a new construction of r ◦ F for each

odd p, obtained via deformation theory of two-dimensional representations

of Π
Q

and the rigidity method of Bely̆ı, Matzat, and Thompson.

We begin in Chapter 2 by considering deformations of arbitrary absolutely

irreducible residual representations

ρ̄ : Π
Q
−→ GL2(Fp).

First we consider general deformations, then deformations subject to certain

conditions; namely, the condition of having determinant equal to one, as

well as certain “ordinariness” conditions combined with this determinant

condition (see §2.6 for precise definitions). In each case, we determine the
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universal deformation ring, which is a power series ring with coefficients

in Zp, where the number of parameters depends only on the deformation

conditions (see Theorems 2.27 to 2.31). In particular, let σ0, σ1, σ∞ ∈ Π
Q

be topological generators of inertia groups above t = 0, 1,∞ respectively,

satisfying σ0σ1σ∞ = 1; then if ρ̄ has determinant one and is {σ0, σ1}-ordinary,

the {σ0, σ1}-ordinary determinant one universal deformation ring of ρ̄ is the

power series ring Zp[[T ]].

The arithmetic content of the various determinant one universal deforma-

tions (Runiv, ρuniv) of Chapter 2 arises in Chapter 3 by means of rigidity. In

order to use Bely̆ı’s Rigidity Theorem (Theorem 3.5) to extend these universal

deformations, we study rigidity in GL2(R), where R is a local unique fac-

torization domain, proving in particular that
(
ρuniv(σ0), ρuniv(σ1), ρuniv(σ∞)

)
is rigid in GL2(Runiv) (see Theorem 3.10). This result allows us to extend

each representative of ρuniv to a representation of ΠK(t) := Gal (M/K(t)),

where K is a cyclotomic extension of Q(µp∞) of degree at most p2− 1 which

depends on ρ̄ (see Theorem 3.12).

In Chapter 4, we fix the residual representation ρ̄ to be the representation

describing the action of Π
Q

on the p-torsion points of the Legendre family

EL of elliptic curves given by

EL : y2 = x(x− 1)(x− t).

In this case, ρ̄ is {σ0, σ1}-ordinary, and the extension theorem of Chapter 3

shows that any representative of the {σ0, σ1}-ordinary universal deformation
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of ρ̄ can be extended to a representation

ρ : ΠQ(µp∞ ) −→ GL2 (Zp[[T ]]) .

Let µpn be the group of pnth roots of unity in Q, and let Zp[µpn ] be the

corresponding group ring. We construct ρ as the inverse limit of the repre-

sentations

ρn : ΠQ(µp∞ ) −→ GL2(Zp[µpn ])

associated to the curves Cn/Q(t) given by

Cn : y2 = x
(
x2pn + (4t− 2)xp

n

+ 1
)
,

where the action of µpn on Cn is given by ζn · (x, y) = (ζnx, ζ
pn+1

2
n y) for any

primitive pnth root of unity ζn. In order to obtain a detailed understanding

of each ρn, we make use of Mumford’s uniformization (Theorem 4.11) of

Jacobians of curves C/L having a specific reduction type, where L is a field

which is complete with respect to a non-archimedean valuation. We also use a

general theorem of Katz (Theorem 4.31) which gives a geometric construction

of any representation

κ : Π
Q
−→ GL2 (Qp(ζn))

for which (κ(σ0), κ(σ1), κ(σ∞)) is rigid.

Finally, we show in Chapter 5 how to specialize ρ at∞ so as to obtain the

representation r ◦ F (see Theorem 5.7). To prove that these representations
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are equal, we use the geometric construction of Chapter 4 to show that

the given specialization ρ∞ of ρ describes the action of GQ(µp∞ ) on certain

quotients of the Jacobian Jn of the Fermat curve Fn. This property together

with the corresponding property of r◦F implies that r◦F is a direct summand

of ρ∞.

This thesis is comprised of a combination of known and original results.

Whenever possible, I have listed a source for known results. The main re-

sults of Chapter 2, namely Theorem 2.27 and the results contained in §2.6,

may be known to some people, but, to my knowledge, have not previously

been written down. The theorems of §§3.3 and 3.4 are original, as are all

results appearing after Proposition 4.25 except those that are clearly marked

otherwise.
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2 Deformation Theory of Π
Q

2.1 Profinite Groups and Infinite Galois Theory

Throughout the sequel, we will be working extensively with Galois groups of

infinite Galois extensions. In this section, we present the basic theory of such

extensions, and show how profinite groups arise naturally as Galois groups

in this context.

Let (I,≤) be a directed set, that is, ≤ is a partial order on I such that

for each i, j ∈ I, there is some k ∈ I such that i ≤ k and j ≤ k.

Definition 2.1 A directed system of groups (Gi, (φji)) is a collection of

groups {Gi}i∈I indexed by I, together with homomorphisms φji : Gj −→ Gi

for each i ≤ j such that φii = IdGi and φki = φji ◦ φkj for i ≤ j ≤ k.

Given a directed system of groups (Gi, (φji)), a group G together with

homomorphisms gi : G −→ Gi for each i ∈ I will be called a commuting

system above (Gi, (φji)) if the diagrams

G
gj

~~~~~~~~~
gi

��@@@@@@@@

Gj
φji

// Gi

commute for all i ≤ j.

Proposition 2.2 Given a directed system of groups (Gi, (φji)), there is a

commuting system (G, (gi)) above (Gi, (φji)) satisfying the following universal

property : given any commuting system (H, (fi)) above (Gi, (φji)), there exists
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a unique homomorphism f : H −→ G such that the diagram

H

fj





f
�� fi

��

G
gj

~~}}}}}}}
gi

  @@@@@@@@

Gj
φji

// Gi

commutes for all i ≤ j.

Proof: Take G to be the set of all sequences of elements of {Gi}i∈I compat-

ible under the maps φji; that is

G =

{
(σi)i∈I ∈

∏
i∈I

Gi : σi ∈ Gi, φji(σj) = σi for all i ≤ j

}
.

Then G is a subgroup of
∏
i∈I
Gi and satisfies the given universal property (see

[Mor96], App. C, Proposition 4.2 for details). �

Remark: By the usual argument for universal objects, (G, (gi)) is unique

up to unique isomorphism (see, e.g., [Lan93], p.57). We write G = lim←−
i∈I

Gi,

and call (G, (gi)) the inverse limit of (Gi, (φji)).

By the same construction, inverse limits exist in the categories of rings,

modules, and topological groups, among others.

Definition 2.3 A profinite group is a group which can be expressed as the

inverse limit of a directed system of finite groups. A profinite group is said

to be procyclic if it can be expressed as the inverse limit of a directed system

of finite cyclic groups.

Given a profinite group G = lim←−Gi (where each Gi is finite), we may view

13



G as a subgroup of the direct product
∏
i∈I
Gi as in the proof of Proposition 2.2

above. Giving each Gi the discrete topology, we may define a topology on

G by taking the topology induced from the product topology on
∏
i∈I
Gi. This

definition gives G the structure of a topological group, and plays an essential

role in the theory of infinite Galois extensions. For more on profinite groups,

see [Sha72].

Consider an infinite Galois extension L/K. Let G = Gal (L/K). Given

any finite Galois extension M/K contained in L, the group GM := Gal (L/M)

is a normal subgroup of G of finite index [M : K], and G/GM is isomorphic

to Gal (M/K), as in the case of finite extensions. LetM denote the set of all

such intermediate fields M . Then M forms a directed set by inclusion, and

{G/GM}M∈M together with the canonical maps φM ′M : G/GM ′ −→ G/GM

whenever GM ′ ⊂ GM (i.e. whenever M ′ ⊃ M) forms a directed system of

finite groups. The canonical maps G −→ G/GM define a commuting system

above (G/GM , (φM ′M)), so by the universal property of the inverse limit, we

obtain a homomorphism φ : G −→ lim←−
M∈M

G/GM . In fact, φ is an isomorphism

(see [Lan93], Ch. VI, Theorem 14.1). Thus G is naturally a profinite group.

The topology on G is called the Krull topology. The Krull topology may also

be defined without realizing G as a profinite group by taking as a base for

open sets {σGM : σ ∈ G,M ∈M}.

As with finite Galois extensions, one defines the Galois correspondence

between the set of intermediate fields M between K and L, and the set of

subgroups H of G = Gal (L/K). This correspondence takes the intermediate

field M to the subgroup Gal (L/M), and the subgroup H to the intermediate

field LH consisting of those elements of L fixed pointwise by H. In the case
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of infinite Galois extensions, not every subgroup of G arises as Gal (L/M) for

some intermediate field M . However, the Krull topology on G allows us to

identify which subgroups correspond to intermediate fields, in a way which

is made precise by the Fundamental Theorem of Infinite Galois Theory:

Theorem 2.4 The Galois correspondence defines an inclusion-reversing bi-

jection between the set of closed subgroups of G and the set of intermedi-

ate fields between K and L. Moreover, a closed subgroup H ⊂ G is normal

if and only if the corresponding extension LH/K is Galois, in which case

Gal
(
LH/K

) ∼= G/H, the isomorphism being one of topological groups if we

give G/H the quotient topology.

Outline of Proof: The main observation is that given any subgroup H ⊂ G,

Gal
(
L/LH

)
= H, where H denotes the closure of H in G with respect to

the Krull topology. This observation together with the usual fundamental

theorem of Galois theory reduces the proof to verifying certain details, which

may be found in [Mor96], Ch. IV, §17. �

Given any group G, let N denote the set of all normal subgroups of G

of finite index. Then N is naturally a directed set with respect to inclusion,

and {G/N}N∈N together with the canonical homomorphisms forms a directed

system of finite groups.

Definition 2.5 For any group G, the profinite group

Ĝ := lim←−
N∈N

G/N

is called the profinite completion of G.
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The profinite completion of a group is indeed a topological completion in

the usual sense; it is possible to define Cauchy sequences in G with respect

to a directed set of normal subgroups, in which case Ĝ is the completion of

G with respect to these sequences. See [Lan93], Ch. I, §10 for details.

It is often useful to consider the subset Np of N consisting of all normal

subgroups of G of p-power index, where p is a fixed prime. In this case,

lim←−
N∈Np

G/N is called the pro-p completion of G. A collection of elements {γi}i∈I

of a profinite group G is said to topologically generate G if the subgroup of

G generated by {γi}i∈I is dense in G. Thus, for example, if Ĝ is the profinite

completion of a group G, and {γi}i∈I generates G, then viewing each γi as an

element of Ĝ via the natural map G −→ Ĝ, the system {γi}i∈I topologically

generates Ĝ.

2.2 The Algebraic Fundamental Group

In this section, we give an explicit description of the group structure of

Gal
(
K/Q(t)

)
, where K is the maximal algebraic extension of the function

field Q(t) ramified only at a fixed finite set of places.

Given fields K and F , and a place φ : K −→ F ∪ {∞}, the set φ−1(F )

of finite elements under φ is a local subring R of K with maximal ideal

p = φ−1(0). We call R the valuation ring corresponding to φ, and p its

valuation ideal. If V/K is a variety with function field K(V ), one may define

a place φP : K(V ) −→ K ∪ {∞} for each point P ∈ V by φP (f) = f(P ),

where we let f(P ) = ∞ if f is not defined at P . In this case, the valuation

ideal of φP is also called the valuation ideal corresponding to P .

Let L/K be a (possibly infinite) Galois extension. Let p be a valuation
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ideal of K, and suppose that p̂ is a valuation ideal of L lying above p, with

corresponding valuation ring A ⊂ L.

Definition 2.6 The group

D
(
p̂/p
)

:= {σ ∈ Gal (L/K) : σ(p̂) = p̂}

is called the decomposition group of p̂/p. The inertia group I
(
p̂/p
)

of p̂/p

is the subgroup of D
(
p̂/p
)

given by

I
(
p̂/p
)

:= {σ ∈ Gal (L/K) : σ(a) ≡ a mod p̂ for all a ∈ A}.

We say that p̂ is unramified over p if I
(
p̂/p
)

= 1.

If every valuation ideal of L lying above p is unramified over p, then we say

that p is unramified in L. We will also say that a place φ of K is unramified

in L if the valuation ideal corresponding to φ is unramified in L.

Let k be an algebraically closed subfield of C. Let P1, . . . , Pr be distinct

points in P1(k), and p1, . . . , pr their corresponding valuation ideals in k(t).

Let k(t)S denote the maximal algebraic extension of k(t) unramified outside

S = {p1, . . . , pr}. Give P1(C) the topology of the Riemann sphere, and choose

a point P ∈ P1(C)\{P1, . . . , Pr}. Let Π be the topological fundamental group

π1(P1(C) \ {P1, . . . , Pr}, P ) ∼= 〈γ1, . . . , γr | γ1 · · · γr = 1〉.

Theorem 2.7 The extension k(t)S/k(t) is Galois and Gal (k(t)S/k(t)) is

isomorphic to the profinite completion Π̂ of Π. Moreover, there are gener-

ators γ1, . . . , γr of Π such that for each i = 1, . . . , r, the image of γi in

17



Gal (k(t)S/k(t)) topologically generates the (procyclic) inertia group I
(
p̂i/pi

)
of some valuation ideal p̂i above pi.

Outline of Proof: First assume k = C. Then there exists a universal cover-

ing u : U −→ P
1(C) \ {P1, . . . , Pr}. Using the Riemann Existence Theorem,

one may show that finite Galois extensions N/k(t) unramified outside S are

in bijective correspondence with finite coverings p : Y −→ P
1(C) of com-

pact Riemann surfaces unramified outside {P1, . . . , Pr} in such a way that

the surface Y corresponds to its function field N/k(t) (see [Vol96], Theorem

5.14). Moreover, Gal (N/k(t)) is isomorphic to the group Deck(p) of deck

transformations of the covering p. Now p̃ := p|Y \p−1({P1,... ,Pr}) is a covering of

P
1(C) \ {P1, . . . , Pr}, and Deck(p) ∼= Deck(p̃). Using the universal covering

u above, one sees that such coverings p̃ are in bijective correspondence with

normal subgroups H of Π of finite index in such a way that Deck(p̃) ∼= Π/H.

Thus, letting Nk,S = {N ⊂ k(t)S : N/k(t) is finite,Galois}, we have

Gal (k(t)S/k(t)) ∼= lim←−
N∈Nk,S

Gal (N/k(t))

∼= lim←−
HCΠ

finite index

Π/H = Π̂.

This proves the first statement when k = C.

To prove the second statement when k = C, let Y and N be as above,

fix a point P̂ ∈ u−1(P ), and let P̃ ∈ Y be the image of P̂ . It is possible to

choose lifts P̃i ∈ Y of each Pi, and di ∈ Deck(p) so that di(P̃i) = P̃i and

d1 ◦ · · · ◦ dr = Id. Let p̄i be the valuation ideal in N corresponding to P̃i.

Let σi ∈ Gal (N/k(t)) be the automorphism satisfying σi

(
f(P̃ )

)
= di(P̃ ) for
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f ∈ N . Then σi generates I (p̄i/pi), and the various σi obtained in this way are

compatible as N varies over finite extensions of k(t). Viewing Gal (k(t)S/k(t))

as the inverse limit lim←−
N∈Nk,S

Gal (N/k(t)) and taking γi = (σi)N∈Nk,S gives

generators of Gal (k(t)S/k(t)) satisfying the assertions of the theorem with

p̂i =
⋃

N∈Nk,S
p̄i. This proves the theorem when k = C.

For any algebraically closed subfield k of C, let S ′ denote the set of valu-

ation ideals in C(t) corresponding to the points P1, . . . , Pr ∈ P1(k) ⊂ P1(C).

One may show that the assignment N 7−→ N ⊗k C defines a bijection

Nk,S −→ NC,S′ . This bijection gives rise to an isomorphism

Gal (k(t)S/k(t)) ∼= lim←−
N∈Nk,S

Gal (N/k(t))

∼= lim←−
N⊗kC ∈NC,S′

Gal (N ⊗k C/C(t))

∼= Gal (C(t)S/C(t)) ,

as desired. See [MM99], Ch. I, Theorems 1.3, 1.4, and 2.2 for full details. �

Remark: The above theorem is true for any algebraically closed field k of

characteristic 0. We will only need the result when k = Q.

Theorem 2.7 is part of a much more general connection between Galois

groups over function fields and topological fundamental groups. Let k be as

above, and X/k a smooth projective curve of genus g. Given distinct points

P1, . . . , Pr ∈ X(k), the maximal algebraic extension k(X)S of the function

field k(X) of X unramified outside the set S of valuation ideals of P1, . . . , Pr

is Galois. The group Gal (k(X)S/k(X)) is called the algebraic fundamental

group of X \ {P1, . . . , Pr}, and is denoted by πalg
1 (X \ {P1, . . . , Pr}). There
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is, up to homeomorphism, a unique compact connected oriented surface Xg

of genus g (see, e.g. [Arm97], §7.4, 7.5). Theorem 2.7 may be generalized to

this context as follows: let Q1, . . . , Qr ∈ Xg be distinct points, and choose

any point Q ∈ Xg \ {Q1, . . . , Qr}; then πalg
1 (X \ {P1, . . . , Pr}) is isomorphic

to the profinite completion of π1 (Xg \ {Q1, . . . , Qr}, Q). See [Ser92], §6.3 for

more details.

2.3 The m-adic Topology

This section collects some results concerning rings with which we will be

working below. All rings will be assumed to be commutative.

Definition 2.8 A topological ring R is a ring together with a topology on

its underlying set such that R forms a topological group under its addition,

and the multiplication law R×R −→ R is continuous.

Let (R,m) be a local noetherian ring. There is a natural topology on R,

called the m-adic topology, obtained by taking {mn}n∈N to be a fundamental

system of neighbourhoods of 0 (and thus defining a fundamental system of

neighbourhoods of each point by translation). This topology gives (R,m)

the structure of a topological ring. Since R is noetherian,
⋂
n∈N

mn = {0} (see

[Lan93], Ch. X, Corollary 5.7); thus the m-adic topology is Hausdorff. This

topology is precisely that obtained from the metric d on (R,m) given by

d(r, s) =

0 if r = s

e−v(r−s) otherwise

(2.9)
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where v : R \ {0} −→ N, called the m-adic valuation on R, is given by

v(r) = max{n ∈ N : r ∈ mn}. Thus we may consider Cauchy sequences

and convergence in R. We say that (R,m) is complete if R is complete with

respect to the metric d.

Proposition 2.10 Given (R,m) as above, there exists a complete local ring

(R̂, m̂) together with a continuous injective homomorphism φ : R −→ R̂ sat-

isfying the following universal property : given any complete local ring (A, n)

together with a continuous homomorphism ψ : R −→ A, there is a unique

continuous homomorphism ψ̂ : R̂ −→ A such that

R
φ //

ψ ��>>>>>>>> R̂

ψ̂
��
A

commutes.

Proof: See [GS71], §2. �

The completion R̂ of R may be identified with lim←−
n∈N

R/mn, where the inverse

limit is taken with respect to the canonical maps. In this case, φ is the natural

injection R −→ R̂. Moreover, m̂ is the ideal generated by φ(m) and R is itself

complete if and only if φ is an isomorphism. For details, see [GS71], §2.

Example 2.11 Let R be the localization of Z at a prime ideal (p), so that

(R, pR) is a local ring. The completion of (R, pR), denoted Zp, is called the

ring of p-adic integers. By the above remark, Zp is isomorphic to lim←−
n∈N

Z/pnZ.

The quotient field Qp of Zp is called the field of p-adic numbers.

Example 2.12 Let k = Fpn denote the finite field of order pn. The ring

W (k) of Witt vectors over k is the integral closure of Zp in the splitting field
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of xp
n − x over Qp. The ring W (k) is a complete local ring with residue field

k. In particular, W (Fp) is equal to Zp, and if p is odd, W (Fp2) is equal to

Zp[
√
α], where α ∈ Z×p is not a square in Zp. See [Ser68], Ch. II, §6 for details.

Example 2.13 Let (A,mA) be a complete noetherian local ring, and let R

be the localization of A[t1, . . . , tn] at the maximal ideal m := (mA, t1, . . . , tn).

The completion of (R,mR) is isomorphic to the ring A[[t1, . . . , tn]] of formal

power series in n variables with coefficients in A.

Proposition 2.14 Let R be a noetherian ring. Then the ring R[[t1, . . . , tn]]

is also noetherian.

Proof: See [Lan93], Ch. IV, Theorem 9.5 and its Corollary. �

Theorem 2.15 (Hensel’s Lemma) Let (R,m) be a complete local noethe-

rian ring with residue field k, and let f(x) ∈ R[x] be a monic polynomial.

Suppose that a ∈ k is a nonrepeated root of the reduction of f(x) mod m.

Then f(x) has a unique root α ∈ R such that α reduces to a mod m.

Proof: See [Lan93], Ch. XII, Corollary 7.4. �

2.4 Deformation Theory

Fix a prime p. Let Π be a group having the property that its pro-p completion

is topologically finitely generated. Let k be a finite field of characteristic p,

and fix an absolutely irreducible continuous representation ρ̄ : Π −→ GLn(k),

which will be called the residual representation. Let (R,m) be a complete local

noetherian W (k)-algebra with residue field k, where W (k) is the ring of Witt

22



vectors of k. A lift of ρ̄ to R is a continuous homomorphism ρ : Π −→ GLn(R)

such that the diagram

Π
ρ //

ρ̄ ##FFFFFFFFFF GLn(R)

r

��
GLn(k)

commutes, where r is the map which takes a matrix to its entrywise reduction

mod m. We define an equivalence relation ∼, called strict equivalence, on the

set of lifts of ρ̄ to R by ρ1 ∼ ρ2 if there exists an M ∈ GL◦n(R) := ker(r)

satisfying ρ1 = Mρ2M
−1 (that is, ρ1(γ) = Mρ2(γ)M−1 for all γ ∈ Π). A

deformation of ρ̄ to R is a strict equivalence class [ρ] of lifts of ρ̄ to R. Note

that [ρ̄] = {ρ̄} and whenever M ∈ GL◦n(R), conjugating a lift ρ of ρ̄ by M

gives another lift of ρ̄. We will often write ρ in place of [ρ] when there is no

risk of confusion.

Define a category DEF(ρ̄) whose objects are pairs (R, [ρ]), where R is

a complete local noetherian W (k)-algebra with residue field k, and [ρ] is a

deformation of ρ̄ to R. A morphism from (R1, [ρ1]) to (R2, [ρ2]) in DEF(ρ̄)

is a continuous homomorphism φ : R1 −→ R2 reducing to the identity on k,

such that for some ρ′2 ∈ [ρ2], the diagram

Π
ρ1 //

ρ′2 ##GGGGGGGGGG GLn(R1)

φ̃
��

GLn(R2)

commutes, where φ̃ denotes the map obtained by applying φ entrywise to

a given matrix. Using a result of Schlessinger which guarantees the repre-

sentability of functors satisfying certain criteria, Mazur proved the following

theorem:
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Theorem 2.16 (Mazur, 1989) There exists a universal element in the cat-

egory DEF(ρ̄); that is, there exists a pair (Runiv, ρuniv) ∈ DEF(ρ̄) such that

for each (R, ρ) ∈ DEF(ρ̄), there is a unique φ : Runiv −→ R such that

φ ∈ Mor (DEF(ρ̄)).

Proof: See [Maz89], §1.2. �

As usual, (Runiv, ρuniv) is well-defined up to unique isomorphism in the

category DEF(ρ̄). We call ρuniv the universal deformation of ρ̄. In [dL97],

Lenstra and de Smit give an explicit construction of Runiv in terms of gener-

ators and relations; however, their construction requires many more genera-

tors than are usually necessary, and is not very practical when considering

specific examples. In what follows, we will consider only the cases k = Fp or

Fp2 and n = 2.

Proposition 2.17 Let ρ̄ be a residual representation, and (Runiv, ρuniv) its

universal deformation. Then the entries of the elements of Imρuniv topologi-

cally generate Runiv.

Proof: Let S denote the complete subring of Runiv (topologically) generated

by the entries of the elements of Imρuniv. Then ρuniv maps to S, so the uni-

versal property of Runiv gives a morphism ι : Runiv −→ S in DEF(ρ̄). By the

definition of S, ι is surjective. Given (A, ρ) ∈ DEF(ρ̄), the universal property

of Runiv gives a morphism τ : Runiv −→ A in DEF(ρ̄), which restricts a mor-

phism on S. On the other hand, if τ1, τ2 : S −→ A are two such morphisms,

then τ1 ◦ ι, τ2 ◦ ι : Runiv −→ A are two such morphisms, and hence are equal.

Since ι is surjective, it follows that τ1 is equal to τ2, and therefore (S, ρuniv)

is universal in DEF(ρ̄), and ι is an isomorphism. �
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Let (R,mR) be a local noetherian W (k)-algebra.

Definition 2.18 The (Zariski) cotangent space of R is the k-vector space

t∗R := mR/(p,m
2
R). The (Zariski) tangent space tR of R is the dual space

Homk(t
∗
R, k) of the cotangent space of R.

Note that since R is noetherian, t∗R and tR are finite-dimensional vector

spaces, and hence are abstractly isomorphic.

Proposition 2.19 Let R and S be local noetherian W (k)-algebras, and let

f : R −→ S be a W (k)-algebra homomorphism reducing to the identity on k.

Then f induces a k-linear map f∗ : t∗R −→ t∗S which is surjective if and only

if f is surjective.

Proof: For each m ∈ mR, f(m) ∈ mS, so f restricts to an additive homo-

morphism f̄ : mR −→ mS/(p,m
2
S). Checking that f̄(p,m2

R) = 0, we obtain a

k-linear map f∗ : t∗R −→ t∗S.

Suppose now that f is surjective. Then f̄ : R −→ S/(p,m2
S) is surjective,

and hence f̄(mR) = mS/(p,m
2
S). Thus f∗ is surjective.

Conversely, suppose that f∗ is surjective. The reduction of f mod p

makes mS/pmS into an R/pR-module; thus f gives rise to an R/pR-module

homomorphism f+ : mR/pmR −→ mS/pmS, which reduces to a homomor-

phism f̄+ : mR/(p,m
2
R) −→ mS/(p,mRmS). Given α ∈ m2

S, write α = m1m2

with m1,m2 ∈ mS,m1 6∈ m2
S. Since f∗ is surjective, there is some m′1 ∈ mR

such that m1 = m′1 + m̃, where m̃ ∈ (p,m2
S), and hence α = (m′1 + m̃)m2.

Thus we have shown that

m2
S/pm

2
S ⊂ (mR/pmR)mS/pmS + m3

S/pm
3
S.
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By induction,

m2
S/pm

2
S ⊂ (mR/pmR)mS/pmS + mn

S/pm
n
S

for all n, which implies that m2
S/pm

2
S = (mR/pmR)mS/pmS since S is noethe-

rian. Thus f̄+ is surjective, and by a corollary of Nakayama’s lemma, f+ is

itself surjective (see [Lan93], Ch. X, Proposition 4.5). Viewing mR and mS

as W (k)-modules and applying Nakayama’s lemma shows that f(mR) = mS.

Every element of S can be expressed as λ+m with λ ∈ W (k) and m ∈ mS,

so this proves that f is surjective since f(W (k)) = W (k). �

2.5 The Universal Deformation

Let K be an algebraic extension of Q. Throughout the sequel, let

Π := Gal
(
̂K(t)/K(t)

)
,

where ̂K(t) denotes the maximal algebraic extension of K(t) unramified out-

side 0,1, and ∞. Fix a prime p, and let k be a finite field of characteristic p.

It follows from Theorem 2.7 that the pro-p completion of Π is topologically

finitely generated. Let ρ̄ : Π −→ GL2(k) be a residual representation.

Proposition 2.20 The universal deformation ring Runiv of ρ̄ is isomorphic

to a power series ring with coefficients in W (k).

Proof: By Proposition 2.14 and Examples 2.12 and 2.13 of §2.3, any power

series ring W (k)[[t1, . . . , td]] is a complete noetherian local ring. Writing R

for Runiv, let d denote the k-dimension of t∗R, and let x̄1, . . . , x̄d ∈ t∗R be a
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collection of elements which forms a basis for t∗R. Choose lifts x1, . . . , xd ∈ mR

of x̄1, . . . , x̄d respectively. Defining φ(ti) = xi for each i = 1, . . . , d gives rise

to a continuous W (k)-algebra homomorphism φ : W (k)[[t1, . . . , td]] −→ R

which reduces to the identity on k. Since the reductions t̄1, . . . , t̄d of t1, . . . , td

mod (p,mW (k)[[t1,... ,td]]) form a basis for t∗W (k)[[t1,... ,td]], and φ∗(t̄i) = x̄i for each

i, φ∗ is a k-vector space isomorphism. In particular, φ∗ is surjective, and

therefore, by Lemma 2.19, φ is itself surjective.

Fix elements σ0, σ1 of Π which generate Π topologically, and choose for

each i = 0, 1 a lift Mi ∈ φ̃−1
(
ρuniv(σi)

)
of ρuniv(σi), where φ̃ denotes the map

induced from φ. We obtain a deformation ρ : Π −→ GL2(W (k)[[t1, . . . , td]])

such that ρ(σi) = Mi for i = 0, 1, and φ̃◦ρ = ρuniv. By the universal property

of R, there is a map ψ : R −→ W (k)[[t1, . . . , td]] such that ρ = ψ̃ ◦ ρuniv. We

claim that ψ splits φ, that is, φ ◦ ψ = IdR. Given M ∈ Imρuniv, let σ ∈ Π be

a preimage of M ; then

φ̃ ◦ ψ̃(M) = φ̃ ◦ ψ̃(ρuniv(σ)) = φ̃(ρ(σ)) = ρuniv(σ),

so if r ∈ R is an entry of some M ∈ Imρuniv, then φ ◦ ψ(r) = r. Applying

Proposition 2.17 proves the claim. Now φ◦ψ = IdR implies that φ∗◦ψ∗ = Idt∗R ,

so ψ∗ is an isomorphism. In particular, ψ is surjective. Therefore, ψ is an

isomorphism, as desired. �

If Π were to be replaced with some other profinite group in Proposi-

tion 2.20, it would not necessarily be possible to lift ρuniv to W (k)[[t1, . . . , td]].

However, the proof that we have given works with only minor changes pro-

vided that the cohomology group H2(Π, ad(ρ̄)) is trivial, where ad(ρ̄) denotes
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the matrix ring M2(k) together with the action of Π given by

σ ·M = ρ̄(σ)Mρ̄(σ)−1

for each σ ∈ Π, M ∈ M2(k). Mazur showed moreover that the Krull dimen-

sion of Runiv/pRuniv is at least d1 − d2, where di = dimkH
i(Π, ad(ρ̄)), with

equality when d2 = 0 (see [Maz89], §1.6 and [Gou], p.50 for details). As we

shall see, H1(Π, ad(ρ̄)) is naturally isomorphic to tRuniv (as a k-vector space),

so Mazur’s result agrees with the choice of d in the proof of Proposition 2.20.

Fix a residual representation

ρ̄ : Π −→ GL2(Fp).

In order to determine Runiv(ρ̄) explicitly, it may be convenient to extend

scalars to Fp2 , and thus replace ρ̄ with ρ̄′, where ρ̄′ is obtained by composing

ρ̄ with the inclusion Fp ↪→ Fp2 . Let R′ be the universal deformation ring

corresponding to ρ̄′; by Proposition 2.20, R′ = W (Fp2)[[t1, . . . , td′ ]] for some

d′. We will show that Runiv = Zp[[t1, . . . , td′ ]], so that Runiv may be recov-

ered from R′. By Proposition 2.20, Runiv = Zp[[t1, . . . , td]] for some d, so it

suffices to show that d = d′. If we show that for any residual representation

%̄ : G −→ GL2(k), there is a k-vector space isomorphism

tRuniv(%̄)
∼= H1(G, ad(%̄)),
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then we have

d′ = dimFp2
H1(Π, ad(ρ̄′))

= dimFp2
H1(Π, ad(ρ̄)⊗Fp Fp2)

= dimFp2
H1(Π, ad(ρ̄))⊗Fp Fp2

= dimFpH
1(Π, ad(ρ̄)) = d,

as desired.

Let (Runiv, %univ) be the universal deformation of a residual representation

%̄ : G −→ GL2(k). The isomorphism tRuniv
∼= H1(G, ad(%̄)) arises naturally

through deformations of %̄ to the ring of dual numbers k[ε], where ε2 = 0.

First, there is a k-vector space isomorphism tRuniv
∼= HomW (k)(R

univ, k[ε]),

where HomW (k)(R
univ, k[ε]) consists of continuous W (k)-algebra homomor-

phisms reducing to the identity on k. Given φ ∈ HomW (k)(R
univ, k[ε]), and

r ∈ Runiv, let r̄ ∈ k denote the reduction of r mod mRuniv ; since φ reduces

to the identity on k, there is some φ′(r) ∈ k for which φ(r) = r̄+ φ′(r)ε. Re-

stricting φ′ to mRuniv gives an additive homomorphism whose kernel contains

(p,m2
Runiv), and thus φ′|m

Runiv
factors through a map φ′∗ : t∗Runiv −→ k which

is k-linear since φ is W (k)-linear. Furthermore, since φ is a W (k)-algebra

homomorphism, it is completely determined by φ′|m
Runiv

, so the correspon-

dence φ ←→ φ′∗ defines a bijection HomW (k)(R
univ, k[ε]) ←→ tRuniv which is

k-linear.

On the other hand, there is a natural k-vector space isomorphism

HomW (k)(R
univ, k[ε]) ∼= H1(G, ad(%̄)). (2.21)
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First, there is a bijective correspondence between HomW (k)(R
univ, k[ε]) and

the set of deformations of ρ̄ to k[ε], given by φ ←→ φ̃ ◦ ρuniv. For any lift

% : G −→ GL2(k[ε]) of %̄, let %′ : G −→ M2(k) denote the set-theoretic map

satisfying

%(g) = %̄(g)(1 + %′(g)ε)

for all g ∈ G. Then %′ is a 1-cocycle with values in ad(%̄), and a lift %1 of

%̄ is strictly equivalent to % if and only if %′1 differs from %′ by a cobound-

ary. Thus deformations of %̄ to k[ε] correspond to elements of H1(G, ad(%̄));

in fact, this correspondence defines the desired k-vector space isomorphism

HomW (k)(R
univ, k[ε]) ∼= H1(G, ad(%̄)), and therefore gives rise to the isomor-

phism tRuniv
∼= H1(G, ad(ρ̄)). In particular, when G = Π and ρ̄ = %̄, we may

conclude that if R′ = W (Fp2)[[t1, . . . , td]], then Runiv = Zp[[t1, . . . , td]].

To determine the value of d, we will single out a distinguished represen-

tative for each deformation [ρ] of ρ̄. We will need the following lemma:

Lemma 2.22 Suppose that p > 3. Then there exist elements σ0, σ1 ∈ Π

such that σ0, σ1 topologically generate Π, and ρ̄(σ0), ρ̄(σ1) each have distinct

eigenvalues in Fp2.

Proof: Let γ0, γ1 ∈ Π be any two elements which (topologically) gener-

ate Π. Extending scalars to Fp2 , the matrices ρ̄(γ0), ρ̄(γ1) have eigenvectors

v0, v1 respectively. Since ρ̄ is absolutely irreducible, v0, v1 form a basis for

F
2
p2 , and writing ρ̄(γ0), ρ̄(γ1) with respect to this basis gives ρ̄(γ0) = ( a b0 c )

and ρ̄(γ1) =
(
d 0
f g

)
, for some a, b, c, d, f, g ∈ Fp2 . Since ρ̄ is absolutely irre-

ducible, b and f are both nonzero. Rescaling v0,v1 (equivalently, conjugating
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by an appropriate diagonal matrix), we may assume that b = 1. Suppose first

that only one of ρ̄(γ0) or ρ̄(γ1) has distinct eigenvalues. Then without loss of

generality, we have d 6= g. Now ρ̄(γ0γ1) has characteristic polynomial

f(X) = X2 − (ad+ f + ag)X + a2dg,

which has a repeated root if and only if
(
ad+f+ag

2

)2
= a2dg (since p 6= 2).

Similarly, ρ̄(γ0γ
−1
1 ) has a repeated eigenvalue if and only if

(
ad+ag−f

2

)2
= a2dg.

In particular, if both ρ̄(γ0γ1) and ρ̄(γ0γ
−1
1 ) have repeated eigenvalues, then

(ad + ag − f)2 = (ad + f + ag)2; expanding gives d = −g since a 6= 0

and f 6= 0. Also, the equalities
(
ad+f+ag

2

)2
= a2dg and d = −g imply that

f 2 = −4a2d2. If ρ̄(γ0γ1) and ρ̄(γ0γ
−1
1 ) both have repeated eigenvalues, then

a similar calculation shows that ρ̄(γ2
0γ1) has a repeated eigenvalue if and

only if f 2 = −a2d2, which is impossible when p 6= 3 since f 2 = −4a2d2,

a 6= 0 and d 6= 0. Similarly, ρ̄(γ3
0γ1) has a repeated eigenvalue if and only if

9f 2 = −4a2d2, which is impossible when p 6= 2 since f 2 = −4a2d2. Therefore,

at least one of the pairs (γ0γ1, γ1), (γ0γ
−1
1 , γ1), or (γ2

0γ1, γ
3
0γ1) gives the desired

(σ0, σ1).

Suppose now that ρ̄(γ0), ρ̄(γ1) both have repeated eigenvalues. Without

loss of generality, we may assume that ρ̄(γ0) = ( a 1
0 a ) and ρ̄(γ1) = ( b 0

c b ), for

some a, b, c ∈ F×p2 . A simple calculation shows that ρ̄(γ0γ1) has a repeated

eigenvalue if and only if 4ab + c = 0. Similarly, ρ̄(γ1γ0γ1) has a repeated

eigenvalue if and only if 2ab+ c = 0, which cannot be the case when p 6= 2 if

ρ̄(γ0γ1) has a repeated eigenvalue. Therefore at least one of the pairs (γ0γ1, γ1)

or (γ1γ0γ1, γ1) generates Π and has the property that the image of its first

component has distinct eigenvalues. This reduces the problem to the case
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considered above, thus proving the lemma. �

Let F be a free module over a ring R, and M an endomorphism of F .

Definition 2.23 An element v ∈ F is said to be an eigenvector of M (with

eigenvalue λ) if there exists some λ ∈ R satisfying Mv = λv, and v may be

completed to a basis of F .

Remark: If R is a local ring, and F is finitely generated over R, then by

Nakayama’s lemma, v ∈ F may be completed to a basis of F if and only if

the reduction of v mod mR is nontrivial.

Proposition 2.24 Let (R,m) be a local ring with residue field k. Suppose

that M ∈ GL2(R) does not reduce to a scalar matrix mod m. Then M has

an eigenvector in R2 with eigenvalue λ ∈ R if and only if λ is a root of the

characteristic polynomial ch(M) of M .

Proof: Let M̄ denote the reduction of M mod m. Since M̄ is not a scalar

matrix, there is a basis {b̄1, b̄2} of k2 with respect to which M̄ has at least

three nonzero entries. Let b1,b2 ∈ R2 be elements reducing to b̄1, b̄2 mod m.

By Nakayama’s lemma, {b1,b2} forms a basis for R2. Let M = ( a bc d ) with

respect to {b1,b2}. Assume that a, b, d ∈ R× (if not, one may apply a similar

argument using the three entries of M which are units). Suppose that λ ∈ R

is a root of ch(M). Then we claim that v = b1 + (λ−a
b

)b2 is an eigenvector

of M having eigenvalue λ. Clearly v reduces to a nontrivial vector mod m.

Expanding gives Mv = λb1 +
(
c+ d(λ−a

b
)
)
b2. Since λ is a root of ch(M),

we have (a−λ)(d−λ)− bc = 0, and hence λ(λ−a
b

) = c+d(λ−a
b

). Substituting

into the above expression for Mv proves the claim.
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Conversely, suppose that v ∈ R2 is an eigenvector of M with eigenvalue

λ ∈ R. By Nakayama’s lemma, there is a vector v′ ∈ R2 such that {v,v′}

forms a basis for R2. With respect to this basis, M = ( λ b
0 d ) for some b, d ∈ R.

Thus ch(M) = (X − λ)(X − d), so λ is indeed a root of ch(M). �

Conjugating ρ̄ only affects ρuniv by conjugation, for if M ∈ GL2(Fp), then

choosing any lift M̃ ∈ GL2(Runiv) of M , the deformation (Runiv, M̃ρunivM̃−1)

is the universal deformation of Mρ̄M−1. Thus in order to determine Runiv,

we are free to alter ρ̄ by changing to any basis of F2
p. Let σ0, σ1 be as in

Lemma 2.22; since σ0, σ1 topologically generate Π, the residual representa-

tion ρ̄ is completely determined by ρ̄(σ0), ρ̄(σ1). Extending scalars to Fp2 ,

we may assume (as in the proof of Lemma 2.22) that ρ̄(σ0) =
(
a0 1
0 d0

)
and

ρ̄(σ1) =
(
a1 0
c1 d1

)
for some a0, d0, a1, c1, d1 ∈ F×p2 satisfying a0 6= d0 and a1 6= d1.

Fix lifts α0, δ0, α1, η1, δ1 of a0, d0, a1, c1, d1 respectively to W (Fp2). The follow-

ing lemma will suggest a candidate for ρuniv:

Lemma 2.25 Let (A, [ρ]) be a deformation of ρ̄⊗Fp2. Then there is a unique

representative ρg ∈ [ρ] for which there exist m0,m1, n0, n1, n2 ∈ mA such that

ρg(σ0) =

α0(1 +m0) 1

0 δ0(1 +m1)


and ρg(σ1) =

α1(1 + n0) 0

η1(1 + n1) δ1(1 + n2)

 .

Proof: Let f(x) be the characteristic polynomial of ρ(σ0). Since the roots

a0, d0 of the reduction f̄(x) of f(x) mod mA are distinct, f(x) satisfies the

hypotheses of Hensel’s lemma, and therefore has a root λ0 ∈ A reducing to

33



a0 mod mA. By Proposition 2.24, ρ(σ0) has an eigenvector x0 ∈ A2 with

eigenvalue λ0. Similarly, ρ(σ1) has an eigenvector x1 ∈ A2 with eigenvalue

λ1 ∈ A such that λ1 reduces to d1 mod mA. Since ρ̄ is absolutely irreducible,

the reductions x̄0, x̄1 of x0,x1 mod mA are linearly independent; hence by

Nakayama’s lemma, {x0,x1} forms a basis for M . Let ρg : Π −→ GL2(A)

denote the homomorphism obtained by writing ρ with respect to this basis,

so that ρg(σ0) is upper-triangular and ρg(σ1) is lower-triangular. Rescaling

{x0,x1} if necessary, we may assume that ρg(σ0) = ( ∗ 1
0 ∗ ). Since λ0 reduces

to a0 and λ1 reduces to d1, and since ρg is conjugate to ρ, the reduction

of ρg mod mA is equal to ρ̄. Let B ∈ GL2(A) be such that ρg = BρB−1.

Since ρ̄ is absolutely irreducible, Schur’s lemma together with the fact that

ρ̄g = ρ̄ imply that B must reduce to a scalar matrix mod m. Multiplying B

by an appropriate scalar thus gives B ∈ GL◦2(A), so ρg ∈ [ρ]. This proves the

existence of ρg.

To prove uniqueness, suppose ρ′ ∈ [ρg] is also of the given form. Let

b0, b1, b2, b3 ∈ m be such that B =
(

1+b0 b1
b2 1+b3

)
satisfies ρ′ = BρgB

−1. In

particular, we have

ρ′(σ0) = Bρg(σ0)B−1 (2.26)

=
1

detB

(
∗ (1+b0)((1+b0)−α0(1+m0)b1+b1δ0(1+m1))

b2((α0−δ0)(1+b3)−b2) ∗

)
.

By assumption, the lower-left entry of ρ′(σ0) is zero, that is,

b2((α0 − δ0)(1 + b3)− b2) = 0.
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Since α0 − δ0 is a unit, so is (α0 − δ0)(1 + b3) − b2, and therefore b2 = 0.

Applying the same argument to the upper-right entry of ρ′(σ1) gives b1 = 0.

Putting b2 = b1 = 0 in (2.26) gives ρ′(σ0) = 1
(1+b0)(1+b3)

(
∗ (1+b0)2

0 ∗

)
, and hence

(1+b0)2

(1+b0)(1+b3)
= 1, which implies that b0 = b3, and therefore ρg = ρ′. �

Theorem 2.27 Suppose that p > 3 and let ρ̄, σ0, σ1, α0, δ0, α1, η1, and δ1

be as in Lemma 2.25. Then Runiv(ρ̄ ⊗ Fp2) = W (Fp2)[[t0, t1, u0, u1, u2]], and

the corresponding universal deformation ρuniv of ρ̄ ⊗ Fp2 is conjugate to the

deformation ρ given by

ρ(σ0) =

α0(1 + t0) 1

0 δ0(1 + t1)

 , ρ(σ1) =

α1(1 + u0) 0

η1(1 + u1) δ1(1 + u2)

 .

Moreover, Runiv(ρ̄) = Zp[[t1, . . . , t5]].

Proof: Given any deformation [ρ] of ρ̄ ⊗ Fp2 to A, choose ρg ∈ [ρ] as in

Lemma 2.25. Define a W (Fp2)-algebra homomorphism

φ : W (Fp2)[t0, t1, u0, u1, u2] −→ A

by φ(ti) = mi and φ(ui) = ni for each i, extended by W (Fp2)-linearity. By

Proposition 2.10, we may extend φ to a continuous homomorphism

φ : W (Fp2)[[t0, t1, u0, u1, u2]] −→ A.

In fact, φ is a morphism in DEF(ρ̄⊗Fp2). To show that φ is unique, suppose

that φ′ : W (Fp2)[[t0, t1, u0, u1, u2]] −→ A is another such morphism. Letting

φ′ also denote the induced map on the general linear groups, φ′(ρuniv(σ0)) and
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φ′(ρuniv(σ1)) are of the form given in Lemma 2.25; hence by the uniqueness

statement of Lemma 2.25, we have φ′(ρuniv(σi)) = ρg(σi) for i = 0, 1. This

implies that φ(ti) = φ′(ti) and φ(ui) = φ′(ui) for each i, and therefore φ = φ′,

as desired. The final statement now follows from the discussion preceding

Lemma 2.22. �

2.6 Conditions on Deformations

If the determinant of a given residual representation ρ̄ is 1 (that is, if the im-

age of ρ̄ is contained in SL2(k)), then it is natural to insist that deformations

of ρ̄ also have determinant 1. Accordingly, let DEF1(ρ̄) denote the subcat-

egory of DEF(ρ̄) consisting of only those objects (A, [ρ]) such that ρ has

determinant one. Mazur’s proof of the existence of the universal deformation

carries over to show that there is a universal object (Runiv
1 , ρuniv

1 ) in DEF1(ρ̄)

(see [Gou], p.68). In fact, imposing a fixed determinant on deformations of

ρ̄ is perhaps the simplest example of a “deformation condition”, that is, a

property of deformations which defines a subcategory of DEF(ρ̄) in which a

universal object is guaranteed to exist. See [Gou], Lecture 6 for a detailed

discussion of such conditions.

Theorem 2.28 Let notation be as in Theorem 2.27, and suppose that ρ̄ has

determinant one. Then Runiv
1 (ρ̄ ⊗ Fp2) = W (Fp2)[[t0, u0, u1]], and the corre-

sponding universal deformation ρuniv
1 of ρ̄⊗Fp2 is conjugate to the deformation
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ρ1 given by

ρ1(σ0) =

α0(1 + t0) 1

0 (α0(1 + t0))−1


and ρ1(σ1) =

α1(1 + u0) 0

η1(1 + u1) (α1(1 + u0))−1

 .

Moreover, Runiv
1 (ρ̄) = Zp[[t1, t2, t3]].

Proof: If (A, [ρ]) ∈ DEF1(ρ̄ ⊗ Fp2), then the representative ρg ∈ [ρ] of

Lemma 2.25 has determinant one, and hence δ0(1 + m1) = (α0(1 + m0))−1,

and δ1(1 + n2) = (α1(1 + n0))−1. Thus defining φ : Zp[[t0, u0, u1]] −→ A by

φ(t0) = m0, φ(u0) = n0, and φ(u1) = n1 gives a morphism in DEF1(ρ̄).

Uniqueness again follows from the uniqueness of ρg.

To obtain Runiv
1 (ρ̄) from Runiv

1 (ρ̄ ⊗ Fp2), one applies the same argument

that was used above for the usual universal deformation, with two minor

changes. First, one must choose the lift of ρuniv to W (k)[[t1, . . . , td]] in the

proof of Proposition 2.20 to have determinant one. Such a choice is possible

since the homomorphism φ : W (k)[[t1, . . . , td]] −→ Runiv reduces to the iden-

tity on k. Also, one must check that deformations of determinant one corre-

spond to cocycles of trace zero under the isomorphism (2.21). In other words,

tRuniv
1

∼= H1(Π, ad0(ρ̄)), where ad0(ρ̄) is the subgroup of ad(ρ̄) consisting of

the trace zero matrices. Thus replacing H1(Π, ad(ρ̄)) with H1(Π, ad0(ρ̄)), one

may apply the above argument to Runiv
1 , which gives the desired result. �

Given a residual representation ρ̄ : Π −→ GL2(k), suppose that for some

closed subgroup I ⊂ Π, the subspace of k2 consisting of all fixed points
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of ρ̄(I) has dimension one. A deformation ρ of ρ̄ to a ring R is said to be

I-ordinary if the submodule of R2 of fixed points of ρ(I) is a direct summand

of R2 of rank one. Note that the condition of being I-ordinary is preserved by

strict equivalence, and is therefore a well-defined property of deformations.

If I = 〈δ〉 for some δ ∈ Π, we will say that ρ is δ-ordinary. By essentially the

same argument that he used to prove the existence of the universal deforma-

tion, Mazur showed in his original paper [Maz89] that there is a universal

I-ordinary deformation whenever ρ̄ is itself I-ordinary. If ρ̄ has determinant

one, then there is a universal I-ordinary deformation of determinant one.

Throughout the following, all deformations will be assumed to have determi-

nant one.

Theorem 2.29 Let σ0, σ1 be topological generators of Π. For p 6= 2, let

ρ̄ : Π −→ SL2(Fp) be a residual representation which is σi-ordinary for

i = 0 or i = 1. Let Runiv
ord denote the (determinant one) σi-ordinary uni-

versal deformation ring. Then Runiv
ord = Zp[[t1, t2]].

Proof: By conjugating ρ̄ and interchanging σ0 and σ1 if necessary, we may

assume that i = 0, and that ρ̄(σ0) = ( 1 ∗
0 1 ). Moreover, every σ0-ordinary de-

formation ρ of ρ̄ has a representative satisfying ρ(σ0) = ( 1 ∗
0 1 ). Once again, we

may apply the same argument as for Runiv above to show that Runiv
ord is a power

series ring with coefficients in W (k), except that we must lift ρuniv(σ0) to a

matrix of the form ( 1 ∗
0 1 ) and ρuniv(σ1) to a matrix of determinant one in the

proof of Proposition 2.20. Moreover, if Runiv
ord (ρ̄⊗ Fp2) = W (Fp2)[[t1, . . . , td]],

then Runiv
ord = Zp[[t1, . . . , td]]. This again follows from the above argument,

except that H1(Π, ad(ρ̄)) must be replaced by H1(Π, adσ0
0 (ρ̄)), where adσ0

0 (ρ̄)
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denotes the subgroup of ad0(ρ̄) consisting of those matrices whose kernel

contains the subspace of k2 fixed by ρ̄(σ0).

The last paragraph of the proof of Lemma 2.22 shows that we may assume

that σ1 has distinct eigenvalues (in Fp2) by replacing σ1 with σ1σ0 or σ0σ1σ0

if necessary. Thus without loss of generality, any σ0-ordinary deformation ρ

of ρ̄⊗ Fp2 to a ring R has a unique representative of the form ρ(σ0) = ( 1 1
0 1 )

and ρ(σ1) =
(
α+m1 0
β+m2 (α+m1)−1

)
for some m1,m2 ∈ mR, where α, β ∈ W (Fp2)

are fixed. An argument similar to that in the proof of Theorem 2.27 shows

that Runiv
ord (ρ̄⊗ Fp2) = W (Fp2)[[t1, t2]], where the corresponding universal de-

formation ρuniv
ord is given by ρuniv

ord (σ0) = ( 1 1
0 1 ) and ρuniv

ord (σ1) =
(
α+t1 0
β+t2 (α+t1)−1

)
.

Therefore, by the above remarks, Runiv
ord = Zp[[t1, t2]]. �

If ρ̄(σi) ∼
( −1 ∗

0 −1

)
, then by abuse of language we will also say that a

deformation ρ of ρ̄ is σi-ordinary if ρ(σi) ∼
( −1 ∗

0 −1

)
.

Corollary 2.30 Let σ0 and σ1 be as in Theorem 2.29. Suppose that for i = 0

or 1, ρ̄(σi) ∼
( −1 ∗

0 −1

)
. Then there is a universal σi-ordinary deformation

(Runiv
ord , ρ

univ
ord ), and Runiv

ord = Zp[[t1, t2]].

Proof: Without loss of generality, we may assume that i = 0. Given any de-

formation ρ of any residual representation ρ̄, let ρ− denote the deformation

given by ρ−(σ0) = −ρ(σ0) and ρ−(σ1) = ρ(σ1). Since ρ̄(σ0) ∼
( −1 ∗

0 −1

)
, we

have ρ̄−(σ0) ∼ ( 1 ∗
0 1 ). Since ρ̄ is absolutely irreducible, so is ρ̄−; hence by The-

orem 2.29, there is a universal σ0-ordinary deformation ρuniv
−ord corresponding

to ρ̄−, with Runiv
−ord = Zp[[t1, t2]]. The universal σ0-ordinary deformation of ρ̄

is given by (ρuniv
−ord)−. �

Let S ⊂ Π be a finite set. We say that a deformation ρ of ρ̄ : Π −→ GL2(k)

is S-ordinary if ρ is σ-ordinary for every σ ∈ S. Assuming that ρ̄ is itself
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S-ordinary, we once again obtain a universal deformation (Runiv
S−ord, ρ

univ
S−ord).

Theorem 2.31 Let Π be as above, σ0, σ1 topological generators of Π. Let

S = {σ0, σ1}, and suppose that ρ̄ : Π −→ SL2(Fp) is an S-ordinary residual

representation. Then Runiv
S−ord = Zp[[t]], and ρuniv

S−ord is conjugate to the defor-

mation ρ given by

ρ(σ0) = ±

1 1

0 1

 and ρ(σ1) = ±

 1 0

α + t 1


for some α ∈ Zp, where the sign of each ρ(σi) corresponds to the sign of the

eigenvalue ±1 of ρ̄(σi).

Proof: Conjugating ρ̄ if necessary and applying a similar argument to that

in the proof of Corollary 2.30, we may assume that ρ̄(σ0) = ( 1 1
0 1 ) and

ρ̄(σ1) = ( 1 0
a 1 ). Fix a lift α ∈ Zp of a. Any S-ordinary deformation ρ of ρ̄ to R

has a unique representative of the form ρ(σ0) = ( 1 1
0 1 ) and ρ(σ1) = ( 1 0

α+m 1 )

for some m ∈ mR. The same argument as for the universal deformations

above now gives the result. �
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3 Lowering the Field of Definition

3.1 The Cyclotomic Character

Let Q̂(t) denote the maximal algebraic extension of Q(t) unramified out-

side three places, each of which is fixed by Gal
(
Q(t)/Q(t)

)
, and let p0, p1, p2

denote the valuation ideals corresponding to these places. By Theorem 2.7,

there exist topological generators γ0, γ1, γ2 of inertia groups above p0, p1, p2

respectively, which topologically generate Π := Gal
(
Q̂(t)/Q(t)

)
, and satisfy

γ0γ1γ2 = 1. By the fundamental theorem of infinite Galois theory, Π is a nor-

mal subgroup of ΓQ := Gal
(
Q̂(t)/Q(t)

)
; thus ΓQ acts on Π by conjugation.

The action of σ ∈ ΓQ on Π is determined up to conjugation in Π by the

restriction σ̄ of σ to Q(t). Viewing σ̄ as an element of GQ via the natural

isomorphism Gal
(
Q(t)/Q(t)

) ∼= GQ, the action of σ on each γi is deter-

mined up to conjugation in Π by the action of σ̄ on the roots of unity in Q.

To make this explicit, we define the cyclotomic character χ as follows: let

Ẑ := lim←−
n∈N

Z/nZ, and fix a compatible system (ζn)n∈N of primitive nth roots

of unity ζn. Given σ̄ ∈ GQ, for each n ∈ N we have

σ̄(ζn) = ζχn(σ̄)
n

for some χn(σ̄) ∈ (Z/nZ)× which is independent of the choice of ζn. Moreover,

this action is compatible in the sense that whenever m|n, the natural map

Z/nZ −→ Z/mZ takes χn(σ̄) to χm(σ̄). Thus (χn(σ̄))n∈N ∈ Ẑ×, and we

define the cyclotomic character χ : GQ −→ Ẑ
× by χ(σ̄) = (χn(σ̄))n∈N. For

σ ∈ ΓQ, we will often write χ(σ) to mean χ(σ̄).
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Given any profinite group G = lim←−
i∈I

Gi, where each Gi is finite, there

is a natural way to define exponentiation in G by elements of Ẑ. Given

(gi)i∈I ∈ G, α = (αn)n∈N ∈ Ẑ, define (gi)
α := (g

αn(i)

i ) where n(i) = |Gi|. The

compatibility conditions on (gi) and on (αn) ensure that (g
αn(i)

i ) is indeed an

element of G.

Theorem 3.1 For each σ ∈ ΓQ and each i = 0, 1, 2,

γσi ∼ γ
χ(σ)
i ,

where ∼ denotes conjugacy in Π, and χ is the cyclotomic character.

Proof: The proof given here follows that of [MM99], Ch. I, Theorem 2.3. For

each i = 0, 1, 2, let p̂i be the valuation ideal of Q̂(t) such that γi generates

the inertia group Ii := I
(
p̂i/pi

)
. Since σ(pi) = pi for each i = 0, 1, 2, we have

Iσi = I
(
σ(p̂i)/pi

)
, and in particular γσi ∈ I

(
σ(p̂i)/pi

)
. Since Π acts transi-

tively on the primes above pi, there is some δ ∈ Π such that δ
(
σ(p̂i)

)
= p̂i,

and thus (γσi )δ ∈ Ii. The group Ii is generated by γi as a procyclic group, so

there is some α ∈ Ẑ such that (γσi )δ = γαi ; in particular, we have γσi ∼ γαi .

It remains to show that α = χ(σ). For each i = 0, 1, 2, let fi ∈ Q(t) be

an element which generates pi in its corresponding valuation ring. For each

i = 0, 1, 2, Q(t)(f
1/n
i )n∈N is an abelian extension of Q(t) contained in Q̂(t),

where we choose each f
1/n
i so that they are compatible in the sense that

(f
1/kn
i )k = f

1/n
i for all k, n ∈ N. We now fix some i = 0, 1, or 2. Since

Q(t)(f
1/n
i )n∈N

⋂
Q(t) = Q(t),
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there is some σ̃ ∈ ΓQ whose restriction to Q(t) is σ̄, and which fixes f
1/n
i for

all n. Now γi(fi) = fi, so γi(f
1/n
i ) is an nth root of fi in Q̂(t), and is therefore

of the form ζnf
1/n
i for some nth root of unity ζn. Moreover,

I
(

(f
1/n
i )

/
(fi)
)

= Gal
(
Q(t)(f

1/n
i )

/
Q(t)

)
is generated by the restriction of γi to Q(t)(f

1/n
i ), so ζn is a primitive nth

root of unity, and the various ζn obtained in this way are compatible under

the canonical maps. Since σ̃ restricts to σ̄, there is some δ ∈ Π such that

σ̃ = δσ, and hence γσ̃i ∼ γσi ∼ γαi . Therefore, the restrictions of γσ̃i and γαi to

the maximal abelian extension Q̂(t)
ab

of Q(t) in Q̂(t) are equal; in particular,

γαi (f
1/n
i ) = γσ̃i (f

1/n
i ) for all n. Thus we have

ζαnf
1/n
i = γαi (f

1/n
i ) = γσ̃i (f

1/n
i ) = σ̃γiσ̃

−1(f
1/n
i )

= σ̃γi(f
1/n
i ) = σ̃(ζnf

1/n
i ) = σ̄(ζn)f

1/n
i ,

and therefore σ̄(ζn) = ζαn for all n, which proves that α = χ(σ̄). �

3.2 The Rigidity Theorem

In this section, we introduce the notion of rigidity, which will be used to

extend the universal deformation of a given residual representation

ρ̄ : Π −→ SL2(Fp)

to a representation of ΠK(µ) := Gal
(
̂K(t)/K(µ, t)

)
, where K is an algebraic

extension of Q and µ is a collection of roots of unity in K which depends
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on ρ̄.

Let G be a group, and let C0, . . . , Cn be conjugacy classes in G (not

necessarily distinct). We denote by Σ̄(C0, . . . , Cn) the set of all n+ 1-tuples

(g0, . . . , gn) ∈ C0 × · · · × Cn which satisfy g0 · · · gn = 1. An n + 1-tuple

(h0, . . . , hn) ∈ Gn+1 is said to be locally conjugate to an element (g0, . . . , gn)

of Σ̄(C0, . . . , Cn) if (h0, . . . , hn) belongs to Σ̄(C0, . . . , Cn) and the subgroups

〈g0, . . . , gn〉 and 〈h0, . . . , hn〉 of G are isomorphic. Note that G acts on

Σ̄(C0, . . . , Cn) by componentwise conjugation; thus for g ∈ G, we will write

(g0, . . . , gn)g to mean (gg0g
−1, . . . , ggng

−1). Two elements of Σ̄(C0, . . . , Cn)

are said to be globally conjugate if they lie in the same G-orbit under this

action.

Definition 3.2 The n + 1-tuple (g0, . . . , gn) ∈ Σ̄(C0, . . . , Cn) is said to be

rigid if every element of Gn+1 which is locally conjugate to (g0, . . . , gn) is

globally conjugate to (g0, . . . , gn).

For any algebraic extension K of Q, let GK := Gal(K/K), and let

ΠK := Gal
(
̂K(t)/K(t)

)
, where ̂K(t) denotes the maximal algebraic exten-

sion of K(t) unramified outside 0, 1,∞. Let γ0, γ1, γ∞ ∈ ΠK be topological

generators of inertia groups I0, I1, I∞ above 0, 1,∞ respectively such that

γ0γ1γ∞ = 1.

Lemma 3.3 (Bely̆ı) For each i = 0, 1,∞, the natural surjection ΠK � GK

has a splitting φi : GK ↪→ ΠK whose image is contained in NΠK (Ii).

Outline of Proof: Without loss of generality, suppose that i = 0. Let

Γ :=
{
γ ∈ ΠK : γγ0γ

−1 = γ
χ(γ)
0 , γγ1γ

−1 ≈ γ
χ(γ)
1

}
,
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where ≈ denotes conjugacy by an element of the commutator subgroup

[ΠK ,ΠK ] of ΠK , and χ denotes the cyclotomic character. One may show

that restricting the natural map ΠK � GK to Γ defines an isomorphism

Γ ∼= GK . Letting φi be the inverse of this isomorphism gives the result. See

[Bel80], §1 for details. �

Corollary 3.4 The group ΠK is isomorphic to ΠK oGK.

The following theorem, which we will use to extend the universal defor-

mations of §2.6, is a variant of the rigidity theorem of Bely̆ı, Fried, Matzat,

Shih, and Thompson. For other variants, see [Ser92], [Vol96], and [MM99].

Let G be a profinite group, and r the natural map G −→ G/Z(G). Given

any homomorphism ρgeom : ΠK −→ G, let µ denote the set of all nth roots

of unity in K for which ρgeom(γi) has exact order n in some finite quotient of

G for some i = 0, 1,∞.

Theorem 3.5 Suppose that (ρgeom(γ0), ρgeom(γ1), ρgeom(γ∞)) forms a rigid

triple in G. Suppose moreover that ZG(Im(ρgeom)) = Z(G).

(1) The composed map ρ̂geom := r ◦ ρgeom : ΠK −→ G/Z(G) extends uniquely

to a homomorphism ρ̂ : ΠK(µ) −→ G/Z(G).

(2) Let φi be as in Lemma 3.3, and suppose that for some i the inclusion

Z(G) ↪→ r−1
(
ρ̂ ◦ φi(GK(µ))

)
splits. Then ρgeom extends to a homomorphism

ρ : ΠK(µ) −→ G which is unique up to multiplication by a homomorphism

ψ : GK −→ Z(G).

Proof: Let γ ∈ ΠK(µ). By Theorem 3.1, γγiγ
−1 ∼ γ

χ(γ)
i in ΠK for each

i = 0, 1,∞, and hence ρgeom(γγiγ
−1) ∼ ρgeom(γi)

χ(γ) in G. Let H be any finite

quotient of G, and let n be the order of the image of ρgeom(γi) in H. Since
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γ fixes K(µ) pointwise and K(µ) contains all of the nth roots of unity in

K, we have χ(γ) ≡ 1 mod n. Therefore ρgeom(γi)
χ(γ) = ρgeom(γi), and hence

ρgeom(γi) ∼ ρgeom(γγiγ
−1) in G. For each i = 0, 1,∞, let δi = ρgeom(γi), and

δγi = ρgeom(γγiγ
−1). Since 〈δ0, δ1, δ∞〉 = 〈δγ0 , δ

γ
1 , δ

γ
∞〉 = Imρgeom, (δγ0 , δ

γ
1 , δ

γ
∞)

is locally conjugate to (δ0, δ1, δ∞) in G; thus by the rigidity of (δ0, δ1, δ∞),

there is some gγ ∈ G such that gγδig
−1
γ = δγi for each i = 0, 1,∞. Define a

set-theoretic map ρ̂ : ΠK(µ) −→ G/Z(G) by

ρ̂(γ) = r(gγ) ∈ G/Z(G)

for all γ ∈ ΠK(µ). We claim that ρ̂ is a homomorphism extending ρ̂geom. Note

that r(gγ) is uniquely determined since ZG(Imρgeom) = Z(G); thus to show

that ρ̂ is a homomorphism, it suffices to show that given γ, γ′ ∈ ΠK(µ), we

have

gγgγ′δig
−1
γ′ g

−1
γ = ρgeom(γγ′γiγ

′−1γ−1)

for each i = 0, 1,∞. In fact, since γ0, γ1, γ∞ generate ΠK , we have

ρgeom(γσγ−1) = gγρ
geom(σ)g−1

γ for all σ ∈ ΠK , so ρ̂ is indeed a homomor-

phism. The uniqueness of ρ̂ follows from the uniqueness of r(gγ) and the

fact that for any homomorphism ρ̂ : ΠK(µ) −→ G/Z(G) extending ρ̂geom,

ρ̂(γγiγ
−1) = ρ̂(γ)ρ̂geom(γi)ρ̂(γ)−1 for each i = 0, 1,∞.

To prove (2), choose i so that the inclusion Z(G) ↪→ r−1
(
ρ̂ ◦ φi(GK(µ))

)
splits. Let N = r−1

(
ρ̂ ◦ φi(GK(µ))

)
⊂ G. Since the inclusion Z(G) ↪→ N

splits, the surjection r|N : N −→ N/Z(G) is split by some homomorphism
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ψ : N/Z(G) −→ N . Thus we obtain a homomorphism

ψ ◦ ρ̂ ◦ φi : GK(µ) −→ G.

By Corollary 3.4, ΠK(µ)
∼= ΠKoGK(µ), so writing γ ∈ ΠK(µ) as γ = αβ where

α ∈ ΠK and β ∈ φi(GK(µ)), we may define a homomorphism ρ : ΠK(µ) −→ G

extending ρgeom by ρ(γ) = ρgeom(α)ψ◦ρ̂(β). The uniqueness statement follows

immediately from that of (1). �

3.3 Rigidity in GL2(R
univ)

The universal deformation rings of Theorems 2.28, 2.29, and 2.31 are power

series rings over Zp; in particular, they are local unique factorization domains

(UFDs). Thus in order to extend the corresponding universal deformations

using Theorem 3.5, it is necessary to study rigidity in GL2(R), where (R,m)

is a local UFD with residue field k. We will show that if ρ is a determinant

one deformation of a residual representation ρ̄ : Π −→ GL2(k) to such a ring

R, then (ρ(γ0), ρ(γ1), ρ(γ∞)) is rigid in GL2(R).

Definition 3.6 For any domain R, a subgroup G of GLn(R) is said to be

irreducible if there is no eigenvector common to all elements of G in any

domain containing R. The subgroup G is said to be acentral in GLn(R) if

the centralizer ZMn(R)(G) of G in the matrix ring Mn(R) consists only of the

scalar matrices.

If R = k is a field, then G is irreducible if and only if the identity map of

G is an absolutely irreducible representation; moreover, by Schur’s lemma,

every irreducible subgroup is acentral (see [Isa94], p.145).
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Proposition 3.7 Let (R,m) be a local domain with residue field k, and sup-

pose that M0,M1 ∈ GL2(R) have the property that the reductions M̄0, M̄1 of

M0,M1 mod m generate an irreducible subgroup of GL2(k). Then for any

domain R′ ⊃ R, the subgroup of GL2(R′) generated by M0 and M1 is both

irreducible and acentral.

Proof: Let λ0, λ1 be eigenvalues of M0,M1 respectively in some domain

containing R. Since λ0 and λ1 are integral over R, there is a maximal ideal p

of R[λ0, λ1] lying above m (see [Lan93], Ch. VII, Propositions 1.10, 1.11). Let

v0,v1 ∈ R[λ0, λ1]2p be eigenvectors corresponding to λ0, λ1 respectively. The

reductions of v0 and v1 mod p must be distinct, for otherwise R[λ0, λ1]p/p is

an extension of k in which M̄0, M̄1 have a common eigenvector; in particular,

v0 and v1 are distinct. ThereforeM0 andM1 generate an irreducible subgroup

G of GL2(R), and hence also of GL2(R′) where R′ is any domain containing R.

Furthermore, G is an irreducible and thus acentral subgroup of GL2 (Qu(R′)).

Since

ZGL2(R′)(G) = ZGL2(Qu(R′))(G)
⋂

GL2(R′),

G is also an acentral subgroup of GL2(R′). �

In proving the rigidity of certain triples (M0,M1,M2) of matrices in

GL2(R), the easiest case occurs when M0 and M1 both have eigenvalues

in R. The following lemmas will allow us to extend R to a domain in which

M0 and M1 have eigenvalues, then descend to obtain conjugacy in GL2(R).

Lemma 3.8 Let L be a quadratic extension of a field K. Suppose that the

pair M0,M1 ∈ GL2(K) generates an irreducible subgroup of GL2(K), and
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that (M ′
0,M

′
1) ∈ GL2(K)2 is conjugate to (M0,M1) by an element of GL2(L).

Then (M ′
0,M

′
1) is conjugate to (M0,M1) by an element of GL2(K).

Proof: Let σ denote the nontrivial element of Gal(L/K), and G the sub-

group of GL2(K) generated by M0 and M1. Let M ∈ GL2(L) be such that

MMiM
−1 = M ′

i for i = 0, 1. Since Mi,M
′
i ∈ GL2(K), applying σ gives

σ(M)Miσ(M)−1 = M ′
i = MMiM

−1,

and therefore M−1σ(M) ∈ ZM2(L)(G). By Proposition 3.7, since G is an ir-

reducible subgroup of GL2(K), it is an acentral subgroup of GL2(L). Thus

M−1σ(M) = ζId for some ζ ∈ L. Applying σ to the equation σ(M) = ζM

gives M = σ(ζ)σ(M) = σ(ζ)ζM , and therefore σ(ζ)ζ = 1. By Hilbert’s

Theorem 90, there exists some α ∈ L× such that ζ = α
σ(α)

. Hence we

have σ(α)σ(M) = αM , so αM is invariant under Gal(L/K), and therefore

αM ∈ GL2(K). Conjugating each Mi by αM gives (αM)Mi(αM)−1 = M ′
i ,

as desired. �

Lemma 3.9 Let (R,m) be a local UFD with residue field k and quotient

field K. Suppose that the reductions mod m of M0,M1 ∈ GL2(R) together

generate an irreducible subgroup of GL2(k), and that (M ′
0,M

′
1) ∈ GL2(R)2 is

conjugate to (M0,M1) by an element of GL2(K). Then (M ′
0,M

′
1) is conjugate

to (M0,M1) by an element of GL2(R).

Proof: Let M ∈ GL2(K) be such that MMiM
−1 = M ′

i for i = 0, 1. Multi-

plying M by a suitable scalar, we may assume that M ∈ M2(R), det(M) 6= 0,

and det(M) has minimal m-adic valuation among all such multiples of M .
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Let M∗ = det(M)M−1 ∈ M2(R). If det(M) ∈ R× then we are done. Other-

wise, there is an irreducible element α ∈ R which divides det(M). We will

show that α divides each entry of M , and therefore 1
α
M ∈ M2(R) is such

that det( 1
α
M) has lesser m-adic valuation than det(M), contradicting the

assumption on M .

Since R is a UFD and α is irreducible, p = (α) is a prime ideal. Let G be

the subgroup of GL2(R) generated by M0 and M1, let k̃ = Rp/p, and let G̃

denote the subgroup of GL2(k̃) obtained by taking the mod p reduction of

G viewed as a subgroup of GL2(Rp). The diagram

R
� � //

��

Rp

��
R/p � �

Qu
//

��

k̃

k

commutes, where the injection R/p ↪→ k̃ is obtained by viewing k̃ as the

quotient field of R/p. Since k is the residue field of R/p and the reduction Ḡ

of G mod m is an irreducible subgroup of GL2(k), by Proposition 3.7, the

reduction of G mod p is an irreducible subgroup of GL2(R/p); hence G̃ is an

irreducible subgroup of GL2(k̃). Therefore, G̃ generates the k̃-algebra M2(k̃)

(see [Isa94], p.145).

For any A ∈ M2(R), let Ã ∈ M2(k̃) denote the element obtained by

viewing A as an element of M2(Rp) and reducing mod p. Each Ã ∈ M2(k̃)

may be expressed as a k̃-linear combination of elements of G̃, say

Ã = α̃0Ã0 + · · ·+ α̃rÃr.
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For each i = 0, . . . , r, choose Ai ∈ G reducing to Ãi mod p, and αi ∈ Rp

reducing to α̃i mod p. Since Ai ∈ G = 〈M0,M1〉 for each i = 0, . . . , r, the

lift A = α0A0 + · · · + αrAr ∈ M2(Rp) of Ã satisfies MAM−1 ∈ M2(Rp).

Hence MAM∗ ∈ det(M)M2(Rp), and reducing mod p gives M̃ÃM̃∗ = 0. Let

M̃ = ( a bc d ). Taking Ã = ( 0 1
0 0 ) gives 0 = M̃ÃM̃∗ =

(
−ac a2

−c2 ac

)
and hence

a = c = 0. Taking Ã = ( 0 0
1 0 ) similarly gives b = d = 0 and therefore M̃ = 0;

that is, M ∈ M2(p), so α divides each entry of M , which gives the desired

contradiction. �

We now prove the main result of this section:

Theorem 3.10 Let R be a local UFD with residue field k, and suppose that

(M0,M1,M2) is a triple of matrices in SL2(R) satisfying M0M1M2 = 1,

whose reductions mod m together generate an irreducible subgroup of GL2(k).

Then (M0,M1,M2) is rigid in GL2(R).

Proof: Let K = Qu(R), and L = K(λ0, λ1), where λ0, λ1 are eigenvalues of

M0,M1 respectively. Choosing a basis for L2, we view M0 and M1 as linear

transformations of L2 with respect to this basis. By Proposition 3.7, M0

and M1 generate an irreducible subgroup of GL2(R), and also of GL2(L);

hence choosing eigenvectors v0,v1 ∈ L2 corresponding to the eigenvalues

λ0, λ1 gives a basis {v0,v1} for L2. Writing (M0,M1,M2) with respect to

this basis gives a triple (M̃0, M̃1, M̃2) globally conjugate to (M0,M1,M2) in

GL2(L) such that M̃0 =
( α γ

0 α−1

)
and M̃1 =

(
β 0
δ β−1

)
for some α, β, δ, γ ∈ L×.

Rescaling {v0,v1} if necessary, we may assume that γ = 1.

Let (M ′
0,M

′
1,M

′
2) be any triple of matrices which is locally conjugate to

(M0,M1,M2) in GL2(R), and which satisfies M ′
0M

′
1M

′
2 = 1. Since M0 ∼ M ′

0

and M1 ∼ M ′
1, λ0, λ1 ∈ L are eigenvalues of M ′

0,M
′
1 respectively. Thus by

51



the same reasoning as for (M0,M1,M2) above, there is a triple (M̃ ′
0, M̃

′
1, M̃

′
2)

globally conjugate to (M ′
0,M

′
1,M

′
2) in GL2(L) such that M̃ ′

0 =
(
α′ 1
0 α′−1

)
and M̃ ′

1 =
(
β′ 0
δ′ β′−1

)
for some α′, β′, δ′ ∈ L×. Now M̃0 ∼ M̃ ′

0 implies that

Tr(M̃0) = Tr(M̃ ′
0); that is, α+α−1 = α′+α′−1. Hence (α−α′)(αα′− 1) = 0,

and therefore α = α′ or α = α′−1. If α = α′−1 6= α′, then conjugat-

ing (M̃0, M̃1, M̃2) by M =
(

1 0
α′−α′−1 1

)
gives MM̃0M

−1 =
(
α′−1 1

0 α′

)
and

MM̃ ′
1M

−1 =
(
β′ 0
∗ β′−1

)
. Thus replacing (M̃ ′

0, M̃
′
1, M̃

′
2) with (M̃ ′

0, M̃
′
1, M̃

′
2)M

if necessary, and renaming α′, δ′ accordingly, we have α = α′. Similarly,

Tr(M̃1) = Tr(M̃ ′
1) gives β = β′ or β = β′−1. If β = β′−1 6= β′, then tak-

ing M =
(
δ′ β′−1−β′
0 δ′

)
gives MM̃ ′

0M
−1 = M̃ ′

0 and MM̃ ′
1M

−1 =
(
β′−1 0
δ′ β′

)
, so

replacing (M̃ ′
0, M̃

′
1, M̃

′
2) with (M̃ ′

0, M̃
′
1, M̃

′
2)M if necessary gives β = β′, and

does not affect M̃ ′
0. Multiplying gives

M̃2 = (M̃0M̃1)−1 =

α−1β−1 −β−1

−α−1δ αβ + δ

 ,

and similarly for M̃ ′
2; thus the equation Tr(M̃2) = Tr(M̃ ′

2) becomes

α−1β−1 + αβ + δ = α′−1β′−1 + α′β′ + δ′,

and therefore δ = δ′. Thus we have shown that (M̃0, M̃1, M̃2) = (M̃ ′
0, M̃

′
1, M̃

′
2);

in particular, (M0,M1,M2) is globally conjugate to (M ′
0,M

′
1,M

′
2) in GL2(L).

In order to obtain global conjugacy in GL2(R), first note that either

L = K(λ0) or L is a quadratic extension of K(λ0). In the latter case, by

Proposition 3.7, M0,M1 generate an irreducible subgroup of GL2(K(λ0));

hence by Lemma 3.8, (M0,M1,M2) is globally conjugate to (M ′
0,M

′
1,M

′
2) in
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GL2(K(λ0)). Applying Lemma 3.8 again if necessary (that is, if K(λ0) 6= K),

we find that (M0,M1,M2) is globally conjugate to (M ′
0,M

′
1,M

′
2) in GL2(K).

Since R is a UFD, by Lemma 3.9, (M0,M1,M2) is globally conjugate to

(M ′
0M

′
1,M

′
2) in GL2(R). Therefore, (M0,M1,M2) is rigid. �

A similar argument to that in the proof of Theorem 3.10 can be used

to prove the result for any local domain R, provided that M0 and M1 both

have eigenvalues in R. In this case, it is not necessary to pass to the field L;

the arguments used above can be applied in R itself. In fact, this argument

can be extended to prove the result for any local domain R provided that

at least one of M0 and M1 has an eigenvalue in R, although the details are

significantly more complicated. New difficulties arise when neither M0 nor

M1 has an eigenvalue in R, and it is not clear whether the assumption of

unique factorization is necessary in this case.

3.4 Extending the Universal Deformation

We will now use the rigidity theorem of §3.2 to extend the universal defor-

mations of §2.6 to representations of a larger Galois group. Let K be any

algebraic extension of Q, and let ΠK , γ0, γ1, γ∞ be as in §3.2. Let

ρgeom : ΠK −→ SL2(R)

be any representative of one of the following universal deformations:

(1) the {γ0, γ1}-ordinary universal deformation of Theorem 2.31, in which

case R = Zp[[t]];

(2) the γi-ordinary universal deformation of either Theorem 2.29 or Corol-
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lary 2.30, in which case R = Zp[[t1, t2]]; or

(3) the (determinant one) universal deformation of Theorem 2.28, in which

case R = Zp[[t1, t2, t3]].

Theorem 3.11 The projectivization

ρ̂geom : ΠK −→ PGL2(R) = GL2(R)/R×

of ρ can be extended uniquely to a representation ρ̂ : ΠK(µ) −→ PGL2(R),

where µ is as in Theorem 3.5

Proof: Since ρ̄(γ0), ρ̄(γ1), ρ̄(γ∞) generate an irreducible subgroup of GL2(Fp)

and R is a local UFD, by Theorem 3.10, (ρgeom(γ0), ρgeom(γ1), ρgeom(γ∞)) is

rigid in GL2(R). By Proposition 3.7, ρgeom(γ0) and ρgeom(γ1) generate an

acentral subgroup of GL2(R), so ZGL2(R)(Imρ
geom) = R× = Z(GL2(R)). The

result now follows from Theorem 3.5(1). �

Remark. Given a residual representation ρ̄ : ΠK −→ SL2(Fp), let m denote

the prime-to-p part of lcm
i=0,1,∞

(o(ρ̄(γi))), where o(ρ̄(γi)) denotes the order of

ρ̄(γi) (in particular, m | p2 − 1). Let µm denote the set of mth roots of unity

and µp∞ the set of all pnth roots of unity in K. Note that the kernel of

the reduction map GL2(R) −→ GL2(Fp) is equal to 1 + M2(m) ∼= M2(m),

and M2(m) = lim←−M2(m/mn) is an inverse limit of p-groups, so the image of

ρgeom(γi) in any finite quotient of GL2(R) has order dividing pnm for some

n. Therefore, K(µ) is contained in K(µm, µp∞).

Let ρ̄ denote the residual representation of ρgeom. If ρ̄(γi) has an eigenvalue

in Fp for some i = 0, 1,∞, then the above result can be strengthened.
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Theorem 3.12 If ρgeom is the universal deformation of case (3), suppose

that ρ̄(γi) has distinct eigenvalues in Fp for some i = 0, 1,∞. Then in all

three cases, ρgeom extends to a representation ρ : ΠK(µ) −→ GL2(R) which is

unique up to multiplication by a representation ψ : GK(µ) −→ R×.

Proof: Let ρ̂ be as in Theorem 3.11. With the notation of §3.2, if we show

that for some i the inclusion

Z(GL2(R)) ↪→ r−1(ρ̂ ◦ φi(GK(µ)))

splits, then the result will follow from Theorem 3.5(2). In all three cases,

ρgeom(γi) has a rank one eigenspace V ⊂ R2 for some i = 0, 1,∞ (in case

(3), this follows from the argument of Lemma 2.25). Fix such an i, and

let N = r−1(ρ̂ ◦ φi(GK(µ))). We claim that N fixes V . From the proof of

Lemma 3.3, for each γ ∈ φi(GK(µ)), we have γγiγ
−1 = γ

χ(γ)
i ; applying ρgeom

gives ρgeom(γγiγ
−1) = ρgeom(γi)

χ(γ). Since K(µ) ⊃ K(µm, µp∞), and ρgeom(γi)

has order dividing pnm (for some n) in every finite quotient of GL2(R), we

have ρgeom(γi)
χ(γ) = ρgeom(γi), so ρgeom(γγiγ

−1) = ρgeom(γi). From the defini-

tion of ρ̂ in the proof of Theorem 3.5 and the fact that ker(r) = Z(GL2(R)),

it follows that ρgeom(γγiγ
−1) = gγρ

geom(γi)g
−1
γ for any gγ ∈ r−1(ρ̂(γ)). Every

M ∈ N can be obtained as gγ for some γ, so Mρgeom(γi)M
−1 = ρgeom(γi) for

all M ∈ N .

Let λ be the eigenvalue of ρgeom(γi) corresponding to V = Rv. Since

Mρgeom(γi)M
−1v = λv, we have

ρgeom(γi)(M
−1v) = λM−1v,
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so M−1v is an eigenvector of ρgeom(γi) with eigenvalue λ. Since V is the

full eigenspace of ρgeom(γi) with eigenvalue λ, we must have M−1v ∈ V .

Therefore, N fixes V , as claimed. Thus each M ∈ N induces a linear map on

R2/V , which is a free R-module of rank one. Fixing an isomorphism

GL(R2/V ) ∼= R× = Z(GL2(R))

gives the desired splitting. �

If the residual representation ρ̄ is γi-ordinary, the universal property of

the determinant one universal deformation ρuniv gives a map Runiv −→ Runiv
ord

which takes any extension of ρuniv to an extension of ρuniv
ord . Similarly, if ρ̄

is S-ordinary, where S = {γ0, γ1}, we obtain maps Runiv −→ Runiv
S−ord and

Runiv
γi−ord −→ Runiv

S−ord for each i = 0, 1, which take extensions of ρuniv and ρuniv
γi−ord

respectively to extensions of ρuniv
S−ord. Furthermore, the map Runiv −→ Runiv

S−ord

factors through both maps Runiv
γi−ord −→ Runiv

S−ord via the map Runiv −→ Runiv
γi−ord

discussed above.
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4 Geometric Construction of Universal De-

formations

4.1 Jacobians of Curves

Fix an odd prime p. Let ρ̄ : ΠQ −→ GL2(Fp) be the representation describing

the action of ΠQ on the p-torsion points of the Legendre family EL of elliptic

curves over Q(t), given by the equation

EL : y2 = x(x− 1)(x− t).

Let ρ̄geom : Π −→ GL2(Fp) denote the restriction of ρ̄ to Π = Π
Q

, and let

σ0, σ1, σ∞ ∈ Π be generators of inertia groups at 0, 1,∞ respectively such

that σ0σ1σ∞ = 1. Then ρ̄geom is an absolutely irreducible representation

characterized up to conjugation by the property that ρ̄geom(σ0) and ρ̄geom(σ1)

both have order p and ρ̄geom(σ∞) has order 2p (see [Dar00], p.419). Let

S = {σ0, σ1}. In this chapter, we give an explicit geometric construction

of the S-ordinary universal deformation ρuniv
S−ord of ρ̄geom. In fact, the repre-

sentation that we construct will be a representation of the larger Galois group

ΠQ(µp∞ ), and thus will be the extension of ρuniv
S−ord given in Theorem 3.12(1).

Let K be a field.

Definition 4.1 An abelian variety A over K is a complete variety over K

together with a group law µ : A×A −→ A which is a morphism defined over

K, and for which the inverse map a 7−→ a−1 is also a morphism defined over

K.
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A morphism of abelian varieties is a morphism of varieties which is also

a homomorphism of the underlying groups. The group law on an abelian

variety is commutative (see [Lan83], Ch. II, §1, Theorem 1). Note that an

abelian variety of dimension one is simply an elliptic curve. When K = C,

the classical uniformization of elliptic curves E/C may be generalized to

abelian varieties A/C of arbitrary dimension g. A lattice Λ of Cg is a free

Z-module of rank 2g which has a basis which is also an R-basis for Cg.

Theorem 4.2 Let A/C be an abelian variety of dimension g. There exists a

lattice Λ of Cg and a complex analytic group isomorphism

φ : Cg/Λ −→ A(C).

Proof: See [Mum70], Ch. I, §1(2). �

We now describe how to associate an abelian variety Jac(C)/K to any

complete nonsingular curve C/K of genus g > 0. A divisor D on C is a formal

finite sum of K-rational points on C, that is D =
∑

P∈C(K)

nPP , where each

nP ∈ Z and nP = 0 for almost all P ∈ C(K). We write Div(C) for the abelian

group of divisors on C, where the sum of two divisors D1 =
∑

P∈C(K)

nPP and

D2 =
∑

P∈C(K)

mPP is given by

D1 +D2 =
∑

P∈C(K)

(nP +mP )P.

Given a rational function f ∈ K(C)×, we define the divisor (f) of f to be

(f) =
∑

P∈C(K)

ordP (f)P , where ordP (f) is the order of vanishing of f at P . A
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divisor on C is said to be principal if it is the divisor of some f ∈ K(C)×,

and the subgroup of Div(C) consisting of all principal divisors is denoted by

Pr(C). Two divisors D1, D2 ∈ Div(C) are said to be linearly equivalent if

D1−D2 ∈ Pr(C). The group of linear equivalence classes of divisors on C is

called the Picard group of C, and is denoted Pic(C); thus

Pic(C) = Div(C)/Pr(C).

Given any divisor D =
∑

P∈C(K)

nPP on C, the degree deg(D) of D is defined

to be deg(D) =
∑

P∈C(K)

nP . The group Pr(C) is contained in the subgroup

Div0(C) of Div(C) consisting of the divisors of degree zero (see [Har97],

Ch. II, Corollary 6.10), and thus we may define the degree zero part of the

Picard group to be Pic0(C) = Div0(C)/Pr(C).

The absolute Galois group GK of K acts naturally on Div(C) by

σ

 ∑
P∈C(K)

nPP

 =
∑

P∈C(K)

nPσ(P )

for σ ∈ GK . Furthermore, for any σ ∈ GK , two divisors D1 and D2 are

linearly equivalent if and only if σ(D1) and σ(D2) are. Thus the action of

GK on Div(C) induces actions on Pic(C) and Pic0(C).

For any P ∈ C(K), let

fP : C(K) −→ Pic0(C)

be the map which takes Q ∈ C(K) to the linear equivalence class [Q−P ] of
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Q− P .

Theorem 4.3 The group Pic0(C) can be given the structure of the K-ra-

tional points of an abelian variety Jac(C)/K of dimension equal to the genus

of C in such a way that for each P ∈ C(K), fP is an embedding, and Jac(C)

satisfies the following universal property : if φ : C −→ A is a morphism

from C to an abelian variety A such that φ(P ) = 0, then there is a unique

morphism of abelian varieties ψ : Jac(C) −→ A such that the diagram

C
fP //

φ
##GGGGGGGGGG Jac(C)

ψ

��
A

commutes.

Proof: See [Mil86b], Proposition 2.3, Proposition 6.1, and Theorem 1.1. �

The abelian variety Jac(C) is called the Jacobian of C. The universal

property of the Jacobian shows that assigning to a curve its Jacobian defines

both a covariant and a contravariant functor from the category of complete

nonsingular curves with nonconstant morphisms to that of abelian varieties.

Given complete nonsingular curves C1 and C2, and a nonconstant morphism

φ : C1 −→ C2, the map fφ(P0) ◦φ : C1 −→ Jac(C2) satisfies fφ(P0) ◦φ(P0) = 0

for each P0 ∈ C1. The universal property of Jac(C1) gives a morphism of

abelian varieties φ∗ : Jac(C1) −→ Jac(C2). In terms of divisors, φ∗ is given

by

φ∗ :
[∑

nPP
]
7−→

[∑
nPφ(P )

]
.

In particular, φ∗ is independent of the choice of P0 above. On the other hand,
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for each Q ∈ C2, let eφ(Q) denote the ramification index of φ at Q. Fixing a

point Q0 ∈ C2, there is a morphism fφ : C2 −→ Jac(C1) given by

fφ : Q 7−→

 ∑
P∈φ−1(Q)

eφ(Q)P −
∑

P∈φ−1(Q0)

eφ(Q0)P


which satisfies fφ(Q0) = 0. The universal property of Jac(C2) gives a mor-

phism of abelian varieties φ∗ : Jac(C2) −→ Jac(C1), which is given in terms

of divisors by

φ∗ :

[∑
Q∈C2

nQQ

]
7−→

∑
Q∈C2

nQ
∑

P∈φ−1(Q)

eφ(Q)P

 .
Once again, φ∗ is seen to be independent of the choice of Q0 above.

4.2 Tate Modules and `-adic Representations

Let A/K be an abelian variety of dimension g, and fix a prime ` not equal to

the characteristic of K. For each integer m ∈ Z, there is an endomorphism

[m] : A(K) −→ A(K) of A defined over K given by multiplication by m. We

write A[m] := ker[m], and call the elements of A[m] the m-torsion points of

A. For each positive integerm not divisible by the characteristic ofK, we have

deg[m] = m2g (see [Mil86a], Theorem 8.2). Applying this equality to every

positive integer d dividing m shows that A[m] is isomorphic to (Z/mZ)2g.

As m ranges through powers of `, the `n-torsion points together with the

multiplication-by-` maps [`] : A[`n+1] −→ A[`n] form a directed system of
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groups. The inverse limit

T`(A) := lim←−
n∈N

A[`n]

is called the (`-adic) Tate module of A. The Tate module T`(A) is naturally

a free Z`-module of rank 2g, where the action of α ∈ Z` on A[`n] is given by

multiplication by the reduction of α mod `n. This action preserves compat-

ibility under the multiplication-by-` maps, and thus defines an action of Z`

on T`(A).

Since the addition law on A is defined over K, the action of GK on A

commutes with [m]. Thus restricting to A[m] gives an action of GK on A[m].

Moreover, since this action commutes with the multiplication-by-` map, we

obtain a Z`-linear action of GK on T`(A). Choosing a Z`-basis for T`(A) gives

a homomorphism

ρ` : GK −→ GL2g(Z`),

called the `-adic representation associated to A.

We define the extended Tate module V`(A) := T`(A) ⊗Z` Q`, which is a

Q`-vector space of dimension 2g, together with a Q`-linear action of GK . This

action gives a representation

ρ` : GK −→ GL2(Q`),

which may be obtained from the `-adic representation by extending scalars

to Q`.
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Let ψ : A −→ B be a morphism of abelian varieties. Since ψ is a group

homomorphism, it maps `n-torsion points of A to `n-torsion points of B, and

commutes with the multiplication-by-` maps on each side. Thus ψ induces a

Z`-module homomorphism

ψ` : T`(A) −→ T`(B)

by applying ψ componentwise, that is, ψ` : (an)n∈N 7−→ (ψ`(an))n∈N, where

an ∈ A[`n] and [`]an = an−1 for each positive integer n. We will also write ψ`

for the map V`(A) −→ V`(B) obtained by tensoring with Q`.

Proposition 4.4 Let φ : C1 −→ C2 be a nonconstant morphism of complete

nonsingular curves defined over K, and let φ∗` : T` (Jac(C2)) −→ T` (Jac(C1))

denote the map induced from φ∗ : Jac(C2) −→ Jac(C1). Then φ∗` is injective.

Proof: Let φ̃∗ : Div(C2) −→ Div(C1) denote the map given by

φ̃∗ :
∑
Q∈C2

nQQ 7−→
∑
Q∈C2

nQ
∑

P∈φ−1(Q)

eφ(Q)P.

Suppose that D ∈ Div0(C2) is such that φ̃∗(D) = (f) for some f ∈ K(C1).

The map φ induces an injection of function fields K(C2) ↪→ K(C1), and we

have

Norm
K(C1)

K(C2)
(f) = degφ ·D.

In particular, the image of D in Pic0(C2) ∼= Jac(C2) is a degφ-torsion point.

If t ∈ T` (Jac(C2)) is such that φ∗`(t) = 0, then every component of t is a

63



degφ-torsion point, and thus t is itself a degφ-torsion point of T` (Jac(C2)).

Since T` (Jac(C2)) is a free Z`-module, we must have t = 0. �

Remark: Since Q` is flat over Z` (see [Lan93], Ch. XVI, Proposition 3.2),

the map φ∗` : V` (Jac(C2)) −→ V` (Jac(C1)) is also injective.

4.3 Reduction of Curves

Let K be a field of characteristic zero, C/K a complete nonsingular curve of

genus g > 0, and p a valuation ideal of K with corresponding valuation ring

R. For any valuation ideal p̂ of K above p, the action of the inertia group

I (p̂/p) on the Jacobian of C is closely related to the reduction type of C

at p.

Definition 4.5 A K-model M of a variety V/K is a set of equations with

coefficients in K, taken up to multiplication of each equation by elements of

K×, such that M defines an element of the K-isomorphism class given by V .

A particular set of equations in the equivalence class M will be called a

defining set of equations for M . We will say that a defining set of equations

for M is p-reducible if all of its coefficients lie in R, and each equation has at

least one coefficient not in p. The reduction M̄ of M at p is the variety defined

over the residue field k = R/p obtained by reducing mod p the coefficients

of a p-reducible set of equations for M . Fixing a valuation ideal p̂ of K above

p with valuation ring R̂, we obtain a reduction map r : M(K) −→ M̄(k) by

choosing for each K-rational point of M an expression which has projective

coordinates in R̂ but not all in p̂, and reducing the coordinates mod p̂.
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Definition 4.6 The curve C/K of genus g is said to have good reduction at

p if it has a K-model whose reduction at p is a nonsingular curve of genus g.

An abelian variety A/K of dimension g is said to have good reduction at p if

it has a K-model whose reduction at p is an abelian variety of dimension g.

If C (respectively A) has good reduction at p, we will often identify C

(resp. K) with a K-model whose reduction is as in Definition 4.6. In this

case, the reduced curve (respectively reduced abelian variety) is independent

of the choice of such a K-model. If C or A does not have good reduction at

p, then we say that it has bad reduction at p.

Jacobians are well-behaved with respect to good reduction in the sense

that if C has good reduction at p then so does Jac(C), and in this case,

the Jacobian of the reduction of C is the reduction of Jac(C). The converse,

however, is not true; there exist curves with bad reduction at a valuation

ideal p whose Jacobians have good reduction at p (see [Maz86], p.238 for an

example).

Definition 4.7 A representation ρ of GK is said to be unramified at p if

ρ (I (p̂/p)) = 1 for each valuation ideal p̂ of K above p. Equivalently, ρ is

unramified at p if p is unramified in the extension of K corresponding to the

quotient GK/ker(ρ).

Proposition 4.8 Let ` be a rational prime not below p. If the abelian variety

A/K has good reduction at p, then the `-adic representation ρ` attached to

A is unramified at p.

Proof: It suffices to show that the representation ρ̄`n : GK −→ Aut(A[`n])

describing the action of GK on the `n-torsion points of A is unramified for
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each n. Let Ā denote the reduction of A at p, and let p̂ be any valuation ideal

of K above p. The reduction map restricts to an isomorphism

A[`n]I(p̂/p) ∼=−→ Ā[`n]

(see [ST68], §1, Lemma 2). Since A[`n] and Ā[`n] are both free Z/`nZ-modules

of rank 2 dimĀ = 2 dimA, counting gives A[`n]I(p̂/p) = A[`n]. �

Remark: The converse to Proposition 4.8 is also true, and is known as the

criterion of Néron-Ogg-Shafarevich. To be precise, if ρ` is unramified at p for

some ` not below p, then A has good reduction at p (see [ST68], §1).

4.4 Mumford Curves

When a curve C/K has a special type of bad reduction at p, strong informa-

tion can be obtained about the action of the inertia groups above p on the

Tate module of the Jacobian of C. To make this precise, it will be useful to

have an alternative description of the inertia group. Let K and F be fields,

and let φ : K −→ F ∪ {∞} be a nontrivial place of K with valuation ring

R and valuation ideal p, as in §2.2. Let Kp denote the completion of K at p,

which is the quotient field of the completion of R with respect to the p-adic

topology. Let L be a Galois extension of K, p̂ a valuation ideal of L above p,

and Lp̂ the completion of L at p̂. The extension Lp̂/Kp is Galois.

Proposition 4.9 The map rL : Gal
(
Lp̂/Kp

)
−→ Gal (L/K) given by re-

striction to L defines an isomorphism of Gal
(
Lp̂/Kp

)
onto the decomposition

group D (p̂/p).

Proof: See [Ser68], Ch. II, §3, Corollaire 4. �
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Now let K = k(t), where k is an algebraically closed subfield of C. For

each P ∈ P1(k), let φP : K −→ k∪{∞} be the place given by φP (f) = f(P )

for f ∈ K (see §2.2). Identifying P1(k) with k ∪ {∞}, the completion KP of

K with respect to φP is given by

KP =

k((t− P )) if P ∈ k,

k((1
t
)) if P =∞.

Let p be the valuation ideal of K at P , and p̂ a valuation ideal of K above p.

Then I (p̂/p) = D (p̂/p) may be identified with Gal
(
KP/KP

)
as in Proposi-

tion 4.9. Moreover, we have

KP =


⋃
n∈N

k
((

(t− P )1/n
))

if P ∈ k⋃
n∈N

k
((

(1
t
)1/n
))

if P =∞.

Understanding the action of the inertia group I (p̂/p) on the K-rational

points of an abelian variety A/K is equivalent to understanding the Galois

action on the KP -rational points of A (as a variety over KP ).

Definition 4.10 A complete nonsingular curve C/KP is called a Mumford

curve if it has a KP -model whose reduction (at P) is a union of projective

lines whose only singularities are ordinary double points.

Mumford proved the existence of the following uniformization, generaliz-

ing a theorem of Tate in the case of elliptic curves.

67



Theorem 4.11 Let C/KP be a Mumford curve of genus g, and J its Jaco-

bian. Then there is a surjective group homomorphism

υ : (K
×
P )

g −→ J
(
KP

)
commuting with the action of GKP on each side, whose kernel is a discrete

subgroup of (K
×
P )

g
freely generated by elements q1, . . . , qg ∈

(
K×P
)g

.

Proof: See [Gv80], Ch. VI, §§1.3,1.4. That a Mumford curve in our sense

is indeed a Mumford curve in the sense of [Gv80] may be found in [Gv80],

Ch. IV, Theorem 3.10. �

Remark: Theorem 4.11 remains true if KP is replaced with any field which

is complete with respect to a non-archimedean valuation.

Let p and p̂ be as above. Let ` be a rational prime, and let ρ` be the

`-adic representation associated to the Jacobian of a curve C/K of genus g.

Corollary 4.12 Suppose that C becomes a Mumford curve over KP . Then

for each σ ∈ I (p̂/p), we have

ρ`(σ) ∼

Idg ∗

0 Idg

 ,

where Idg denotes the g × g identity matrix.

Proof: Since the isomorphism υ of Theorem 4.11 commutes with the action of

GKP , it suffices to consider the action of GKP on the `nth roots of the identity

in (K
×
P )

g/〈q1, . . . , qg〉. Choosing a primitive `nth root of unity ζn ∈ KP , the

subgroup of `nth roots of the identity in (K
×
P )

g/〈q1, . . . , qg〉 is generated by
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the cosets of (ζn, 1, . . . , 1), (1, ζn, 1, . . . , 1), . . . , (1, . . . , 1, ζn), together with

`nth roots of q1, . . . , qg. Fix `nth roots q
1/`n

1 , . . . , q
1/`n

g of q1, . . . , qg. Each

σ ∈ GKP fixes each of (ζn, 1, . . . , 1), . . . , (1, . . . , 1, ζn), and since each qj is

an element of
(
K×P
)g

, σ takes q
1/`n

j to another `nth root of qj. Hence

σq
1/`n

j = (ζj1n , . . . , ζ
jg
n )q

1/`n

j

for some j1, . . . , jg ∈ Z/`nZ. Therefore, with respect to the Z/`nZ-basis

{(ζn, 1, . . . , 1), . . . , (1, . . . , 1, ζn), q1, . . . , qg} for the `nth roots of the identity

in (K
×
P )

g/〈q1, . . . , qg〉, σ acts as
(

Idg ∗
0 Idg

)
. The result now follows from the

discussion preceding Theorem 4.11. �

4.5 Hypergeometric Families of Curves

Fix an odd prime p, and consider the so-called hypergeometric family of

curves over Q(t) given by

Cn : y2 = x
(
x2pn + (4t− 2)xp

n

+ 1
)

for each n ≥ 0. Let ζn be a generator of the group µpn of pnth roots of unity

in Q. The group µpn acts as a group of automorphisms on Cn by

ζn · (x, y) = (ζnx, ζ
pn+1

2
n y).

We will denote by γn the automorphism of Cn given by the action of ζn in

order to distinguish the group ring Zp[γn] = Zp[µpn ] from the subring Zp[ζn]

of the field Qp(ζn). We will also identify µpn with the automorphism group
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generated by γn.

In addition to the hyperelliptic involution (x, y) 7−→ (x,−y) and the

action of µpn , there is also an involution τn of Cn given by

τn : (x, y) 7−→
(

1

x
,

y

xpn+1

)
.

Note that τn◦γn = γ−1
n ◦τn, so the automorphism group 〈τn, γn〉 is isomorphic

to the dihedral group of order 2pn. Tautz, Top, and Verberkmoes studied Cn

and its quotient C−n = Cn/〈τn〉 in [TTV91] (see in particular Theorem 1

and Proposition 3). For any odd prime r, the Galois representation on the

r-torsion points of the Jacobian of C−1 was subsequently studied by Darmon in

connection with the equation xr+yr = zp (see [Dar00], Theorem 1.10), as well

as by Darmon and Mestre to construct a regular extension of Q(ζn + ζ−1
n )(t)

with Galois group PSL2(Fq) for certain finite fields Fq (see [DM00], §§2,3).

Proposition 4.13 The quotient curve C−n is birationally equivalent over

Q(t) to the curve given by

y2 = xgn(x2 − 2) + 4t− 2,

where gn(x) =

pn−1
2∏
j=1

(x+ ζjn + ζ−jn ).

Idea of Proof: The subfield of the function field of Cn consisting of those

elements fixed by τn is generated by x + x−1 and y

x
pn+1

2

. Using the formal

relation

Xpn +X−p
n

= (X +X−1)gn(X2 +X−2) (4.14)
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gives the desired equation. See [TTV91], Proposition 3 for details. �

For each m ≤ n, there is a morphism φn,m : Cn −→ Cm given by

φn,m : (x, y) 7−→
(
xp

n−m
, x

pn−m−1
2 y

)
.

If the generators ζn for each µpn are chosen to be compatible in the sense

that ζpn = ζn−1 for all n, then φn,m ◦ γn = γm ◦ φn,m. Also, each φn,m satisfies

τm ◦ φn,m = φn,m ◦ τn, so φn,m induces a morphism φ−n,m : C−n −→ C−m given

explicitly by composing the maps

φ−n,n−1 : (x, y) −→

(
1

2p−1

p−1∑
k=0

(
p

2k

)
xp−2k(x2 − 4)k, y

)
.

Note that the action of the Galois group GQ(t) commutes with the maps

φn,m, φ
−
n,m. Letting Jn and J−n denote the Jacobians of Cn and C−n respectively,

the induced maps (φn,m)∗ : Vp(Jn) −→ Vp(Jm) make the extended Tate

modules into a compatible system of GQ(t)-modules (similarly for Vp(J
−
n )

with the maps (φ−n,m)∗).

Since γn does not commute with τn, it does not give rise to an automor-

phism of C−n . However, the endomorphism γn+γ−1
n of Jn does commute with

τn, and gives rise to endomorphisms of J−n . Let πn : Cn −→ C−n be the nat-

ural map. From the proof of Proposition 4.4, the kernel of π∗n : J−n −→ Jn is

contained in J−n [ degπn] = J−n [2].

Proposition 4.15 For each γ ∈ µpn , there is an endomorphism (γ + γ−1)
−

of J−n such that π∗n ◦ (γ + γ−1)
−

= (γ + γ−1) |Imπ∗n.

Proof: See [TTV91], §3.1. �
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When it is clear from the context that we are referring to endomorphisms

of J−n , we will write γ + γ−1 in place of (γ + γ−1)
−

.

The action of the full Galois group GQ(t) does not commute with the

action of µpn ; however, if we restrict to the subgroup GQ(µp∞ ,t), then these

actions do commute, so the action of GQ(µp∞ ,t) on Vp(Jn) is Qp[µpn ]-linear. In

order to obtain 2-dimensional representations of ΠQ(µp∞ ) on Vp(Jn), we must

show that Vp(Jn) is a free Qp[µpn ]-module of rank two. First we will show

that if Vp(Jn) is indeed a free Qp[µpn ]-module, then it must have rank two.

Proposition 4.16 The dimension of Jn is pn, and the dimension of J−n is

pn−1
2

.

Proof: Since the dimension of the Jacobian of a curve is equal to the genus

of the curve, we must calculate the genera of Cn and C−n . Both may be

computed using the Riemann-Hurwitz formula. For example, let

h : Cn

(
Q(t)

)
−→ P

1
(
Q(t)

)
be the degree two map taking (x, y) to x. Then h is ramified only at ∞ and

the roots of x
(
x2pn + (4t− 2)xp

n
+ 1
)
, which are distinct. Thus h has 2pn+2

ramification points, each having index two, so the Riemann-Hurwitz formula

gives

2 genus(Cn)− 2 = 2
(
2 genus(P1)− 2

)
+ 2pn + 2,

and therefore, genus(Cn) = pn. �
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To show that Vp(Jn) is free over Qp[µpn ], we will need the following lem-

mas:

Lemma 4.17 Let K be a field whose characteristic is not equal to p, and let

C/K be a curve with Jacobian J . Suppose that ξ is a nontrivial automorphism

of C having a fixed point Pξ ∈ C. Then the automorphism of Tp(J) induced

from ξ is also nontrivial.

Proof: Let fPξ : C −→ J be the embedding of Theorem 4.3. For any point

Q ∈ C not fixed by ξ, we have

ξfPξ(Q) = ξ∗[Q− Pξ] = [ξ∗Q]− [Pξ] = fPξ(ξQ),

and fPξ(ξQ) 6= fPξ(Q) since fPξ is injective. Therefore ξ∗ is a nontrivial

automorphism of J . The result now follows from the fact that for any abelian

varieties A and B over a field K of characteristic not equal to p, the natural

map

Hom(A,B) −→ HomZp−mod (Tp(A), Tp(B))

is injective (see [Mil86a], Lemma 12.2). �

Lemma 4.18 Let G be a finite group acting as automorphisms on a curve

C/C(t) with Jacobian J . Then for some Qp[G]-module M , Vp(J) is isomor-

phic to M2 as a Qp[G]-module.

Proof: Let α ∈ C be a point at which C has good reduction, and let Jα

denote the reduction of J at t = α. Since char(C) = 0, for each m ∈ N the
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reduction map rα : J −→ Jα restricts to an isomorphism from the m-torsion

points of J fixed by any given inertia group above t = α to the m-torsion

points of Jα (see [ST68], Lemma 2). Since J has good reduction at t = α, each

inertia group above t = α acts trivially on Tp(J), and therefore rα induces

an isomorphism Tp(J) ∼= Tp(Jα). Thus it suffices to prove the result when J

is replaced with Jα, where the action of G on Jα is induced from J via rα.

Let g be the dimension of Jα, and let Λ be a lattice of Cg such that

C
g/Λ ∼= Jα as in Theorem 4.2. The action of G on Jα lifts to a linear action

on Cg fixing Λ. Let {λ1, . . . , λ2g} be a Z-basis for Λ. Reordering the λj’s if

necessary, we may assume that {λ1, . . . , λg} and {λg+1, . . . , λ2g} are C-bases

for Cg. Since {λ1⊗ 1, . . . , λ2g ⊗ 1} is a C-basis for Λ⊗C, the representation

of G on Λ⊗ C is isomorphic to two copies of that on Cg.

On the other hand, identifying Jα[ pn] with 1
pn

Λ/Λ, there is a canonical

Zp-module isomorphism Tp(Jα) ∼= Λ ⊗ Zp commuting with the action of G,

given by

(
2g∑
j=1

aj,n
λj
pn

)
n∈N

7−→
2g∑
j=1

λj ⊗ (aj,n)n∈N ,

where each aj,n ∈ Z/pnZ. Let χV be the character corresponding to the rep-

resentation of G on V := Vp(Jα) ∼= Q
2g
p , and χW the character corresponding

to the representation of G on W := Cg. From above, there is a C[G]-module

isomorphism Λ⊗C ∼= W 2, so the character corresponding to the representa-

tion of G on Λ ⊗ C is 2χW . Since G acts on the free Z-module Λ, χW must

take values in Q, and thus 2χW is the character obtained from the represen-

tation of G on Λ⊗Q, and hence also from that on Λ⊗Qp
∼= V . Therefore,
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χV is equal to 2χW . �

Proposition 4.19 The extended Tate module Vp(Jn) is a free module of rank

two over Qp[µpn ].

Proof: Let χ be an irreducible character of µpn over Qp. Over L = Qp(ζn), χ

decomposes as a sum of 1-dimensional characters χ1, . . . , χr. The characters

χ1, . . . , χr form a Galois conjugacy class over Qp, and each appears with

multiplicity one (see [Isa94], Theorem 9.21). On the other hand, given any

irreducible character χ̃ of µpn over L, there is a unique irreducible character

χ of µpn over Qp which has χ̃ as a constituent when lifted to L (see [Isa94],

Corollary 9.7). Therefore, the irreducible characters χ of µpn over Qp are

precisely those of the form

χ =
∑

σ∈Gal(Qp(ζk)/Qp)

χ̃σ,

where χ̃ is a 1-dimensional character of µpn over Qp(ζk) which is not defined

over Qp(ζk−1). Fixing a generator γn of µpn , such a character χ̃ is determined

by χ̃(γn), which is a primitive pkth root of 1. Moreover, if χ̃′ is any other

character of µpn defined over Qp(ζk) but not over Qp(ζk−1), then χ̃′(γn) is

also a primitive pkth root of 1, and hence there is some σ ∈ Gal (Qp(ζk)/Qp)

for which χ̃′ = χ̃σ. Therefore, the irreducible characters of µpn over Qp are

in one-to-one correspondence with the factor groups of µpn , and are given by

χ0, . . . , χn, where χ0 is the trivial character, and χj has dimension pj − pj−1

for each j = 1, . . . , n.

When n = 0, Vp(J0) has rank two over Qp by Proposition 4.16. Suppose

for induction that Vp(Jn−1) ∼= Qp[µpn−1 ]2 as Qp[µpn−1 ]-modules. By Proposi-
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tion 4.4, the map φn,n−1 : Cn −→ Cn−1 induces an injection

(
φ∗n,n−1

)
p

: Vp(Jn−1) ↪→ Vp(Jn).

Since γn acts on the image of Vp(Jn−1) as a generator γn−1 of µpn−1 ,
(
φ∗n,n−1

)
p

gives an inclusion Qp[µpn−1 ]2 ↪→ Vp(Jn) of Qp[µpn ]-modules. Since γp
n−1

n acts

nontrivially on Cn, by Lemma 4.17, the automorphism induced from γp
n−1

n on

Vp(Jn) also acts nontrivially, and therefore µpn acts faithfully on Vp(Jn). From

above, there is only one irreducible representation of µpn over Qp which does

not factor through µpn−1 , namely that having the character χn; therefore,

the Qp[µpn ]-module M corresponding to χn must appear as a summand of

Vp(Jn) (as a Qp[µpn ]-module). By Lemma 4.18, two copies of M must appear,

so there is an isomorphic copy of Qp[µpn−1 ]2 ⊕M2 contained in Vp(Jn). Now

Qp[µpn−1 ]⊕M is a direct sum of all irreducible Qp[µpn ]-modules, and hence

is isomorphic to Qp[µpn ]. By Proposition 4.16, Vp(Jn) has Qp-dimension 2pn,

so the inclusion of Qp[µpn ]2 in Vp(Jn) is an isomorphism. �

Remark: For each choice of n-tuple

ζ = (1, ζ1, . . . , ζn) ∈ {1} × µp × · · · × µpn

in which each ζj is a primitive pjth root of unity in Qp, there is a ring

isomorphism

Qp[µpn ] ∼= Qp ⊕Qp(ζ1)⊕ · · · ⊕Qp(ζn)

given by mapping γn to ζ. This isomorphism arises through the isomorphism
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Qp[µpn ] ∼= Qp[T ]/
(
T p

n − 1
)

which takes γn to T . Factoring T p
n−1 and apply-

ing the Chinese remainder theorem gives the isomorphism above. Choosing

a Qp[µpn ]-basis for Vp(Jn), we obtain an isomorphism

Vp(Jn) ∼= Q
2
p ⊕Qp(ζ1)2 ⊕ · · · ⊕Qp(ζn)2

of Qp[µpn ]-modules.

By Proposition 4.4, we may view Vp(J
−
n ) and Vp(Jk) as lying inside Vp(Jn)

whenever k < n.

Lemma 4.20 The intersection of Vp(J
−
n ) with Vp(J0) in Vp(Jn) is trivial.

Proof: Since φn,0(P ) = φn,0(Q) if and only if P = γjnQ for some j, Vp(J0)

is contained in the submodule Vp(Jn)µpn of elements of Vp(Jn) fixed by µpn .

Similarly, Vp(J
−
n ) is contained in Vp(Jn)〈τn〉. Now φn,0 ◦ τn = τ0 ◦ φn,0, so the

action of τn on Vp(Jn) restricts to the action of τ0 on Vp(J0). Note that τ0 acts

nontrivially on every point (x, y) ∈ C0 for which x 6= ±1, and fixes the points

where x = ±1. By Lemma 4.17, 〈τ0〉 and hence also 〈τn〉 act faithfully on

Vp(J0). Let Dn = 〈γn, τn〉, so that Vp(Jn)Dn = Vp(Jn)µpn ∩Vp(Jn)〈τn〉. Suppose

that Vp(Jn)Dn is nontrivial; then by Lemma 4.18, it has Qp-dimension at least

two. On the other hand, by Proposition 4.19, Vp(Jn)µpn hasQp-dimension two,

so we must have Vp(Jn)Dn = Vp(Jn)µpn , contradicting that 〈τn〉 acts faithfully

on Vp(J0) ⊂ Vp(Jn)µpn . �

Proposition 4.21 The Qp-vector space Vn := Vp(J
−
n )⊕Vp(J0) ⊂ Vp(Jn) is a

free Qp[γn +γ−1
n ]-module of rank two. Moreover, two elements b0, b1 ∈ Vp(Jn)

form a Qp[γn + γ−1
n ]-basis for Vn if and only if they are elements of Vn and

they form a Qp[µpn ]-basis for Vp(Jn).
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Proof: Suppose that {b0, b1} ⊂ Vn is a Qp[µpn ]-basis for Vp(Jn). Then the

set B = {(γjn + γ−jn )bl}j=0,... , p
n−1
2

; l=0,1 ⊂ Vn is linearly independent over Qp,

and thus generates a Qp-vector space of dimension pn + 1 contained in Vn.

By Proposition 4.16, Vn has Qp-dimension 2
(
pn−1

2

)
+ 2 = pn + 1, so B is a

Qp-basis for Vn; in particular, b0, b1 generate Vn over Qp[γn + γ−1
n ]. Further-

more, since b0, b1 are linearly independent over Qp[µpn ], they must also be

linearly independent over Qp[γn + γ−1
n ]. Therefore, {b0, b1} forms a basis for

Vn over Qp[γn + γ−1
n ]. Thus to prove the first statement it suffices to show

that there exists a Qp[µpn ]-basis {b0, b1} for Vp(Jn) which is contained in Vn.

Note that Dn = 〈γn, τn〉 is isomorphic to the dihedral group of order 2pn.

The irreducible characters of Dn over Q consist of the trivial character, the

nontrivial irreducible character of Dn/〈τn〉, and pn−1
2

characters of dimension

two each taking the value 0 at τn (see [JL93], §18.3). Since τn has order 2,

it must have eigenvalues 1 and −1 under each of the two-dimensional ir-

reducible representations. From Lemma 4.20, the representation of Dn on

Vp(J0) = Vp(Jn)µpn consists of two copies of the nontrivial one-dimensional

representation. Each irreducible summand of the representation of Dn on

Vp(Jn)/Vp(J0) decomposes over Qp as a sum of the two-dimensional repre-

sentations of Dn, and the subspace of τn-fixed points of each of these has

dimension one. Thus the subspace (Vp(Jn)/Vp(J0))τn of Vp(Jn)/Vp(J0) has

dimension 2pn−2
2

= pn − 1, and contains Vp(J
−
n ). Since Vp(J

−
n ) itself has di-

mension pn − 1, we have Vp(J
−
n ) = Vp(Jn)τn . Now

Vp(Jn−1) ∩ Vp(J−n ) = Vp(Jn−1)τn = Vp(Jn−1)τn−1 = Vp(J
−
n−1),
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so Vp(J
−
n ) ∩ Vn = Vn−1. Fix a Qp[µpn ]-module isomorphism

Vp(Jn) ∼= Q
2
p ⊕Qp(ζ1)2 ⊕ · · · ⊕Qp(ζn)2,

and identify each subspace with its image in Q
2
p ⊕ · · · ⊕ Qp(ζn)2. Since

Vp(Jn−1) = Q
2
p ⊕ · · · ⊕ Qp(ζn−1)2, we have Vn = Vn−1 ⊕ (Qp(ζn)2 ∩ Vn) as

a Qp-vector space, and hence

dimQp

(
Qp(ζn)2 ∩ Vn

)
= dimQpVn − dimQpVn−1 = pn − pn−1.

We now proceed by induction. When n = 0, V0 = Vp(J0), and therefore

contains a Qp-basis for Vp(J0). Suppose for induction that Vn−1 contains

a Qp[µpn−1 ]-basis {b0,n−1, b1,n−1} for Vp(Jn−1). If (Qp(ζn)2 ∩ Vn) contains a

Qp(ζn)-basis {b0,n, b1,n} for Qp(ζn)2, then {b0,n + b0,n−1, b1,n + b1,n−1} is a

Qp[µpn ]-basis for Vp(Jn) contained in Vn, as desired. If not, then since

dimQp

(
Qp(ζn)2 ∩ Vn

)
= pn − pn−1 = dimQpQp(ζn),

there must be some b ∈ Qp(ζn)2 ∩ Vn for which Qp(ζn)2 ∩ Vn = Qp(ζn) b. But

then Qp(ζn)2 ∩ Vn is an irreducible faithful Qp[µpn ]-module on which τn acts

trivially, which contradicts the fact that the only irreducible representation

of Dn having τn in its kernel is the trivial one.

All that remains is to prove that if B′ = {b′0, b′1} is a Qp[γn + γ−1
n ]-basis

for Vp(J
−
n ) then it is a Qp[µpn ]-basis for Vp(Jn). Let B = {b0, b1} ⊂ Vp(J

−
n )

be a Qp[µpn ]-basis for Vp(Jn). From above, B is also a Qp[γn + γ−1
n ]-basis for

Vp(J
−
n ), and therefore writing b′0 = α0,0b0 + α1,0b1, b

′
1 = α0,1b0 + α1,1b1 with
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αi,j ∈ Qp[γn + γ−1
n ], the matrix M = (αi,j)0≤i,j≤1 is invertible. Extending

scalars to Qp[µpn ], M remains invertible, so B′ is indeed a Qp[µpn ]-basis for

Vp(Jn). �

Since the action of GQ(µp∞ ,t) on Vp(Jn) and Vp(J
−
n ) commutes with the

actions of Qp[µpn ] and Qp[γn + γ−1
n ] respectively, choosing a Qp[µpn ]-basis B

for Vp(Jn) contained in Vp(J
−
n ), the action of GQ(µp∞ ,t) on Vp(Jn) and Vp(J

−
n )

respectively gives representations

ρn : GQ(µp∞ ,t) −→GL2 (Qp[µpn ])

and ρ−n : GQ(µp∞ ,t) −→GL2

(
Qp[γn + γ−1

n ]
)
.

Since the basis is the same for both representations, ρn is simply the rep-

resentation obtained from ρ−n by extending scalars to Qp[µpn ]. Since the ac-

tion of GQ(µp∞ ,t) commutes with φn,m, the representations ρn are compatible

with respect to the maps Qp[µpn ] −→ Qp[µpm ] taking γn to γm for each

m ≤ n. We will show that, with respect to an appropriate basis, the im-

age of ρn is contained in GL2 (Zp[µpn ]), and thus we obtain a representation

ρhg : GQ(µp∞ ,t) −→ GL2

(
lim←−Zp[µpn ]

)
∼= GL2 (Zp[[T ]]).

4.6 The Reduction Type of Cn, C
−
n and the Associated

Galois Representation

In order to understand the local behaviour of the Galois representation

ρn : GQ(µp∞ ,t) −→ GL2 (Qp[µpn ]) ,
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we will consider the reduction type of Cn and C−n at various places. By the

above discussion, ρn may be viewed as the representation associated to C−n by

composing with the natural inclusion GL2 (Qp[γn + γ−1
n ]) ↪→ GL2 (Qp[µpn ]),

so we will no longer distinguish between the two representations. Thus we

may obtain information about ρn by considering either Cn or C−n .

Proposition 4.22 As a curve over Q(t), Cn has good reduction outside

t = 0, 1,∞.

Proof: For t ∈ Q, the curve Cn(t)/Q given by

Cn(t) : y2 = f(x) = x
(
x2pn + (4t− 2)xp

n

+ 1
)

is singular if and only if f(x) has a repeated root. The roots of f(x) are given

by

x = 0, ζjn

(
−(4t− 2)±

√
(4t− 2)2 − 4

2

)
j = 0, . . . , pn − 1.

Thus f(x) has a repeated root if and only if

−(4t− 2) +
√

(4t− 2)2 − 4 = ζjn

(
−(4t− 2)−

√
(4t− 2)2 − 4

)
for some j. Solving gives t = 0 or 1.

Whenever t 6= 0, 1,∞, one may apply the argument of the proof of Propo-

sition 4.16 to show that the genus of Cn(t) is the same as that of Cn. �

Corollary 4.23 The representation ρn factors through ΠQ(µp∞ ,t).
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Proof: By Proposition 4.8, ρgeom
n = ρn|Π

Q
is unramified outside t = 0, 1,∞,

and hence factors through the Galois group of the maximal algebraic exten-

sion Q̂(t) of Q(t) unramified outside t = 0, 1,∞. The result now follows from

Corollary 3.4 with K = Q(µp∞). �

The residual representation ρ̄ of each ρn is the representation of ΠQ(µp∞ )

describing the action on the p-torsion points of the elliptic curve C0. Let

EL/Q(t) denote the Legendre family of elliptic curves

EL : y2 = x(x− 1)(x− t).

There is a 2-isogeny φ : C0 −→ EL given by

φ : (x, y) 7−→
(
− y2

4x2
+ t,

iy(1− x2)

8x2

)
;

in particular, ρ̄geom = ρ̄|Π
Q

is also the representation of Π
Q

attached to the

p-torsion points of EL. In order to determine ρ̄geom explicitly, we first need a

lemma:

Lemma 4.24 Let E1 : y2 = x3 + ax2 + bx + c be an elliptic curve defined

over a field K, and let ρ1 : GK −→ GL2(Fp) be the Galois representation

associated to E1. For any d ∈ K×, the twist

E2 : dy2 = x3 + ax2 + bx+ c
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of E1 has the associated Galois representation ρ2 = ρ1 ⊗ χK(
√
d)/K , where

χK(
√
d)/K(σ) =

1 if σ fixes
√
d,

−1 otherwise.

Proof: Fix an Fp-basis {(x0, y0), (x1, y1)} for the p-torsion points of E1. The

map φ√d : E1 −→ E2 defined by φ√d(x, y) =
(
x, y√

d

)
is an isomorphism of

elliptic curves, so {
(
x0,

y0√
d

)
,
(
x1,

y1√
d

)
} is an Fp-basis for the p-torsion points

of E2; moreover, if σ · (xi, yi) = a0(x0, y0) + a1(x1, y1), then for σ ∈ GK ,

σ ·
(
xi,

yi√
d

)
= a0

(
x0,

y0

σ(
√
d)

)
+ a1

(
x1,

y1

σ(
√
d)

)
.

If σ(
√
d) =

√
d, then σ ·

(
xi,

yi√
d

)
= a0

(
x0,

y0√
d

)
+ a1

(
x1,

y1√
d

)
for i = 0, 1.

Otherwise, σ(
√
d) = −

√
d, and thus

σ ·
(
xi,

yi√
d

)
= a0

(
x0,− y0√

d

)
+ a1

(
x1,− y1√

d

)
= −a0

(
x0,

y0√
d

)
− a1

(
x1,

y1√
d

)
,

as desired. �

Proposition 4.25 The representation ρ̄geom satisfies

ρ̄geom(σ0) ∼

1 1

0 1

 and ρ̄geom(σ1) ∼

 1 0

−4 1

 .

Proof: At t = 0, C0 reduces to the curve

C0(0) : y2 = x(x− 1)2,
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whose only singularity is a node at the point (1, 0). Let N0 be the genus 0

curve defined by N0 : y2 = x. There is a birational map φ0 : C0(0) −→ N0

given by

φ0 : (x, y) −→
(
x,

y

x− 1

)
,

so C0(0) is birationally equivalent to a projective line. Therefore, C0 is a

Mumford curve at t = 0, and Corollary 4.12 gives ρ̄geom(σ0) ∼ ( 1 1
0 1 ). A

similar argument shows that ρ̄geom(σ1) ∼ ( 1 1
0 1 ) as well.

For the reduction at t =∞, consider the twist C ′0 of C0 given by

C ′0 : ty2 = x3 + (4t− 2)x2 + x.

Letting u = 1
t

and replacing x with u
x

and y with uy
x2 gives the model

y2 = x3 + (4− 2u)x2 + u2x

for C ′0. At u = 0 (that is, at t =∞), this model reduces to

y2 = x2(x+ 4),

which is a projective line with a nodal singularity at the point (0, 0); therefore,

C ′0 is a Mumford curve at t = ∞. Since σ∞(
√
t) = −

√
t, Lemma 4.24 gives

ρ̄geom(σ∞) ∼
( −1 −1

0 −1

)
.

Fixing an Fp-basis for the p-torsion points of C0 with respect to which

ρ̄geom(σ0) = ( 1 1
0 1 ), we cannot have ρ̄geom(σ1) = ( 1 ∗

0 1 ) since ρ̄geom(σ∞) has order

2p. Thus changing basis if necessary, we may assume that ρ̄geom(σ1) = ( 1 0
α 1 )
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for some α ∈ F×p . Multiplying gives

ρ̄geom(σ∞) = (ρ̄geom(σ0)ρ̄geom(σ1))−1 =

 1 −1

−α 1 + α

 ;

in particular, tr ρ̄geom(σ∞) = 2 + α. On the other hand, tr ρ̄geom(σ∞) = −2

since ρ̄geom(σ∞) ∼
( −1 −1

0 −1

)
, and thus α = −4. �

To examine the reduction type of C−n at t = 0, 1, we will use some iden-

tities which appear in [Dar00], p.420.

Lemma 4.26 Let gn(x) be as in Proposition 4.13. Then

xgn(x2 − 2) = gn(−x)2(x− 2) + 2 = gn(x)2(x+ 2)− 2.

Proof: First we will show that xgn(x2−2)−2 = gn(−x)2(x−2). From (4.14),

we have

xp
n

+ x−p
n

= (x+ x−1)gn(x2 + x−2). (4.27)

Thus putting x = ζjn + ζ−jn into xg(x2 − 2)− 2 gives

(ζjn + ζ−jn )gn(ζ2j
n + ζ−2j

n )− 2 = (ζjn)p
n

+ (ζjn)−p
n − 2 = 0,

so ζjn + ζ−jn is a root of xgn(x2 − 2) − 2 for each j = 0, . . . , p
n−1
2

. Since

gn(x) =

pn−1
2∏
j=1

(x + ζjn + ζ−jn ), each ζjn + ζ−jn is also a root of gn(−x)2(x − 2).
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Taking x = −ζjn − ζ−jn gives

−(ζjn + ζ−jn )gn(ζ2j
n + ζ−2j

n )− 2 = −4,

and replacing j with j + pn if necessary so that j is even,

gn(ζjn + ζ−jn )2(−ζjn − ζ−jn − 2) = gn
(
(ζj/2n )2 + (ζj/2n )−2

)2
(−ζjn − ζ−jn − 2)

=

(
(ζ
j/2
n )p

n
+ (ζ

j/2
n )−p

n

ζ
j/2
n + ζ

−j/2
n

)2

(−ζjn − ζ−jn − 2)

=
4

ζjn + ζ−jn + 2
(−ζjn − ζ−jn − 2) = −4,

so xgn(x2−2)−2 and gn(−x)2(x−2) also agree at the pn+1
2

points −ζjn−ζ−jn
for j = 0, . . . , p

n−1
2

. Thus xgn(x2−2)−2 and gn(−x)2(x−2) are polynomials

of degree pn which agree at pn + 1 points, and hence are equal.

Since xgn(x2 − 2) is odd,

xgn(x2 − 2) = −(−x)gn((−x)2 − 2)

= −
(
gn (−(−x))2 (−x− 2) + 2

)
= gn(x)2(x+ 2)− 2,

as desired. �

Proposition 4.28 The curve C−n is a Mumford curve at t = 0 and t = 1.

Proof: Using the identity xgn(x2 − 2) = gn(−x)2(x− 2) + 2, we have

C−n : y2 = gn(−x)2(x− 2) + 4t.
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At t = 0, this reduces to the curve C−n (0) : y2 = gn(−x)2(x − 2), whose

singularities consist of ordinary double points at (ζjn + ζ−jn , 0) for each

j = 1, . . . , p
n−1
2

. The map from C−n (0) to N : y2 = x − 2 which takes (x, y)

to
(
x, y

g(−x)

)
defines a birational equivalence between C−n (0) and a curve of

genus zero, that is, a projective line.

The argument for t = 1 is similar, except that one uses instead the identity

xgn(x2 − 2) = gn(x)2(x+ 2)− 2. �

To calculate the image of the inertia group at t = ∞, we view C−n as

being defined over the field Q
((

1
t

))
.

Proposition 4.29 The curve C−n acquires good reduction at t =∞ over the

field Q
(((

1
t

)1/2pn
))

.

Proof: Let u =
(

1
t

)1/2pn
. Consider the curve C̃−n /Q((u)) given by

C̃−n : y2 = x

pn−1
2∏
j=1

(
1 + (ζjn + ζ−jn − 2)u4x2

)
+ (4− 2u2pn)xp

n+1.

There is an isomorphism φ : C̃−n −→ C−n defined over Q((u)) given by

φ : (x, y) 7−→
(

1

u2x
,

y

upnx
pn+1

2

)
.

Reducing C̃−n at u = 0 (that is, at t =∞) gives the nonsingular curve

C̃−n (∞) : y2 = 4xp
n+1 + x,

which has genus pn−1
2

. �
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Corollary 4.30 The inertia group I∞ ⊂ Π
Q

at t =∞ is mapped by ρn to a

subgroup of GL2 (Qp[µpn ]) of order dividing 2pn.

Proof: By Proposition 4.8, the restriction of ρn to I∞ factors through the

Galois group Gal
(
Q

(((
1
t

)1/2pn
))/

Q

((
1
t

)))
, which has order 2pn. �

We were not able to give an elementary proof that ρn(I∞) has order

exactly 2pn, because of the difficulty in understanding in general when a

curve with bad reduction at a particular place may have a Jacobian with

good reduction at that place. This result will follow, however, from a general

construction of Katz.

4.7 A Theorem of Katz

Let α1, α2, β1, β2 ∈ Q be such that αi−βj is not an integer for any i, j = 1, 2.

Suppose that

κ : Π
Q
−→ GL2 (Qp(ζn))

is such that κ(σ0) has eigenvalues e2πiα1 , e2πiα2 , κ(σ1) has repeated eigen-

value 1, and κ(σ∞) has eigenvalues e2πiβ1 , e2πiβ2 . According to a theorem of

Bely̆ı, such a representation is unique up to conjugation by an element of

GLn (Qp(ζn)). To be precise, Bely̆ı’s theorem asserts that for any field k, if

M0,M1 ∈ GLn(k) generate an irreducible subgroup of GLn(k), and one of

M0,M1, or (M0M1)−1 differs from a scalar matrix by a matrix of rank one,

then (M0,M1, (M0M1)−1) is rigid in GLn(k) (see [Bel80], Theorem 2).

Note that if A/Q(t) is an abelian variety of dimension pn − pn−1 which

contains Z[ζn] in its endomorphism ring, then Vp(A) is a vector space of
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dimension 2 over Qp(ζn); if, moreover, A has good reduction outside

t = 0, 1,∞, then the action of Π
Q

on Vp(A) gives rise to a 2-dimensional

representation of Π
Q

over Qp(ζn). Katz’ theorem realizes κ as the represen-

tation associated to such an abelian variety A defined over Q(t).

Let N be a common denominator for α1, α2, β1, β2, and let A(j) = Nαj,

B(j) = Nβj ∈ Z for each j = 1, 2. The nonsingular curve D̃/Q(t) defined by

D̃ :


xN1 = y

A(1)
1 (1− y1)B(1)−A(1)

xN2 = y
A(2)
2 (1− y2)B(2)−A(2)

y1y2 = t

possesses a natural action of µN × µN ⊂ Q̄× Q̄ by

(ζjN , ζ
l
N) · (x1, y1, x2, y2) = (ζjNx1, y1, ζ

l
Nx2, y2)

for each j, l ∈ Z/pnZ, (x1, y1, x2, y2) ∈ D̃(Q(t)), where ζN is a primitive Nth

root of unity. Defining a character

χ : µN × µN −→ Q
×

(ζjN , ζ
l
N) 7−→ ζj+lN ,

ker(χ) is the subgroup of µN×µN consisting of elements of the form (ζjN , ζ
−j
N ).

Let D be the quotient of D̃ by the group of automorphisms ker(χ).

Theorem 4.31 The Jacobian of D has a quotient A of dimension pn−pn−1

whose endomorphism ring contains Z[ζn], and whose associated representa-
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tion of Π
Q

is κ.

Proof: See [Kat90], Theorem 5.4.4. �

Remark: Theorem 5.4.4 of [Kat90] more generally gives geometric construc-

tions of n-dimensional representations

κ : Π
Q
−→ GLn (Qp(ζn))

for any choice of eigenvalues e2πiα1 , . . . , e2πiαn of κ(σ0), and e2πiβ1 , . . . , e2πiβn

of κ(σ∞), where α1, . . . , αn, β1, . . . , βn ∈ Q satisfy the condition that αi−βj
is not an integer for any i, j; again κ(σ1) has repeated eigenvalue 1.

In order to show that ρn(σ∞) has order 2pn, we use Theorem 4.31 with

α1 = α2 = 0, β1 = 1
2pn

, and β2 = − 1
2pn

; thus we will construct a representation

κn : Π
Q
−→ GL2 (Qp(ζn))

such that κn(σ0), κn(σ1) each have repeated eigenvalue 1, and κn(σ∞) has

eigenvalues −ζn, −ζ−1
n , where ζn is a primitive pnth root of unity. Taking

N = 2pn, we obtain A(1) = A(2) = 0, B(1) = 1, and B(2) = −1. Let

D̃n/Q(t) be the curve defined by

D̃n :


X2pn

1 = 1− Y1

X2pn

2 = (1− Y2)−1

Y1Y2 = t.

(4.32)

With χ as above, let Dn denote the quotient curve D̃n/ker(χ). The subfield

of the function field of D̃n consisting of those elements invariant under ker(χ)
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is generated over Q(t) by

y = Y1 = t/Y2 and x = X1X2.

From (4.32), we see that a model for Dn is given by

Dn : x2pn = (1− y)

(
1− t

y

)−1

.

For each n, let D◦n be the curve defined by

D◦n : xp
n

= (1− y)

(
1− t

y

)−1

.

Let Kn and K◦n denote the Jacobians of Dn and D◦n respectively. Let

πn : Dn −→ Dn−1 be the morphism mapping (x, y) to (xp, y), and let

π◦n : Dn −→ D◦n be the morphism mapping (x, y) to (x2, y).

There is a natural action of µpn on Dn and on D◦n by γn(x, y) = (ζnx, y),

which satisfies the relations

πn ◦ γn = γn−1 ◦ πn and π◦n ◦ γn = γ2
n ◦ π◦n,

provided that the generators γn of each µpn are chosen so that ζpn = ζn−1.

Thus Vp(Kn), Vp(K
◦
n), and Vp(Kn−1) areQp[µpn ]-modules, and the morphisms

πn, π◦n induce Qp[µpn ]-module inclusions

π∗n : Vp(Kn−1) ↪→ Vp(Kn) and (π◦n)∗ : Vp(K
◦
n) ↪→ Vp(Kn).
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On the other hand, Dn is related to Cn by the morphism

ψn : Dn −→ Cn

(x, y) 7−→
(
x2, xp

n+1

(
2(y + ty−1 − 1) + x2pn + x−2pn

xpn + x−pn

))
.

We define abelian varieties

An := Kn

/
(π∗n(Kn−1) + (π◦n)∗(K◦n)) ,

Jnew
n := Jn

/
φ∗n,n−1(Jn−1).

Let pn : Kn −→ An be the natural projection.

Proposition 4.33 The abelian variety An is the quotient of Kn of Theo-

rem 4.31, and the map pn ◦ ψ∗n : Jn −→ An induces a Qp(ζn)-vector space

isomorphism Vp(J
new
n ) ∼= Vp(An) which commutes with the action of Π

Q
. In

particular, the eigenvalues of σ∞ as a Qp(ζn)-linear map on Vp(J
new
n ) are

−ζn,−ζ−1
n .

Proof: A computation using the Riemann-Hurwitz formula shows that the

genus of Dn is 2pn − 1, and that of D◦n is pn − 1. If we show that

(π◦n)∗ (Vp(K
◦
n))
⋂

ψ∗n (Vp(Jn)) = {0},

then counting Qp-dimensions, we must have

Vp(Kn) ∼= Vp(K
◦
n)⊕ Vp(Jn). (4.34)

Let σ be the involution of Dn which maps (x, y) to (−x, y), so that

92



D◦n = Dn/〈σ〉. Then σ∗ : Kn −→ Kn fixes each point in (π◦n)∗(K◦n). On the

other hand, letting h denote the hyperelliptic involution h : (x, y) 7−→ (x,−y)

on Cn, we have the relation ψn◦σ = h◦ψn. Since h∗ acts as −1 on Jn, σ∗ acts

as −1 on ψ∗n(Jn); in particular, σ∗ acts nontrivially on every element of ψ∗n(Jn)

which does not have order 2. Therefore, (π◦n)∗(K◦n) ∩ ψ∗n(Jn) is contained in

Kn[2], and in particular (π◦n)∗ (Vp(K
◦
n)) ∩ ψ∗n (Vp(Jn)) = {0}, as desired.

A similar analysis to that in the proof of Proposition 4.19 shows that

there is a Qp[µpn ]-module isomorphism

Vp(K
◦
n) ∼= Qp(ζn)2 ⊕ · · · ⊕Qp(ζ1)2.

Thus by (4.34), we have

Vp(Kn) ∼= Qp(ζn)4 ⊕ · · · ⊕Qp(ζ1)4 ⊕Q2
p

for each n ≥ 1. Since π∗n and (π◦n)∗ are Qp[µpn ]-module inclusions,

π∗n (Vp(Kn−1)) + (π◦n)∗ (Vp(K
◦
n))

∼= Qp(ζn)2 ⊕Qp(ζn−1)4 ⊕ · · · ⊕Qp(ζ1)4 ⊕Q2
p,

and therefore Vp(An) ∼= Qp(ζn)2. Let Knew
n := Kn/π

∗
n(Kn−1), and let

(K◦n)new := K◦n/(π
◦
n,n−1)∗(K◦n−1), where π◦n,n−1 : D◦n −→ D◦n−1 is given by

π◦n,n−1(x, y) = (xp, y); thus Vp(K
new
n ) ∼= Qp(ζn)4 and Vp ((K◦n)new) ∼= Qp(ζn)2.

Note that D◦n is the curve constructed by Theorem 4.31 when α1 = α2 = 0,

β1 = 1
pn

, and β2 = −1
pn

. The abelian variety (K◦n)new is the only quotient of K◦n

of dimension pn− pn−1 which contains Z[ζn] in its endomorphism ring, so by
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Theorem 4.31, σ∞ has eigenvalues ζn, ζ
−1
n as a Qp(ζn)-linear automorphism

of Vp ((K◦n)new).

Let K ⊂ Knew
n be such that Knew

n /K is the quotient of Theorem 4.31.

Then Vp(K) ⊂ Vp(K
new
n ) must contain the eigenvectors of σ∞ correspond-

ing to the eigenvalues ζn, ζ
−1
n , for otherwise σ∞ would have at least three

distinct eigenvalues as a Qp(ζn)-linear automorphism of the 2-dimensional

vector space Vp(K
new
n ). Therefore, Vp(K) = (π◦n)∗ (Vp(K

◦
n)), so An is the quo-

tient of Theorem 4.31. Moreover, the inclusion ψ∗n composed with the natural

map Vp(Kn) −→ Vp(An) induces a Qp(ζn)-vector space isomorphism

(ψ∗n)new : Vp(J
new
n ) −→ Vp(An).

Since the isomorphism of (4.34) commutes with the action of Π
Q

, so does

(ψ∗n)new. �

Proposition 4.35 The Qp[γn + γ−1
n ]-module Vn = Vp(J

−
n ) ⊕ Vp(J0) has a

basis {b0, b1} with respect to which

ρn(σ0) =

1 1

0 1

 and ρn(σ1) =

 1 0

αn 1


for some αn ∈ Qp[γn + γ−1

n ]×.

Proof: By Proposition 4.25, the representation ρgeom
0 = ρ0|Π

Q
is given by

ρ0(σ0) =

1 1

0 1

 , ρ0(σ1) =

 1 0

α0 1


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for some α0 ∈ Z×p reducing to −4 mod p. Thus by Proposition 4.28 and

Corollary 4.12, the p-adic representation ρ̃n : Π
Q
−→ GLpn+1(Qp) satisfies

ρ̃n(σi) ∼



1 0 . . . 0 ∗ ∗ . . . ∗ 0 0

0 1 . . . 0 ∗ ∗ . . . ∗ 0 0
...

...
...

...
...

...
...

...

0 0 . . . 1 ∗ ∗ . . . ∗ 0 0

0 0 . . . 0 1 0 . . . 0 0 0

0 0 . . . 0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 1 0 0

0 0 . . . 0 0 0 . . . 0 1 1

0 0 . . . 0 0 0 . . . 0 0 1



(4.36)

for each i = 0, 1.

We now proceed by induction on n. When n = 0, the result follows from

above. Assume that there is such a basis for Vn−1. Choosing a pnth root of

unity ζn ∈ Qp gives rise to an isomorphism

Qp[γn + γ−1
n ] ∼= Qp(ζn + ζ−1

n )⊕Qp[γn−1 + γ−1
n−1],

and thus also a Qp[γn + γ−1
n ]-module isomorphism

Vn ∼= Qp(ζn + ζ−1
n )2 ⊕ Vn−1.

By assumption, there is a basis {b0,n−1, b1,n−1} for Vn−1 which satisfies
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σi · bi,n−1 = bi,n−1 for i = 0, 1. From (4.36), σ0 fixes a Qp-subspace of Vn

of dimension pn+1
2

, and since there is a nontrivial subspace of Vp(J0) not

fixed by σ0, σ0 fixes a subspace of Vn−1 of dimension at most pn−1. Since

p > 2 > 2 − 1
pn−1 , we have pn+1

2
> pn−1, so there some nonzero element

b̂0 ∈ Qp(ζn + ζ−1
n )2 fixed by σ0. Let b0 = b̂0 + b0,n−1. Since b0,n−1 generates a

free module over Qp[γn−1 + γ−1
n−1] and Qp(ζn + ζ−1

n ) is a field, b0 generates a

free module over Qp[γn + γ−1
n ]. By the same argument, there is an element

b1 ∈ Vn fixed by σ1 which generates a free module over Qp[γn + γ−1
n ].

We claim that {b0, b1} is a Qp[γn + γ−1
n ]-basis for Vn. Let b̂1 = b1− b1,n−1,

so b̂1 ∈ Qp(ζn + ζ−1
n )2. It suffices to show that σ0 and σ1 have no common

nontrivial fixed point in Qp(ζn + ζ−1
n )2, for then in particular we have

Qp(ζn + ζ−1
n ) b̂0

⋂
Qp(ζn + ζ−1

n ) b̂1 = {0}.

Let

ρ̂n : Π
Q
−→ GL2

(
Qp(ζn + ζ−1

n )
)

be the representation obtained by composing ρn with the natural projection

Qp[γn + γ−1
n ] −→ Qp(ζn + ζ−1

n ). Let W be a subspace of Qp(ζn + ζ−1
n )2 sat-

isfying Qp(ζn + ζ−1
n )2 = Qp(ζn + ζ−1

n ) b̂0 ⊕W . Given any nonzero w ∈ W ,

{b̂0, w} is a basis for Qp(ζn + ζ−1
n )2, and from (4.36), σ0 ·w = w +w0, where

w0 ∈ Qp(ζn+ζ−1
n )2 is fixed by σ0. If ρ̂n(σ0) is nontrivial, then Qp(ζn+ζ−1

n ) b̂0 is

the subspace of all σ0-fixed points, so w0 = β0b̂0 for some β0 ∈ Qp(ζn + ζ−1
n ),

and therefore ρ̂n(σ0) =
(

1 β0
0 1

)
with respect to the basis {b̂0, w}. Similarly,

ρ̂n(σ1) ∼
(

1 β1
0 1

)
for some β1 ∈ Qp(ζn + ζ−1

n ). If σ0, σ1 have a common fixed
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point in Qp(ζn + ζ−1
n )2, then with respect to some basis we have

ρ̂n(σ0) =

1 β0

0 1

 , ρ̂n(σ1) =

1 β1

0 1


for some β0, β1 ∈ Qp(ζn + ζ−1

n )2. Then ρ̂n(σ∞) =
(

1 −(β0+β1)
0 1

)
, contradicting

that ρ̂n(σ∞) has exact order 2pn. Therefore, σ0 and σ1 have no common

nontrivial fixed point in Qp(ζn + ζ−1
n )2, and {b0, b1} is indeed a basis for Vn.

By induction, we have

ρn(σ0) =

1 δ0

0 1

 , ρn(σ1) =

 1 0

δ1 1


for some δ0, δ1 ∈ Qp[γn + γ−1

n ]. All that remains is to show that δ0 and

δ1 are units. Suppose that δ0 6∈ Qp[γn + γ−1
n ]×. Writing δ0 = δ0,n + δ0,n−1

where δ0,n ∈ Qp(ζn + ζ−1
n ) and δ0,n−1 ∈ Qp[γn−1 + γ−1

n−1], it follows from the

inductive hypothesis that δ0,n−1 ∈ Qp[γn−1 + γ−1
n−1]×, so δ0,n must not be a

unit of Qp(ζn + ζ−1
n ). Hence δ0,n = 0, contradicting that σ0 acts nontrivially

on Qp(ζn + ζ−1
n )2. Therefore, δ0 ∈ Qp[γn + γ−1

n ]×. The same argument shows

that δ1 ∈ Qp[γn + γ−1
n ]× as well. �

4.8 The Universal Deformation

We now consider the representation obtained by taking the inverse limit of

the various representations ρn.

Proposition 4.37 There is a Qp[µpn ]-basis for Vp(Jn) with respect to which

Imρn ⊂ GL2 (Zp[µpn ]).
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Proof: By Proposition 4.35, there is a Qp[µpn ]-basis B for Vp(Jn) with respect

to which

ρn(σ0) =

1 1

0 1

 , ρn(σ1) =

 1 0

αn 1

 .

Multiplying gives

ρn(σ∞) =

 1 −1

−αn 1 + αn

 .

Since −γn is an eigenvalue of ρn(σ∞) and ρn has determinant one, we have

tr ρn(σ∞) = 2 + αn = −γn − γ−1
n ,

so αn = −(γn + γ−1
n + 2) ∈ Zp[µpn ]. �

To obtain a representation ρ : ΠQ(µp∞ ) −→ GL2 (Zp[[T ]]), we need the

following result from Iwasawa theory:

Proposition 4.38 For each compatible system (γn)n∈N of generators γn of

µpn, the map sending (γn)n∈N to 1 + T defines an isomorphism

lim←−Zp[µpn ] ∼= Zp[[T ]].

Proof: See [Was82], Theorem 7.1. �

For each n, let γn be a generator of µpn such that −γn is an eigenvalue of

ρn(σ∞). The compatible system (γn)n∈N of generators of µpn corresponds to
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an isomorphism lim←−Zp[µpn ] ∼= Zp[[T ]]. Let

ρ : ΠQ(µp∞ ) −→ GL2 (Zp[[T ]])

be the representation obtained with respect to this isomorphism by the com-

patibility of the various representations ρn. Since Imρn ⊂ GL2 (Zp[γn + γ−1
n ]),

the image of ρ lies in GL2 (Zp[[(1 + T ) + (1 + T )−1]]). In fact, we have

ρ(σ0) =

1 1

0 1

 , ρ(σ1) =

1 0

α 1

 (4.39)

for some α ∈ Zp[[T ]]×; moreover, from the proof of Proposition 4.37, α sat-

isfies 2 + α = −(1 + T )− (1 + T )−1, and hence

α = −3− T − (1 + T )−1

= −3− T − (1− T + T 2 − · · · )

= −4− T 2 + T 3 − · · · .

(4.40)

We claim that there is a Zp-algebra automorphism ψ of Zp[[T ]] which takes

Zp[[T
2]] to Zp[[(1 + T ) + (1 + T )−1]] = Zp[[T

2 − T 3 + T 4 − · · · ]]. Let

f(T ) = a1T + a2T
2 + · · · ∈ Zp[[T ]] be a square root of T 2 − T 3 + T 4 − · · · ;

for example, let a1 = 1, and define each an recursively by

an =
1

2

(−1)n+1 −
∑

2≤i,j≤n−1

i+j=n+1

aiaj

 .
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Let ψ be the Zp-algebra endomorphism taking T to f(T ). Then ψ is injec-

tive, and induces a surjective map on cotangent spaces. Therefore, ψ is an

isomorphism, as claimed.

Composing ρ with the automorphism of GL2 (Zp[[T ]]) induced from ψ−1

gives a representation

ρ′ : ΠQ(µp∞ ) −→ GL2

(
Zp[[T

2]]
)

which satisfies

ρ′(σ0) =

1 1

0 1

 , ρ′(σ1) =

 1 0

−4− T 2 1

 .

Let ρ̄ be the representation obtained from ρ′ by reducing mod (p, T 2), so

that ρ̄ is the representation associated to the p-torsion points of the Legendre

family of elliptic curves, and let S = {σ0, σ1}.

Theorem 4.41 As a representation over Zp[[T
2]] ∼= Zp[[T ]], ρ′|Π

Q
is a rep-

resentative of the S-ordinary universal deformation [ρuniv
S−ord] of ρ̄.

Proof: The universal property of [ρuniv
S−ord] gives a Zp-algebra homomorphism

φ : Zp[[T ]] −→ Zp[[T
2]]

which takes [ρuniv
S−ord] to [ρ′|Π

Q
]. From the proof of Theorem 2.31, φ(T ) = T 2,

so φ is an isomorphism. �

Remark: The representation ρ′ arises naturally as a representation of the

larger Galois group ΠQ(µp∞ ). Since the image of ρ̄(σi) has order dividing 2p
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for each i = 0, 1,∞, by Theorem 3.12, ρuniv
S−ord can be extended to a rep-

resentation of ΠQ(µp∞ ); therefore, up to multiplication by a representation

χ : GQ(µp∞ ) −→ Zp[[T
2]]×, ρ′ is the composition of this extension of ρuniv

S−ord

with the map induced from φ.
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5 Relation to Ihara’s Cocycle

5.1 Ihara’s Construction

We define a Zp-algebra A by

A := Zp[[t0, t1, t∞]]
/

((t0 + 1)(t1 + 1)(t∞ + 1)− 1) .

In [Iha86b], Ihara constructs a cocycle

F : GQ −→ A×

which describes, for each n, the action of GQ(µpn ) on the primitive quotients

of the Jacobian of the Fermat curve

Fn : xp
n

+ yp
n

= 1.

We briefly describe Ihara’s original construction.

Fix a prime p, and let F be the pro-p completion of the free group on two

generators g0, g1. Let g∞ = (g0g1)−1, and let M be the maximal algebraic

pro-p extension of Q(t) unramified outside {0, 1,∞}. Fix an isomorphism

ι : F −→ Gal
(
M/Q(t)

)
such that for each i = 0, 1,∞, gi is mapped to

a topological generator of an inertia group above i. The choice of such an

isomorphism ι gives rise to a representation of GQ in the group of outer

automorphisms of F . More precisely, let A be the subgroup of Aut(F) con-

sisting of those automorphisms σ for which there is some α ∈ Z×p satisfying

σ(gi) ∼ gαi for each i = 0, 1,∞. An automorphism of a group G is said to be
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an inner automorphism if it arises as conjugation by some element of G. We

denote by Int(G) the group of inner automorphisms of G, and by Out(G)

the group Aut(G)/Int(G) of outer automorphisms of G.

Definition 5.1 The pro-p braid group (of degree 2) is the group

Φ := A/Int(F).

Given γ ∈ GQ ∼= Gal (M/Q(t))
/

Gal
(
M/Q(t)

)
, choose a lift γ̃ of γ to

Gal (M/Q(t)). Conjugation by γ̃ defines an automorphism of Gal (M/Q(t))

whose reduction modulo Int (Gal (M/Q(t))) depends only on γ. By the iso-

morphism ι, we obtain an outer automorphism σγ of F . Moreover, by The-

orem 3.1, σγ is an element of Φ; thus the assignment γ 7→ σγ defines a

representation

φ : GQ −→ Φ.

Let F ′′ = [[F ,F ], [F ,F ]] denote the double commutator subgroup of F . Let

Ψ denote the image of Φ in Out (F/F ′′) under the canonical homomorphism

r : Out(F) −→ Out (F/F ′′). In [Iha86b], Ihara studies the representation

ψ : GQ −→ Ψ

obtained by composing φ with r.

The quotient F/F ′ is isomorphic to the pro-p completion of the abelian-

ization of the free group on two generators; that is, F/F ′ is isomorphic to the

pro-p completion Zp×Zp of the free abelian group Z×Z on two generators.
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Since F ′/F ′′ is abelian, the automorphism of F ′/F ′′ given by conjugation by

any element g ∈ F depends only on the reduction of g mod F ′; thus F/F ′

acts by conjugation on F ′/F ′′. The group F ′/F ′′ is an abelian pro-p group,

and hence is endowed with a canonical action of Zp. Therefore, F ′/F ′′ is a

module over

Zp[[F/F ′]] ∼= Zp[[Zp × Zp]] ∼= Zp[[u, v]] ∼= A.

Fixing the isomorphism Zp[[F/F ′]] −→ A which maps gi to ti + 1 for each

i = 0, 1,∞, F ′/F ′′ obtains the structure of an A-module in such a way that

multiplication by ti + 1 is given by conjugation by gi for each i = 0, 1,∞.

Theorem 5.2 This action of A makes F ′/F ′′ into a free A-module of rank

one generated by [g0, g1].

Proof: See [Iha86b], §II, Theorem 2. �

Let χp : GQ −→ Z
×
p denote the p-cyclotomic character, which describes

the action of GQ on µp∞ ⊂ Q. The group GQ acts as Zp-algebra automor-

phisms on A by

γ · (1 + ti) = (1 + ti)
χp(γ)

for each γ ∈ GQ, and each i = 0, 1,∞. For γ ∈ GQ, let Fγ(t0, t1, t∞) ∈ A× be

the unique element satisfying

ψ(γ) ([g0, g1]) = Fγ(t0, t1, t∞) · [g0, g1].

Proposition 5.3 The assignment γ 7−→ Fγ defines a continuous 1-cocycle
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F : GQ −→ A×.

Proof: See [Iha86b], §II, Theorem 3B(ii). �

Since GQ(µp∞ ) acts trivially on A, the restriction of F to GQ(µp∞ ) is a

homomorphism, which we also denote by F .

Let a, b ∈ Z/pnZ \ {0} be such that at least one of a, b is a unit in

Z/pnZ, and let c = −(a + b). Let an (respectively bn, cn) denote the integer

in {0, 1, . . . , pn − 1} reducing to a (resp. b, c) mod pn. The Jacobian J
(a,b,c)
n

of the complete nonsingular model of the curve

C(a,b,c)
n : xp

n

= yan(y − 1)bn

has a quotient A
(a,b,c)
n which contains Z[ζn] in its endomorphism ring, where

the action of ζn on A
(a,b,c)
n arises from the action of µpn on C

(a,b,c)
n given by

ζn · (x, y) = (ζnx, y) for a generator ζn of µpn (see [Iha86b], p.76). In fact,

the Tate module Tp

(
A

(a,b,c)
n

)
is a free module of rank one over Zp[ζn], and

the action of GQ(µpn ) on Tp

(
A

(a,b,c)
n

)
commutes with the action of Zp[ζn].

Therefore, the action of γ ∈ GQ(µpn ) is given by multiplication by some

element F
(a,b,c)
γ,n ∈ Zp[ζn]×.

Theorem 5.4 (Ihara, 1986) For each γ ∈ GQ(µpn ), F
(a,b,c)
γ,n is equal to

Fγ
(
ζan − 1, ζbn − 1, ζcn − 1

)
.

Proof: See [Iha86b], §II, Theorem 4 and its corollary. �

For each n, let Jn denote the Jacobian of the Fermat curve Fn. Then

Jn is isogenous to the sum of Jn−1 together with each A
(a,b,c)
n , where exactly

one triple (a, b, c) is chosen from each set {(ka, kb, kc)}k∈(Z/pnZ)× (see [Iha86b],
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p.78). On the other hand, under the isomorphism ι, the commutator subgroup

F ′ corresponds to the subfield M′ =
⋃
n

Kn, where Kn is the function field

of Fn, and the subgroup F ′′ corresponds to M′′ =
⋃
n

Kunrab
n , where Kunrab

n

denotes the maximal unramified abelian pro-p extension of Kn. Thus we have

the following tower of extensions:

M
F ′′

M′′ =
⋃
n∈N

Kunrab
n

F ′/F ′′

F/F ′′ M
′ =

⋃
n∈N

Kn

F/F ′

Q(t)

An isogeny of abelian varieties is a surjective homomorphism of abelian vari-

eties whose kernel is finite. Subgroups H of the Tate module Tp(Jn) of finite

index are in one-to-one correspondence with isogenies fH : J −→ Jn in such

a way that fH(Tp(Jn)) = H. By geometric class field theory, such isogenies

are in one-to-one correspondence with finite unramified abelian coverings

CH −→ Fn in such a way that

Gal
(
Q(CH)/Q(Fn)

) ∼= Tp(Jn)/H,

where Q(CH),Q(Fn) are the function fields over Q of CH and Fn respectively

(see [Ser88], Ch. VI, §2, Proposition 10 and the corollary to Proposition 11).

Therefore, letting Sn denote the set of finite unramified abelian extensions
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Kn, we have

Gal
(
Kunrab
n /Kn

)
= lim←−

L∈Sn

Gal (L/Kn)

= lim←−
H⊂Tp(Jn)
finite index

Gal
(
Q(CH)/Kn

)
∼= lim←−

H⊂Tp(Jn)
finite index

(Tp(Jn)/H) = Tp(Jn),

so Tp(Jn) is isomorphic to Gal
(
Kunrab
n /Kn

)
. Thus one might expect the ho-

momorphism F with the property of Theorem 5.4 to arise from the repre-

sentation Ψ.

5.2 The Inertia Group at Infinity

Let ρ : ΠQ(µp∞ ) −→ GL2 (Zp[[T ]]) be as in §4.8, and for any uniformizer π

at ∞, let Qπ(µp∞) = Q(µp∞)((π)). Restricting ρ to the inertia subgroup

I∞ at ∞ gives a representation ρ∞ of I∞ = Gal (M∞/Qπ(µp∞)), where

M∞ :=
⋃
n

Q(µp∞)
((
π1/n

))
. The tower

M∞

GQ(µp∞ )⋃
n

Q(µp∞)
((
π1/n

))

Qπ(µp∞)

gives an inclusion ιπ : GQ(µp∞ ) ↪→ I∞ which depends on the choice of uni-
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formizer π. Restricting ρ∞ to the image of ιπ thus gives a representation

ρ∞,π : GQ(µp∞ ) −→ GL2 (Zp[[T ]]) .

Let pn : GL2 (Zp[[T ]]) −→ GL2 (Zp[µpn ]) be the map induced from the ring

homomorphism Zp[[T ]] −→ Zp[µpn ] taking T to γn − 1; since ρ was obtained

by the isomorphism lim←−Zp[µpn ] ∼= Zp[[T ]] taking (γn − 1)n∈N to T , we have

ρ−n ⊗ Zp[µpn ] = pn ◦ ρ.

Fixing the uniformizer π = 1/16t, and letting u = (1/16t)1/2pn , C−n is

isomorphic over Q((u)) to the curve

C̃−n : y2 = x

pn−1
2∏
j=1

(
1 + (ζjn + ζ−jn − 2)u4x2

)
+
xp

n+1

4
− 2u2pnxp

n+1

by the map C̃−n −→ C−n taking (x, y) to
(

1
u2x
, y

upnx
pn+1

2

)
. The curve C̃−n has

good reduction at u = 0, and gives the reduced curve

C̄−n : y2 =
xp

n+1

4
+ x.

On the other hand, the curve C
(1,1,pn−2)
n considered by Ihara when a = b = 1

is given by

C(1,1,pn−2)
n : y(y − 1) = xp

n

,

and there is an isomorphism ψ : C̄−n −→ C
(1,1,pn−2)
n given by

ψ : (x, y) 7−→
(

1

x
,

y

x
pn+1

2

+
1

2

)
.
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The endomorphism γn + γ−1
n of J−n gives rise to a corresponding endomor-

phism of the Jacobian J̄−n of C̄−n , and the reduction map

J−n

(
Qπ(µp∞)

)
−→ J̄−n

(
Q(µp∞)

)
induces a Qp[γn + γ−1

n ]-module isomorphism Vp(J
−
n ) ∼= Vp(J̄

−
n ). Counting

Qp-dimensions shows that under the isomorphism of Jacobians induced from

ψ, the quotient A
(1,1,pn−2)
n of J

(1,1,pn−2)
n must correspond to a quotient An of

J̄−n such that the extended Tate module Vp(An) corresponds to the unique

Qp[γn + γ−1
n ]-module quotient of Vp(J̄

−
n ) isomorphic to Qp(ζn + ζ−1

n )2.

The endomorphism γn +γ−1
n of the Jacobian of C̃−n arises from the action

of µpn on Cn via the map

Cn −→ C̃−n

(x, y) 7−→

(
1

(x+ x−1)u2
,

y

ux
pn+1

2 (x+ x−1)
pn+1

2

)
,

where u2pn = π. If P1 = (x, y) ∈ Cn is a preimage of Q = (w, z) ∈ C̃−n , then

so is P2 =
(

1
x
, y

xp2+1

)
; applying γn to P1, P2 and mapping to C̃−n gives the

points

Q1 =

(
ζnx

(ζ2
nx

2 + 1)u2
,

y

u(ζnx2 + ζ−1
n )

pn+1
2

)
,

Q2 =

(
ζnx

(ζ2
n + x2)u2

,
y

u(ζn + ζ−1
n x2)

pn+1
2

)
.

Projectivizing these points and specializing at u = 0 gives the point at infinity
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(0 : 1 : 0) on C̄−n if vu(x) < 2, where vu denotes the u-adic valuation. If

vu(x) ≥ 2, then vu(y) ≥ 1. Letting x′ = x/u2, y′ = y/u, specializing gives

the points Q̄1 =

(
ζnx̄

′, ζ
pn+1

2
n ȳ′

)
and Q̄2 =

(
ζ−1
n x̄′, ζ

− p
n+1
2

n ȳ′
)

respectively,

where x̄′, ȳ′ denote the reductions of x, y mod u. Therefore, the action of

γn + γ−1
n on J̄−n obtained from that on J̃−n is precisely that considered by

Ihara arising from the action of µpn on C̄−n by γn(x, y) =

(
ζnx, ζ

pn+1
2

n y

)
. In

particular, Tp(An) is a free Zp[ζn]-module of rank one, and thus also a free

Zp[ζn + ζ−1
n ]-module of rank two. Moreover, writing

ρ∞,π(σ) = Mσ(T ) ∈ GL2

(
Zp[[(1 + T ) + (1 + T )−1]]

)
for each σ ∈ GQ(µp∞ ), the representation

ρ∞,n : GQ(µp∞ ) −→ GL2

(
Zp[ζn + ζ−1

n ]
)

given by ρ∞,n(σ) = Mσ(ζn − 1) is the Galois representation associated to

Tp(An) as a Zp[ζn + ζ−1
n ]-module.

Let F : GQ(µp∞ ) −→ A× be Ihara’s representation. There is a Zp-algebra

isomorphism θ : A −→ Zp[[u, v]] which takes t0 to u and t1 to v. Let

r : Zp[[u, v]] −→ Zp[[T ]]

be the Zp-algebra homomorphism such that r(u) = r(v) = T , and let

F̄ = r ◦ θ ◦ F . Since r ◦ θ(t∞) = (T + 1)−2 − 1, we have

Fσ(ζn − 1, ζn − 1, ζ−2
n − 1) = F̄σ(ζn − 1)
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for each σ ∈ GQ(µp∞ ); hence letting p̄n : Zp[[T ]] −→ Zp[ζn] denote the ho-

momorphism taking T to ζn − 1, p̄n ◦ F̄ is the representation of GQ(µp∞ )

associated to A
(1,1,pn−2)
n .

In order to obtain the representation F̄ from ρ∞,π, we first need some

lemmas:

Lemma 5.5 Let V be a free Zp[ζn]-module of rank one, and let σ be the

automorphism of V given by multiplication by α ∈ Zp[ζn]×. Let δ be the

nontrivial element of Gal (Qp(ζn)/Qp(ζn + ζ−1
n )). Then the eigenvalues of

σ ⊗
Zp[ζn+ζ−1

n ] Zp[ζn] are α and αδ.

Proof: Let {v} be a Zp[ζn]-basis for V . Fix the Zp[ζn + ζ−1
n ]-basis {v, ζnv}

for V , and let α0, α1 ∈ Zp[ζn + ζ−1
n ] be such that α = α0 + ζnα1. Since

σ(v) = αv = α0v + α1ζnv

and σ(ζnv) = αζnv = ζ2
nα1v + α0ζnv

= −α1v +
(
α0 + (ζn + ζ−1

n )α1

)
ζnv,

σ is given by
(
α0 −α1

α1 α0+(ζn+ζ−1
n )α1

)
relative to the basis {v, ζnv}. In particular,

the characteristic polynomial fσ of σ is given by

fσ(X) = X2 −
(
2α0 + (ζn + ζ−1

n )α1

)
X +

(
α2

0 + (ζn + ζ−1
n )α0α1 + α2

1

)
= (X − (α0 + ζnα1))

(
X − (α0 + ζ−1

n α1)
)

= (X − α)(X − αδ),

as desired. �
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Lemma 5.6 The representation ρ∞,π is conjugate to an upper-triangular

representation.

Proof: Let χ denote the cyclotomic character. For γ ∈ I∞, we have

γσ∞γ
−1 = σ

χ(γ)
∞ , and thus ρ(γ)ρ(σ∞)ρ(γ)−1 = ρ(σ∞)χ(γ). Since ρ(σ∞) has

order dividing 2pk for some k in every finite quotient of GL2 (Zp[[T ]]), we

have ρ(σ∞)χ(γ) = ρ(σ∞)χp(γ), where χp : GQ −→ Z
×
p denotes the p-cyclotomic

character which describes the action of GQ on µp∞ ⊂ Q. The group I∞ is

contained in ΠQ(µp∞ ), so γ fixes µp∞ pointwise; thus χp(γ) = 1, and hence

ρ(γ)ρ(σ∞)ρ(γ)−1 = σ∞. In particular, the image of ρ∞,π is contained in the

centralizer ZGL2(Zp[[T ]]) (ρ(σ∞)) of ρ(σ∞) in GL2 (Zp[[T ]]). If we show that the

non-scalar matrix ρ(σ∞) is upper-triangular, then its centralizer must also

be upper-triangular, thus proving the lemma.

From 4.39 and 4.40, we have

ρ(σ∞) =

 1 −1

2 + (1 + T ) + (1 + T )−1 −1− (1 + T )− (1 + T )−1

 .

For any g(T ) ∈ Zp[[T ]]×, applying Hensel’s lemma to X2 − g(T ) shows that

g(T ) is a square in Zp[[T ]] if and only if its reduction mod (p, T ) is a square in

Fp. Thus g1(T ) := 2+(1+T )+(1+T )−1 and g2(T ) := g1(T )−4 = T 2(1+T )−1

are both squares in Zp[[T ]] since g1(T ) reduces to 4 ∈ Fp and g2(T )/T 2

reduces to 1 ∈ Fp. Let g(T ) ∈ Zp[[T ]] be a square root of g1(T )g2(T ), and let

h(T ) := 1
2

(
g1(T )2 + g(T )

)
.
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Conjugating ρ(σ∞) by the matrix M =
(

1 0
h(T ) 1

)
gives

Mρ(σ∞)M−1 =

h(T ) + 1 −1

0 1− h(T )− g1(T )

 ,

as desired. �

Identify ρ∞,π with any one of its upper-triangular conjugates, and let

f1, f2 : GQ(µp∞ ) −→ Zp[[T ]]× be such that for each σ ∈ GQ(µp∞ ),

ρ∞,π(σ) =

(f1)σ(T ) ∗

0 (f2)σ(T )

 .

Theorem 5.7 One of f1 or f2 is equal to F̄ ; the other is uniquely determined

by the property that the image of each σ ∈ GQ(µp∞ ) gives F̄ (ζn − 1)δ when

evaluated at ζn − 1.

Proof: Given σ ∈ GQ(µp∞ ), by Lemmas 5.5 and 5.6, the action of σ on

Tp(An) as a Zp[ζn]-module is given by multiplication by (fj(n))σ(ζn − 1) for

some j(n) = 1 or 2. On the other hand, since An is isomorphic to A
(1,1,pn−2)
n

over Q(µp∞), σ acts on Tp(An) by multiplication by F̄σ(ζn − 1). Therefore,

for some j = 1 or 2, (F̄σ − (fj)σ)(ζn− 1) = 0 for infinitely many n. It follows

from the Weierstrass Preparation Theorem that a nonzero power series can

have only a finite number of zeroes z ∈ Qp satisfying |z| < 1, where | · | is

the p-adic norm (see [Was82], Corollary 7.2). Therefore, F̄σ = (fj)σ. Since

F̄ , f1, f2 are homomorphisms, we have F̄ = fk for some k = 1 or 2. The

final statement follows from Lemma 5.5 together with the corollary of the

Weierstrass Preparation Theorem used above. �
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Remark: Which fk is equal to F̄ depends on the choice of conjugate of ρ∞,π.

Since ρ∞,π describes the action of GQ(µp∞ ) on Tp(An) as a Zp[ζn+ζ−1
n ]-module,

our construction does not distinguish which fk is equal to F̄ .
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6 Conclusion

In the preceding chapters, we have described a new construction of a special-

ization of Ihara’s cocycle. This construction arises from the {σ0, σ1}-ordinary

universal deformation of the residual representation ρ̄ which describes the ac-

tion of Π
Q

on the Legendre family of elliptic curves. This universal deforma-

tion was extended by the rigidity theorem to a representation ρ of ΠQ(µp∞ ).

Using a geometric construction of ρ, we showed that a specialization of Ihara’s

cocycle appears when ρ is specialized at infinity (given a particular choice of

uniformizer).

This work suggests a number of directions for further research. First of

all, the σ0-ordinary universal deformation ring of the residual representation

ρ̄ is Zp[[u, v]] ∼= A; thus we are led to the following question:

Question 1 Does the extended σ0-ordinary universal deformation of ρ̄ of

Theorem 3.12 give rise to Ihara’s full cocycle when specialized at infinity?

Let k be any field, and let M0,M1,M2 ∈ GLn(k) be matrices satisfying

M0M1M2 = Idn which generate an irreducible subgroup of GLn(k). By a

theorem of Bely̆ı, if one of M0, M1, or M2 differs from a scalar matrix by

a matrix of rank one, then the triple (M0,M1,M2) is rigid in GLn(k). Thus

one would expect that subject to an appropriate “ordinariness” condition,

the universal deformation (Runiv, ρuniv) of a residual representation

ρ̄ : Π
Q
−→ GLn(Fp)

would be rigid; that is, the triple
(
ρuniv(σ0), ρuniv(σ1), ρuniv(σ∞)

)
would be

rigid in GLn(Runiv). Therefore, one expects to be able to extend this ρuniv to a
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representation ρ of ΠK(t), where K is a given cyclotomic extension of Q(µp∞).

Furthermore, since Katz’ construction applies to rigid representations of ar-

bitrary dimension, it should be possible to construct ρ geometrically, in a

similar manner to the construction of Chapter 4.

Question 2 What effect would increasing the dimension of the residual rep-

resentation have on our construction? In particular, would Ihara’s cocycle still

appear, or some (possibly nonabelian) variant?

If the group Π
Q

is replaced with another algebraic fundamental group Π in

our construction, the universal deformation seems much less likely to be rigid.

Since the number of topological generators of Π is in general greater than 2,

it may be necessary to increase the dimension of the residual representation

in order to obtain a rigid situation. Also, a further study of rigid m-tuples in

GLn(Runiv) would be required if this generalization is to succeed.

Question 3 Under what conditions could our construction be carried out if

Π
Q

is replaced with some other algebraic fundamental group? Under those

conditions, what cocycles appear?

Another direction arises from Ihara’s generalization of his own construc-

tion of his cocycle. In [Iha86a], he considers different towers of étale coverings

of P1(Q) \ {0, 1,∞} having certain properties, and for each such tower con-

structs a “universal” cocycle

φ : GQ −→ A×,

where A is a completed group ring Zp[[g]], the group g depending on the

tower of coverings.
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Question 4 Is it possible to generalize our construction to give other cocy-

cles of Ihara?

In general, the algebra A is not a power series ring; thus it would be necessary

to begin with an obstructed deformation problem, which could not arise

from a residual representation of an algebraic fundamental group. Therefore,

significant difficulties already appear in the first step of such a generalization.
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