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ABSTRACT. We study certain arithmetic group cocycles valued in differential forms arising from torus bundles

over (locally) symmetric spaces, which we call Eisenstein theta lifts following the nomenclature of Bergeron-

Charollois-Garcia, who constructed them using automorphic theta kernels arising from regularized Eisenstein

series. By studying the Hodge theory of such torus bundles in the setting where they have the structure of

an abelian family, we establish that these analytically constructed cocycles agree with the cohomology classes

defined by Kings-Sprang using equivariant polylogarithm classes in coherent cohomology, showing the former

have a natural integral structure and giving an analytic way to compute the latter. We then construct analogous

cohomology classes (called by analogy arithmetic theta lifts) valued in Milnor K-theory using a motivic analogue

of the equivariant polylogarithm, and show their de Rham regulators yield the Eisenstein theta lift.

RÉSUMÉ. Nous étudions des cocycles pour des groupes arithmétiques à valeurs dans des formes différentielles

sur des tores fibrées au-dessus des espaces (localement) symmétriques, que nous appelons des relèvements thêta

d’Eisenstein après Bergeron-Charollois-Garcia, qui les ont construits en utilisant des noyaux thêta automor-

phiques venant des séries d’Eisenstein régularisées. En étudiant la théorie de Hodge dans le cas des fibrés

abéliens, nous démontrons que les classes de ces cocycles analytiques sont données par les classes abstraites

définies par Kings-Sprang en utilisant le polylogarithme équivariant en cohomologie cohérente. Cela implique

que les cocycles analytiques ont une structure intégrale canonique, et en même temps donne un façon de cal-

culer les classes abstraites. Ensuite, nous construisons des classes abstraites analogues (appelées relèvements

d’Eisenstein arithmétiques) à valeurs dans la K-théorie de Milnor en utilisant le polylogarithme équivariant dans

le contexte motivique, puis démontrons que leurs régulateurs sont donnés par les relèvements d’Eisenstein.
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1. INTRODUCTION

Theta lifts are a central tool in modern number theory. In the general framework laid out by [Howe], they

offer a way to relate automorphic forms on a pair of reductive groups in ways amenable to explicit formulas

involving terms of interest such as special values of L-functions. Via the Langlands philosophy, one can

obtain subtle number theoretic information from these relations; some of the most well-known successes

along these lines include the seminal work of Gross-Kohnen-Zagier [GKZ], Borcherds’ singular theta lift

[Bor], and the promising framework known as the “Kudla program” [Kud].

A key issue one encounters in arithmetic applications is that theta lifts of automorphic forms are usually

constructed analytically, and so understanding how the correspondence interacts with rational or integral

structures on these forms is difficult, relying on delicate period computations; see [Pra] for a survey of such

computations.

Work in recent years has produced many different incarnations by many different authors of a particular

theta lift which seems much more amenable to algebraic formalism. Given the large number of different

related constructions, some of which are subsumed by others, we note a few of the most pertinent works

to our present approach: the fullest grounding of the analytic theory was explicated and given the name of

“Eisenstein theta lift” in [BCG1], then further developed by the same authors in [BCG3]. An analogous

“Eisenstein-Kronecker cohomology class” valued in automorphic forms is defined in a formal algebraic way

in [KS]. Finally, [SV] defined using explicit complexes a “motivic Eisenstein class” valued in Milnor K-

theory in a narrower setting. In this thesis, we relate all of these cocycles; namely, we show the first two

constructions give the same theta lift, while the latter also yields the same class upon taking regulators, and

thus could be considered an “arithmetic Eisenstein theta lift” refining the usual one.

We also generalize, both via the abstract formalism and more explicit methods, all these constructions to

new settings, and consider some basic aspects of the p-adic variation of this theta lift with an eye towards

arithmetic applications.

1.1. Main idea: Eisenstein cocycles. All definitions of the Eisenstein theta lift are (sometimes non-obviously)

related to the construction of an equivariant polylogarithm class. In this article, we will only consider the
3



theory one obtains from using the “base class”, i.e. with constant coefficients rather than the whole of the

logarithm sheaf (as is done in [KS] and [BKL], for example).

The starting point is a 2n-dimensional relative commutative group parameterized over a base π : E Ñ B,

with the fiberwise action of a group Γ. Throughout this paper, we take the convention of a left action of the

group on the space, with a resulting pushforward left action on cohomology (i.e. pullback by the inverse)1

Given a Borel equivariant cohomology theory on Γ-spaces H‚
Γ,2 suppose that we have an equivariant local-

ization sequence

. . . Ñ H2n´1
Γ pE ´ Ercsq

res
ÝÑ H0

ΓpErcsq Ñ H2n
Γ pEq Ñ . . .

The group H0
ΓpErcsq is identified with the Γ-invariant formal sums of connected components of Ercs. The

unlabeled map is a fiberwise degree map (or alternately zero if the fibers are not proper). Using certain

projectors built from isogenies (“Lieberman’s trick”3) we can find a canonical splitting of the map res, and

hence produce an injective map

pH0
pErcsqdeg“0

q
Γ ãÑ H2n´1

Γ pE ´ Ercsq, C ÞÑ zC

producing cohomology classes with prescribed residues in the form of codimension-2n cycles built from the

fiberwise c-torsion. The resulting class zC is known as the equivariant polylogarithm (base) class for E.

The relation to theta lifts is that this class zC , or rather a component of it, is like a family (parameterized by

E) of “theta kernels” between the group Γ and the space B. Roughly, the idea of a theta kernel is that if we

have two groups, say G and H, a function θpg, hq which has an automorphic transformation law for both

groups can be used to map automorphic forms for G to H using θ as a kernel function:

G-automorphic forms Q f ÞÑ

ż

G

fpgqθpg, hq dg P H-automorphic forms

1This is in contrast to [SV], which considers right actions on spaces so that we have a left pullback action on cohomology theories.
Since we do not consider monoid actions in this thesis, it does not end up really mattering to us except in superficial conventions
of notation, though there are reasons for preferring this convention.
2See section 2.1 for the properties we want from such a theory.
3It is unclear to us where this name comes from, but it is common to refer to it as such in the literature; for example, it is used in
one of our primary references [BCG1].
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In the context of the theta correspondence [Howe], this map has representation-theoretic significance, but this

will not be our primary concern in this thesis.

In our context, if Γ is an arithmetic subgroup of a reductive group and B a locally symmetric space (for some

second group H) equipped with a family of tori E, then we wish to construct from zC group cohomology

classes for Γ valued in the cohomology of E: this is the step which (at least heuristically) involves “isolating

a component” of zC as we mentioned above, which we will end up calling ΘC .

After pullback by a torsion section of E, this class becomes valued in the cohomology of B. Given the

existence of Eichler-Shimura-type theorems relating cohomology to automorphic forms, the “theta kernel”

label is then justified by the chain of relations

Γ-automorphic forms E.-S.
ÝÝÑ Γ-homology ΘC

ÝÝÑ differential forms on E Ñ H-automorphic forms

where the last step, passing from differential forms on E to to sections of automorphic bundles on the base

B, involves some kind of pullback.

This description is mainly motivational; we do not actually wish to translate to the setting of automorphic

forms on the Γ-side in this thesis, and are content to work on the level of cohomology. More precisely, what

we what we want to with this “theta kernel” zC is:

‚ integrate it “in the Γ-direction,” i.e. deduce from it a group cocycle for Γ, and

‚ optionally, pull back the resulting Γ-cocycle from E to B along a section (or else view it as a family

of cocycles valued on B parameterized by the torsion sections of E).

Remark 1.1. An important issue to note is that the way we end up pulling back to the base is more subtle

than it appears: we do not actually want to just take the pullback of differential forms from B to E, but rather

make some intermediary transformations - namely, contraction with a vector field.4 Indeed, suppose

x˚zC P H2n´1
Γ pBq

4Taking the naive pullback to the base, however, does end up being the approach we want to take later on in the motivic setting.
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via some Γ-invariant section x : B Ñ E. Observe that the triviality of the Γ-action on B affords us a

Künneth splitting and thus a class in Hn´1pΓ, HnpBqq.5 This is convenient, but loses access to a good deal

of the interesting information contained in the class zC: for instance, let us consider the case where Γ is

trivial and E Ñ B is the universal elliptic curve E Ñ Y over the open modular curve at some suitable

level. Then the class zC P H1pE ´ Ercsq in de Rham cohomology is represented by the 1-form which is the

total logarithmic derivative of a Kato-Siegel unit as in [Kato1, Proposition 1.3]. Any pullback by a torsion

section x˚zC is the component coming from the logarithmic derivative along the base, and hence a weight-2

Eisenstein series. However, the pullback loses the information about the logarithmic derivative along the

fiber, which is a weight-1 Eisenstein series once one identifies it with a section of the Hodge bundle on the

total space and then pulls it back. We are interested in the analogue of this weight-1 Eisenstein series in a

more general context. See [BCG1, (9.6)] for this computation.

Can we avoid this issue by producing a big class

ΘC P Hn´1
pΓ,Ωn

pE ´ Ercsqq

out of zC , with values on the whole bundle? Something similar is indeed possible, and there are a variety of

approaches in the literature. Analytically, [BCG1] outlines an approach to construct an explicit representative

of the polylogarithm class in de Rham cohomology, whose projection yields an appropriate theta kernel. This

kernel has good functorial properties and relates well to automorphic constructions, making it possible to

explicitly calculate its integrals along homology cycles in many situations arising from automorphic theory.

On the other hand, in the presence of scheme-theoretic structure, one can attempt to force enough degenera-

tion of the Hochschild-Serre spectral sequence for H‚
Γ to afford an edge map

H2n´1
Γ pEq Ñ Hn´1

pΓ, Hn
pEqq,

for example by shrinking E: this is the approach followed by parts of [BCG3] and [KS] for example. This

has the advantage of being purely algebraic, yielding results on rationality, integrality, etc. for free if one

5We first learned this idea from a talk of Romyar Sharifi.
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can maintain these structures on the cohomology. The disadvantage is that the layers of abstraction make it

harder to understand what is happening explicitly.

Another algebraic approach, yielding more explicit results, is to define Γ-equivariant complexes computing

equivariant cohomology, find a way to make them exact, and then take the resulting cocycle defined using the

Γ-action on an exact complex. This approach, followed by [SV] in the motivic setting, marries many of the

advantages of both other approaches, in being both explicit as well as yielding many nice properties purely

formally. However, it also can involve significant technical difficulties.

We will follow all these approaches, and relate the resulting cocycles to better study their properties.

1.2. Outline of thesis and results.

1.2.1. Eisenstein theta lift: the differential cocycle. We define a “Eisenstein theta kernel” cocycle

ΘC,x P Hn´1
pΓ,Ωn

Bq

valued in n-forms on the base, parameterized by some torsion section data. We begin by constructing an

explicit analytic representative of the theta kernel as in the first approach, and then use an equivariant poly-

logarithm class in coherent cohomology in the second approach (using spectral sequences).

The first construction, due to [BCG1], starts by constructing analytic representatives (via the Mathai-Quillen

formalism [MQ]) for the polylogarithm class in ordinary cohomology, for general topological torus bun-

dles endowed with an invariant metric; these representatives are linear combinations of certain Eisenstein-

regularized series Eψ. For Γ acting on a universal torus bundle over some (locally) symmetric space, there

is a topological incarnation of this Γ-bundle given by the whole family as fibered over the classifying space

BΓ. In the principal cases of interest, Γ is itself an arithmetic group, so BΓ also has a canonical Riemann-

ian model given by a locally symmetric space, allowing us to run the Mathai-Quillen formalism. Then via

explicit computations done in [BCG2], a certain component of the resulting Eisenstein series Eψ is closed

along the base BΓ, making it into a kernel function from homology classes for Γ to automorphic forms on

the torus bundle.
7



The second construction, due to [KS], begins with the polylogarithm class in Γ-equivariant coherent coho-

mology of a universal abelian scheme A over Shimura varieties. In order to obtain group cohomology classes

from this, we need a existence of a certain edge map in the resulting Hochschild-Serre spectral sequence

requiring vanishing of certain terms on the second page; see (2.12). The strategy to prove this vanishing is by

cutting down the fibers of A to be affine, thus reducing their cohomological dimension. In the case where A

is isogenous to a sum of elliptic curves, one can find natural families of ample hyperplanes, but otherwise, we

have to use a very coarse localization at certain torsion sections, then establish certain integrality properties

by a more careful analysis.

In Theorem 3.27, we prove that the two constructions above coincide in a high degree of generality. Many of

the ingredients of this result have appeared in various publications and preprints: in the case when the abelian

family A splits into elliptic curves, [BCG3] showed that a class derived from the equivariant polylogarithm

via formality results for hyperplane complements (Orlik-Solomon formality) could be computed by a variant

of the construction in [BCG1]. The formality statements, together with the closedness lemma Proposition 3.8

from [BCG2], show that this variant agrees with the integral of the theta kernel Eψ, and the class extracted

from the equivariant de Rham polylogarithm can be compared with the equivariant coherent polylogarithm

via Hodge theory. Thus, the comparison with the cocycle of [KS] was already implicit in the work of the

authors of [BCG1] for split A.

For more general A, the violent localization process we use makes this type of argument infeasible. Instead,

when A is a universal family over a Shimura variety, we use constellations of special points over which

A does split; using functoriality properties relating the constructions for these specialized cocycles to the

constructions over the whole base, one can prove by continuity that the comparison remains true for A; see

Theorem 3.27.

This comparison is significant because while the analytic theta kernel is very explicit and computable by

automorphic means (see, for example, [BCG1, §13]), the Kings-Sprang theta kernel is definable in very

general settings and has very good algebraic properties for purely formal reasons. For example, if one has a

model of a Shimura variety defined integrally (over Zp, for example), it can furnish “automatic” integrality

results for the analytic Eisenstein theta correspondence; the construction is exploited to this end in [KS].
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1.2.2. Arithmetic Eisenstein theta lift: the motivic cocycle. In section 4, we turn to motivic refinements of

the Eisenstein theta lift, following the ideas of [SV]. In contrast to the principal method of loc. cit., we use a

Hochschild-Serre edge map from equivariant motivic cohomology to define the cocycle, much as in the differ-

ential forms setting.6 This is made possible by the existence of suitable functorial complexes (Bloch’s cubical

complexes, in our case) computing motivic cohomology, which we can turn into an equivariant version by

taking group cochains.

Then we may imitate the “violent” localization process we used for the differential cocycle using a motivic

vanishing result for local rings, allowing us to treat a setting more general than [SV]. This affords us a group

cocycle ΘM
C,x valued in bidegree-pn, nq motivic cohomology, whose regulator we identify in section 4.2.3 with

(a period multiple of) the differential theta kernel ΘC,x via a regulator map on the level of complexes from

the equivariant Gersten complex to an equivariant Dolbeault complex computing the appropriate coherent

cohomology groups.

1.3. Acknowledgements. Thank you to my family for their love and support; to my advisor Henri Darmon

for his patience, guidance, and trust; to my peers Isabella Negrini, Martı́ Roset Juliá, and Hazem Hassan for

helpful discussions and distractions (along with many other friends in and outside the field for the latter); to

Nicolas Bergeron and Romyar Sharifi for listening to and encouraging my ideas; and to various people in the

community who put up with my naive irritating questions and sometimes even were generous enough to give

helpful answers through the years.

2. COHOMOLOGICAL FORMALISM OF THE POLYLOGARITHM CLASS

Following the outline in the introduction, we give in this section a more detailed treatment of the construction

of the equivariant polylogarithm class with trivial coefficients, most of which applies with very little change

in any suitable Borel-equivariant cohomology theory (a concept to be explained in this section). Our aim is

to clarify exactly what properties a cohomology theory needs to have for our purposes.

In this section, put ourselves in the setting of a discrete group Γ acting fiberwise on a relative commutative

group

π : E Ñ B

6It should be noted that this idea is also presented in [SV, §1.2.3], but not expanded upon.
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of relative dimension d “ 2n. We will end up working with various manifestations of this notion in various

categories of spaces, but the central case one should keep in mind for geometric intuition is that of a bundle of

2n-dimensional topological tori over some manifold base. In this thesis, we will always be in this setting, or

even the more restrictive setting of a relative dimension-n abelian scheme over a base with algebraic structure.

The formalism also applies to the closely related case of self-products of Gm or twists thereof, as considered

in [BCG3, §8] or [SV, §3-5]. Certainly, this case is also interesting, and we anticipate pursuing it using most

of the same methods in future work. However, we omit it from the current thesis in favor of focusing on

abelian families.7

2.1. Equivariant polylogarithm class. Suppose we have a cohomology theory

H‚ : Sop Ñ A

a family of contravariant functors, indexed by nonnegative integers (for the placeholder ‚), from some cate-

gory of spaces S to some abelian category A. For an arrow f of spaces, we thus have the pullback in A, which

we will denote per convention by f˚ (rather than H‚pfq as one usually does for functors). For finite maps in

S, we also demand the structure of pushforwards f˚, covariantly functorial in the sense that pf ˝gq˚ “ f˚ ˝g˚

such that such that

(2.1) f˚f
˚

“ deg f

where the right-hand scalar denotes multiplication in the Z-linear structure on A. Here, we presume the

existence of a class of “finite maps” with an associated integer degree deg (multiplicative under composition)

in the category S. We will not axiomatize this, but in each particular setting we will consider it is a well-trod

concept (corresponding intuitively to the notion of branched cover).

We will need also an Borel-equivariant version of the cohomology H‚
Γ for Γ-spaces, whose construction we

give a high-level overview of here, with the intention of explaining the details in each particular manifestation

7In fact, [BCG3] even constructs interesting group cocycles when E is simply a vector bundle, though this situation is quite
different and it is unclear whether any of our methods yield results of interest.
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later in the thesis. We will frequently call these cohomology theories simply “equivariant cohomology.”8

Elementary but comprehensive references are hard to find for this material; see [Bott] for an overview of

the concept, as well as [NSS] for a more complete but significantly more abstract treatment in very different

language from what we use in this thesis.

In each situation we will consider, the functor H‚ will factor as

Sop D
ÝÑ CpAq

R‚Γ
ÝÝÑ A.

Here, C`pAq is the bounded below complex category of A and RiΓ the corresponding ith cohomology

functor; D hence should be viewed as a functor sending a space X to a complex D‚pXq which computes its

(bare) cohomology.

The corresponding Borel-equivariant cohomology can then by formed by constructing the functorial double

complex C‚pΓ, D‚pXqq of group cochains, i.e.

(2.2)

D0pXq D1pXq . . .

C1pΓ, D0pXqq C1pΓ, D1pXqq . . .

...
... . . .

d

B

d

B

d

B

d

B

and defining H i
ΓpXq to be the ith cohomology of the total complex. Here, we take the convention for double

complexes that the differential is

d ` p´1q
i`j

B

on CipΓ, DjpXqq. In this thesis, we will always write C‚pΓ,´q for inhomogenous group cochains.

The spectral sequence of a double complex then yields a Hochschild-Serre spectral sequence

(2.3) Ep,q
2 “ Hp

pΓ, Hq
pXqq ñ Hp`q

Γ pXq.

8To homotopy theorists, these are distinct from “genuine” equivariant cohomology (hence the customary “Borel” in that field). We
have no need of genuine equivariant cohomology in this thesis, and so find it acceptable to muddle the terminological waters.
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As mentioned in the introduction, we also need the theory H‚
Γ to have a localization sequence

(2.4) . . . Ñ Hd´1
Γ pEq Ñ Hd´1

Γ pE ´ Cq Ñ Hd
Γ,CpEq Ñ Hd

ΓpEq Ñ . . .

for any Γ-invariant closed subspace C Ă E. This means we also need a corresponding theory of (bare)

cohomology with supports for closed embeddings Z Ă X . This can be defined formally using the shifted

mapping cone (or mapping cylinder) complex [Wei]

pX,Zq ÞÑ DZpXq :“ ConepDpXq
ι˚
ÝÑ DpX ´ Zqqr´1s

where ι : X ´ Z ãÑ X is the inclusion map. In many of our settings, the restriction map ι˚ is actually

surjective, allowing the simpler and canonically quasi-isomorphic choice

(2.5) pX,Zq ÞÑ DZpXq :“ kerpDpXq
ι˚
ÝÑ DpX ´ Zqq.

Either way, this then yields a localization sequence in cohomology

(2.6) . . . Ñ Hd´1
pXq Ñ Hd´1

Γ pX ´ Zq Ñ Hd
Γ,ZpXq Ñ Hd

ΓpXq Ñ . . .

for Z ãÑ X a Γ-fixed subspace, by the snake lemma. Being that the construction of DpXq and DZpXq are

functorial, we similarly have a functorial triangle of double complexes

(2.7) rCpΓ, DZpXqqs Ñ rCpΓ, DpXqqs Ñ rCpΓ, DpX ´ Zqqs

which results in (2.4) upon taking X “ E and Z “ C.

In the equivariant localization sequence, we will eventually choose a Γ-invariant subset C Ă Ercs for the

c-torsion sections of E, so that it is of pure codimension d along each fiber. We then also demand an isomor-

phism

(2.8) Hd
Γ,CpEq – H0

ΓpCq “ H0
pCq

Γ

12



which is functorial for isogenies ras : E Ñ E (and their restrictions). This will be deduced by constructing a

Γ-equivariant quasi-isomorphism of complexes

DpCqr´ds
„
ÝÑ DCpEq,

which we will call the Gysin isomorphism in analogue with its usual name in algebraic geometry, and then

checking that the induced map on cohomology is functorial for such isogenies. We will further call the map

Hd
Γ,CpEq Ñ Hd

ΓpEq

the degree map, in analogy with the usual name for the analogous map in (non-equivariant) singular coho-

mology. Putting these ingredients together, we have thus the identification

(2.9) impHd´1
Γ pE ´ Cq Ñ Hd

Γ,CpEqq “ kerpHd
Γ,CpEq Ñ Hd

ΓpEqq,

i.e. a free module over the cohomology of a point generated by the connected components of C, where the

subscript deg “ 0 denotes the “liftable” classes, meaning in the kernel of the degree map (so everything, if

the fibers of E are not proper and the target of deg is zero).

We further demand all constructions above to be functorial also for the finite pushforward maps f˚; this

amounts demanding functorial pushforwards f˚ on the level of the complexes ZpXq inducing f˚ on the

cohomology groups, and which are compatible with the localization sequence and Gysin isomorphisms on

the level of complexes.

The upshot of this formalism is that for any C P H0p˚qtπ0pCquΓdeg“0, we can lift it to some C̃ P Hd´1
Γ pE´Cq,

with an ambiguity coming from the image of Hd´1
Γ pEq.

The final assumption we need to make is the existence of a Lieberman projector eL acting on the cohomology

spaces in the localization sequence, such that eL annihilates Hd´1
Γ pEq and fixes Hd

Γ,CpEq. To make sure of

this, we will add the stipulation that the isogeny ras maps C to itself (not necessarily surjectively).

Then the situation we will commonly encounter is that the Hd´1
Γ pEq decomposes under the action of the

multiplication-by-a isogeny pushforward ras˚ into only copies of the characters ras˚ ÞÑ ak (for all a P Z) for
13



k P t1, . . . , du. The same isogenies act also on

H‚
Γ,CpEq

which can be identified through the Gysin isomorphism with its pushforward action on π0pCq, acts onH‚pE´

Cq via the composite

(2.10) H‚
pE ´ Cq Ñ H‚

pE ´ ras
´1Cq

ras˚
ÝÝÑ H‚

pE ´ Cq

where the first arrow is pullback by the inclusion (since ras maps C into C), and the localization sequence is

equivariant for these actions.

Then if we take any a ” 1 pmod cq, the operator

e
paq

L :“
pras ´ aq . . . pras ´ adq

p1 ´ aq . . . p1 ´ adq

certainly annihilates Hd´1
Γ pEq and fixes all elements in H0p˚qtπ0pCquΓ.9 However, its action on (2.4) only is

defined over some localization of Z thanks to the denominators.

We wish to refine this projector to obtain the smallest possible denominators. We claim that the greatest

common divisor of the denominators of these projectors (as a varies) divides a power of c: indeed, for any

prime p not dividing c, we can find a ” 1 pmod cq with p | a, so that none of the 1 ´ ai are divisible by p.

Choose epa1q

L , . . . , e
pakq

L with corresponding denominators D1, . . . , Dk with greatest common denominator ct;

there thus exist integers b1, . . . , bk with
k

ÿ

i“1

biDi “ ct.

Then the linear combination

eL :“
1

ct

k
ÿ

i“1

biDie
paiq
L

defines a projector with Zr1{cs coefficients annihilating Hd´1
Γ pEq and fixing any class in Hd

Γ,CpEq (by the

congruence condition on the ai).

9The latter statement is true assuming H0p˚q is torsion-free, which will be true in all settings we consider except coherent coho-
mology. (The presence of torsion can cause different weights for the isogenies to become congruent, annihilating some classes in
H0p˚q.) However, even in the coherent setting, we always are only concerned with classes in a submodule which is torsion-free,
so this subtlety is immaterial.
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Thus, zC :“ eLC̃ P Hd´1
Γ pE ´ Cq is well-defined independent of the choice of lift C̃, and it is this class we

call the polylogarithm class associated to C.

Remark 2.1. The approach we are taking to Borel equivariant cohomology, taking group cochains of functo-

rial chain complexes computing cohomology, is slightly different from the usual way one encounters the term

in topology, where the Borel construction (which we consider later in (3.2) in the topological setting) is at

the center. In the context of the de Rham cohomology of topological spaces, we show that these approaches

coincide in the section following (3.2).

2.2. Hochschild-Serre edge maps and chasing spectral sequences. To obtain a group cocycle from zC , we

use the spectral sequence (2.3). In order to make this work, we must restrict to a subspace of E to ensure a

certain vanishing.

Suppose there is a diagram

(2.11)
U E

B B

j

π1 π

such that U has cohomological dimension n “ d{2 (with respect to the “bare” cohomology theory). Then

this vanishing of the cohomology of U affords us an edge map

(2.12) Hd´1
Γ pUq Ñ Ed´1´r,r

2 “ Hn´1
pΓ, Hn

pUqq

This map then sends j˚zC to a class

θC P Hn´1
pΓ, Hn

pUqq.

As suggested in the introduction, the last step is thus relatingHnpUq to a space of differential forms of degree

n; more precisely, we want a map HnpUq Ñ Ωn
U splitting the map Ωn

U Ñ HnpUq coming from Hodge theory.

At least in the algebraic setting, this is possible via Hodge theory (see §3.5 and §3.5.2) and so we can (in an

abuse of notation) consider θC to be valued in Ωn
U . We can then take the contraction with a suitable Γ-invariant

n-vector field X on U ,10 denoted as per convention in differential geometry by ιXθC . We can view this class
10Also called the interior product with X .
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as lying in the space

Hn´1
pΓ, H0

pU, π1˚π1
˚Ω

n
Uqq,

as follows: on an open V Ă U , sections of π1
˚π

1
˚Ω

n
U can be identified with sections of OV bOπ1V

π1
˚Ω

n on

π1
˚V . Then we define the image of ω P H0pU,Ωn

Uq on the open set V to be

(2.13) 1 bOπ1V
ιXω P OV bOπ1V

π1
˚Ω

n
U .

where we can view ιXω as a section of π1
˚Ω

n
U on π1

˚V .11

Then if there is a Γ-invariant section s : B Ñ U , we can take the pullback

s˚ιXθC P Hn´1
pΓ, H0

pB, π1
˚Ω

n
Uqq

to obtain a group cohomology class valued in sections of a bundle over the base.

In the setting of de Rham or coherent cohomology, this yields a map from the homology of an arithmetic

group Γ (which can then be naturally identified as a Hecke module with some space of automorphic forms)

to sections of automorphic line bundles on on B a locally symmetric space. Hence, we can justifiably call it

a theta lift; in particular, the family of lifts that we can construct in this way we term “Eisenstein” theta lifts

to extend the terminology of [BCG1, §13].

In other settings, the pulled back class itself s˚θC P Hn´1pΓ, HnpBqq can be interesting, as we will see in the

motivic/Milnor K-theory setting.

Regardless of which setting we are in, we need to obtain some explicit control of the edge map (2.12). To

do this, we return to the functor D defined earlier; recall that the cohomology H‚pXq is computed as the

cohomology of the complex

D‚
pXq :“

”

D0
pXq

d
ÝÑ D1

pXq
d
ÝÑ D2

pXq
d
ÝÑ . . .

ı

and the Γ-equivariant refinement comes from the double complex C‚pΓ, D‚pXqq as in (2.2). Write C‚,‚ for

this complex for the remainder of the section, for brevity of notation.

11Besides the step of the contraction, this is how one explicitly writes the unit of the adjunction between π1
˚ and π1˚.
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The Hochschild-Serre spectral sequence then results from the spectral sequence of a double complex for C‚,‚,

with the vertical filtration (in the orientation drawn above), i.e. so that F iC‚,‚ :“ C‚,i`‚

Ep,q
1 “ Cp

pG,Hq
pXqq.

Let us return to the setting of the previous section, taking G “ Γ and X “ U . We have a class z P Hd´1
Γ pUq;

suppose we are given even an explicit representative z “ rωs for some

ω P
à

p`q“d´1

Cp
pΓ, Dq

q.

We will ωpi,jq for the component of ω in bidegree pi, jq. Above, we exploited the fact that the acyclicity of

D‚pUq above degree n gives us an edge map

Hd´1
Γ pUq Ñ Hn´1

pΓ, Hn
pUqq.

Can the image of z under this edge map be related to ω in a simple way?

The following lemma, a general diagram chasing result holding in any spectral sequence of a double complex

with analogous acyclicity conditions, will show us how:

Lemma 2.2. In the situation above, we can write

ωpn´1,nq
“ ω

pn´1,nq

cl ` Bσ

for ωpn´1,nq

cl d-closed and some σ P Cn´2pΓ, DnpUqq. Then

rωpn´1,nq
s “ rω

pn´1,nq

cl s P Hn´1
pΓ, Hn

pUqq.

is the image of rωs under the edge map considered above, and this class is independent of choices. Further,

rω
pn´1,nq

cl s P Hn´1
pΓ, Dn

pUqclq

furnishes a cocycle representative of a cohomology class valued in d-closed elements giving a representative

of the above class valued in closed elements.
17



Proof. The choice of cohomological degree n “ d{2 is actually immaterial; any cohomological degree r ă

d´ 1 for U yields the analogous result for the bidegree pd´ 1´ r, rq-component and the edge map valued in

Hd´r´1
pΓ, Hr

pUqq.

We phrase the proof in this generality since it helps to clarify and distinguish the role of the cohomological

degree of U ; the lemma as stated is recovered by setting r “ n.

First, note that the statement makes sense because Bωpd´1´r,rq is a d-coboundary, and hence ωpd´1´r,rq is

B-closed considered as a cochain valued in HrpUq.

In the degenerate case r “ d ´ 1, the assumption abou the cohomological degree is denegerate, and ωp0,d´1q

must already be d-closed. Hence we take σ “ 0 and recover the classical expression for the usual edge map

Hd´1
pC‚,‚

q Ñ E0,d´1
2 “ H0

pΓ, Hd´1
pUqq.

Now, we construct the decomposition in question in general. Since ωp0,d´1q is d-closed and D‚pUq is acyclic

above degree r, there hence exists α0 in bidegree p0, d ´ 2q with dα0 “ ´ωp0,d´1q. We can compute that

dpωp1,d´2q
´ Bα0q “ dωp1,d´2q

´ Bωp0,d´1q
“ 0

so we ωp1,d´2q´Bα0 is again d-closed, and hence d-exact if we are still to the right of r, enabling us to construct

α1 P ωp1,d´3q with dα1 “ ωp1,d´2q ´ Bα0. We continue in this fashion, constructing α2, α3, . . . , αd´2´r with

αi in bidegree pi, d ´ 2 ´ iq such that

dp´αiq “ ωpi,d´1´iq
´ Bαi´1.

In particular, at the end of the sequence,

ωpd´1´r,rq
´ Bαd´2´r

18



is again d-closed (though we are no longer able to conclude it is d-exact), so we can take σ “ αd´2´r to get

the representation posited in the lemma, i.e.

ω
pd´1´r,rq

cl :“ ωpd´1´r,rq
´ Bαd´2´r.

Furthermore, we have that

Bω
pd´1´r,rq

cl “ Bωpd´1´r,rq
“ ´dωd´r,r`1,

meaning that considered as a HqpUq-cohomology valued cochain, ωpd´1´r,rq

cl is B-closed and hence yields a

class

rω
pd´1´r,rq

cl s P Hd´1´r
pΓ, Hq

pUqq

We claim this is the image of rωs under the E2 edge map. As a sanity check, different choices of α in the

process above can only change ωpd´1´r,rq

cl by a B-exact form, so this is well-defined.

Indeed, write α :“
ř

αi. Then ω ´ Bα P F d´1´rC‚,‚ is a representative for the class

rωs P F d´1´rHd´1
pC‚,‚

q Ă Hd´1
pC‚,‚

q.

The cohomology of F d´1´rHd´1pC‚,‚q is computed by F d´1´rC‚,‚. Changing the labels on the bidegrees

along

‚, ‚ ÞÑ ‚, ‚ ´ r.

we see this filtered part of the complex now falls into the degenerate case of the classical edge map considered

above. Hence, ωpd´1´r,rq

cl is a representative of the image of

rωs “ rω ´ Bαs P F d´1´rHd´1
pC‚,‚

q

under the edge map for F d´1´rC‚,‚

F d´1´rHd´1
pC‚,‚

q Ñ Hd´1´r
pΓ, Hr

pUqq.

The functoriality of edge maps under the inclusion of complexes F d´1´rC‚,‚ ãÑ C‚,‚ affords us the conclu-

sion. □
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This lemma and its proof imply in particular that if some ω is such that ωpd´1´r,rq is already d-closed, then

the latter gives a cocycle representative

rωs P Hd´1´r
pΓ, Dr

pUqclq

for the HrpUq-coefficients image of rωs under the edge map.

This lemma and especially the “staircase” technique in its proof will be our principal tool in comparing the

spectral sequence construction with more explicit constructions.

3. ANALYTIC AND ALGEBRAIC CONSTRUCTIONS

In this section, we recapitulate the theory first laid out in [BCG1] of representing the Eisenstein theta corre-

spondence in terms of an explicit theta kernel, in the algebraic setting. We then give an algebraic approach to

such a theta kernel, following in part the construction of [KS], and apply the methods and results of [BCG3]

in our setting to compare the two classes.

3.1. Some setup and notation. We begin by setting up some notational conventions for our constructions.

Let G{Q and H{Q be a pair of reductive algebraic groups equipped with embeddings ιG, ιH of G and H into

GLd{Q such that G Ă ZGLd
pHq, i.e. the images commute.

In addition, the principal setting of interest in this thesis will assume the following two algebraicity condi-

tions:

‚ (Alg1) H admits a Shimura datum D in the sense of [Del], i.e. a symmetric Hermitian domain D

parameterizing an HpRq-conjugacy class of embeddings of the Deligne torus

SDel :“ ResCRGm ãÑ HR,

and such that the stabilizer of a point ofD for the left conjugation action of HpRq on these embeddings

can be identified with a maximal compact subgroup K8pHRq Ă HpRq. In particular, this yields an

identification

D – XH :“ K8pHRqzHpRq
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as HpRq-homogenous spaces.

‚ (Alg2) The family of Hodge structures on V associated to ιH , i.e. the one that associates for each

point of D the composite embedding

SDel ãÑ HR
ιH
ÝÑ pGLdqR,

is a family of polarizable Hodge structures of weight ´1.12 In particular, it admits a family of positive-

definite Hermitian forms and its complexification decomposes (as a representation of SDel) into copies

of the characters z ÞÑ z´1 and pz1, z2q ÞÑ z´1. These are precisely the weights of the Hodge structure

on the first homology group uniformizing a complex torus, and the polarizability implies that this

complex torus has the structure of an abelian variety.

When these conditions are satisfied, we will call pG,Hq an algebraic pair. These assumptions are what allow

us to put an algebraic structure on the corresponding family of complex tori over the locally symmetric space,

a prerequisite condition to most of this thesis.

Remark 3.1. Theta correspondences usually start from the perspective of groups which are additionally

mutual centralizers, i.e. ZGLd
pGq “ H and vice versa. If we imposed this condition in the current setting,

then at each place of Q the pair pG,Hq would yield a dual pair of type II in the sense of [Howe] inside Sp2d,

via the embedding

GLd Ñ Sp2d, A ÞÑ

¨

˝

A 0

0 A´T

˛

‚.

Our avenue of exploration in this thesis will not use the “duality” aspects of the theta correspondence, not

least because in most of our constructions, the roles of G and H are fundamentally asymmetric: we only

consider algebraic/complex structures on the locally symmetric space of the latter rather than the former.

Thus, we do not restrict ourselves to true dual pairs, though many of the primary examples of interest (for

example pGLn,GL2q) do happen to be dual.

12Note that this is true for the whole family if and only if it is true for one point in D, since we can change the polarization by the
adjoint action.
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GLd has a natural structure over Z, and acts via its standard representation on a d-dimensional affine space

we call V{Z; G and H, as subgroups, acquire Z-structures as well by taking their Zariski closures inside

GLd{Z. For any scheme S, VpSq is then a representation of GpSq and HpSq via ιG, ιH .

There is a locally symmetric space Y pHq for any arithmetic subgroup H Ă HpQq given by

Kf pHqHpQqzpXH ˆ HpAf qq{ZHpAf q

where XH “ ZHpRqK8pHRqzHpRq is the symmetric space associated to H given by quotienting by a

maximal compact subgroup, and Kf pHq is the open subgroup of HpAf q associated to H . Each connected

component of the locally symmetric space is homeomorphic to HzX0
H, where X0

H is the neutral component

of the symmetric space. Y pHq has the structure of an algebraic variety in the presence of condition (Alg1),

defined over a number field associated to the Shimura datum called the reflex field [Del].

So long asH is small enough to act without fixed points onXH, the representation associated to the inclusion

ιH : H ãÑ GLd gives rise to a universal family of d-dimensional tori ApHq Ñ Y pHq over Y pHq, given by

the uniformization

(3.1) pVppZq ¸ Kf pHqqpV ¸ HqpQqzpV ¸ HqpAq{ZHpAf qK8pHpRqq

where the semidirect product is for the action of H on V we have defined. In the presence of (Alg2),

ApHq Ñ Y pHq has the structure of a family of abelian varieties of genus d
2

defined over the reflex field of

the Shimura datum we associate to H [HS].

ApHq is endowed with an action of GpZq since this group’s fiberwise action commutes with the monodromy

action of H . To be precise, GpZq Ă GpAq acts on VpAq in (3.1) via the representation ιG, and this action

descends through both the left and right quotients because the images of ιG and ιH commute by assumption.

3.2. Equivariance and fiber bundles over KpΓ, 1qs. Let us now turn to translating the equivariant formal-

ism of 2 into the more geometric language used in [BCG1, §3]. Throughout this section, all cohomology will

be the ordinary cohomology of topological spaces unless otherwise noted.13

13This is not quite precise, since there are various ways (Čech, singular, de Rham, etc.) to compute “ordinary” cohomology which
can disagree in pathological situations. All the spaces we work with will be arbitrarily nice, so this will not be an issue, but for
now the reader can view this statement as a generality to be made precise later.
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3.2.1. Classifying spaces and equivariance. Write BΓ for the simplicial model of the classifying space of

the discrete group Γ, considered as a simplicial complex; for the original reference for this concept, see

[Mil]. Its k-simplices are labeled by homogenous pk ` 1q-tuples rg0 : g1 : . . . : gks of elements of Γ, and it

is uniformized by the contractible simplicial complex EΓ whose k-simplices are labeled by pk ` 1q-tuples

pg0, . . . , gkq, via quotienting by the left g-action

g : pg0, . . . , gkq ÞÑ pgg0, . . . , ggkq.

There is a standard equivariant-to-geometric dictionary we will freely use taking (left, by convention) Γ-

equivariant objects to objects “over” the geometric realization |BΓ|. Heuristically, the idea of this dictionary

is that there is a a functor from objects with Γ-action to objects fibered over |BΓ| given by the Borel con-

struction

(3.2) X ÞÑ X ˆΓ |EΓ|

which is an equivalence of categories. Additional structure or auxiliary constructions on X then correspond

to the same on the fiber bundle. To illustrate what this means, we give a sample of the most common

translations, each of which should be interpreted as an equivalence of categories or a natural isomorphism of

functors:

equivariant geometric

Γ-representation ρ : Γ Ñ GLpV q local system on |BΓ| with fiber V and monodromy ρ

Γ-invariants V Γ global sections H0p|BΓ|, V q

group cohomology H ipΓ, V q cohomology with local coefficients H ip|BΓ|, V q

Γ-space X fibered space X ˆΓ |EΓ| Ñ |BΓ|

equivariant cohomology H i
ΓpXq cohomology of the space H ipX ˆΓ |EΓ|q

Hochschild-Serre spectral sequence Leray spectral sequence for the bundle X ˆΓ |EΓ| Ñ |BΓ|

Unfortunately, there appears to be a dearth of comprehensive references for this dictionary in the literature;

one can be found in [NSS, §3.7], though it is phrased in 8-language more abstract than necessary for our

purposes. We will explicate the last two rows of this dictionary in the setting of de Rham cohomology below.
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3.2.2. The de Rham formalism, distributions, and currents. We return now to the formalism of §2.1 in the set-

ting of ordinary cohomology of topological spaces. While we could continue working with singular cochains,

it is more practical for us to use de Rham complexes instead. We do not need the integral or rational struc-

tures in ordinary cohomology in this thesis, and all the spaces we will deal with hereon are smooth mani-

folds. There exists a functorial quasi-isomorphism between the Čech complex (with R-coefficients) and the

de Rham complex for such spaces by [BT], so the discussion of the previous section all applies.

For expository purposes,14 we wish to work with not only the usual de Rham complex, but also distributional

de Rham cohomology, defined in terms of currents, which intuitively are smooth differential forms with

distributional coefficients. See [BT] for a textbook reference on traditional de Rham cohomology, and de

Rham’s original text [dR] for the distributional version; we will be brief in describing the properties we need

here.

Write W i
X , respectively W i

X,c, for the smooth complex-valued15 i-forms, respectively compactly supported

i-forms, on a smooth manifold X of dimension k.16 These are equipped with the usual exterior derivative

d : W i
X Ñ W i`1

X (and similarly for the compactly supported versions), forming the usual smooth de Rham

complex.

The smooth i-currents are defined by the dual

Di
X :“ hompW k´i

X,c ,Cq.

The exterior derivative d : Di
X Ñ Di`1

X is defined by adjunction to the exterior derivative on forms, i.e. by

pdαqpωq :“ αpdωq. While currents do not have a product structure like forms do, they do have a right module

structure under the wedge product for forms, via the product

Dj
X b W i

X Ñ Di`j
X , pα ^ ηqpωq :“ αpη ^ ωq.

14It is possible to develop the theory in this section without distributions, but the distributional de Rham complex offers certain
technical advantages, and we will need it later in this thesis anyway.
15Everything in this subsection is true with real coefficients as well, but just as with the integral/rational structures in singular
cohomology, there is no real advantage to this since we will need complex coefficients for the main results in the next chapter.
Thus for notational ease, we define everything with complex coefficients from the outset.
16We use W for differential forms instead of the customary Ω, which we reserve for holomorphic forms.
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Given a smooth submersion f : X Ñ Y , we have a pullback

f˚ : Di
Y Ñ Di

X , pf
˚αqpωq :“ αpf˚ωq

where f˚ω means integration along the fiber. For a finite map f : X Ñ Y , we can also define the pushforward

f˚ : Di
X Ñ Di

Y , pf˚αqpωq :“ αpf˚ωq.

Both of these can be checked to commute with the exterior derivative.

For any closed submanifold Z Ă X of codimension s, we have a closed current of integration

δZ P Ds
X

defined by

δZpωq :“

ż

Z

ω.

Finally, there is a natural map

υ : W i
X Ñ Di

X , ω ÞÑ

ˆ

η ÞÑ

ż

X

η ^ ω

˙

which is compatible with pullback/pushforward, intertwines the respective exterior derivatives and the wedge

product module structure, and yields a map of de Rham complexes turns out to be a quasi-equivalence. Via

this map, we can and will implicitly view differential forms as currents.17

If X is a Γ-space, we can take the functor D interchangeably to be either the de Rham or distributional de

Rham complexes; i.e., the equivariant ordinary cohomology H i
ΓpXq can then be defined in our formalism

as the total cohomology of either complex C‚pΓ,W ‚
Xq or C‚pΓ,D‚

Xq, since υ induces a quasi-isomorphism

between the double complexes.

17In fact, in the presence of complex structure, both the definition of υ and the wedge module structure make sense not only for
smooth global forms, but even those with log singularities, i.e. locally of the form

log f0 ¨ d log f1 ^ . . . ^ d log fk,

for fi meromorphic in each local chart. This will be important in §4.2.3.
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Both approaches offer their own advantages. From the classical de Rham complex, we obtain contravariant

functoriality for all smooth maps (not just submersions), though both approaches give covariant functoriality

for finite maps. The localization sequence in the classical theory is the content of [BT, p. 6.49]; note that in

this setting, ι˚ is not surjective, cf. §2.1, so the “relative de Rham complex” constructed there is the mapping

cylinder.

It is more convenient to formulate the localization sequence in the distributional setting: since ι : X´Z Ñ X

is certainly a submersion, it is legitimate to consider the pullback

ι˚ : Di
X Ñ Di

X´Z ,

and this map is a surjection, because it is the dual of the pushforward

ι˚ : W i
X´Z,c Ñ W i

X,c

which is certainly an injection. Notice that in the resulting localization sequence, the snake lemma implies

that the map

H i
pX ´ Zq Ñ H i`1

Z pXq

is induced by the exterior derivative sending a closed i-current on X ´ Z (viewed as a current on X closed

along X ´ Z) to a pi ` 1q-current in ker ι˚.

The Gysin isomorphism is made very convenient by currents: we have the natural isomorphism of complexes

(3.3) Di´d
Z

„
ÝÑ kerpDi

X Ñ Di
X´Zq, η ÞÑ δZ ^ η

for a closed subspace j : Z Ă X , defined as the dual of the pullback of forms

Ωk´i
X,c Ñ Ωk´i

Z,c

from X to Z; it is formal to check that this is functorial for finite pushforwards. One can check that restricted

to pi ´ dq-forms ω, this map is

ω ÞÑ δZ ^ ω.
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We wish now to translate everything on the geometric side of the dictionary. Since the geometric realizations

|BΓ| and |EΓ| generally do not come equipped with a smooth manifold structure, the de Rham approach

taken in this subsection cannot be directly applied to the Borel construction. We wish, then, to find homotopy

equivalent smooth manifold models for these spaces.

Before constructing the specific de Rham model for our situation, we formulate the translation abstractly;

this will reduce the notational baggage. Suppose that E is a smooth manifold with Γ-action, with a Γ-

invariant subspace C. Suppose further that we have a Γ-covering X Ñ Y of smooth manifolds such that X

is contractible, along with a diagram of Γ-maps

(3.4)

|EΓ| X

|BΓ| Y

R̃

R

where both horizontal maps are homotopy equivalences. We say that this “realizes Y as a classifying space

for Γ.”

We recall that the equivariant (de Rham) cohomologyH‚
ΓpEq is computed by the double complexC‚pΓ,W ‚

Eq.

On the other hand, the equivariant-geometric dictionary tells us that the same groups are computed by the

“de Rham version” of the Borel construction H‚pE ˆΓ Xq, computed by the de Rham complex W ‚
EˆΓX

.

Rather than constructing a direct quasi-isomorphism between the two complexes (which seems difficult), we

outline why they coincide in the spirit of the dictionary, i.e. more conceptually. The idea is that we have an

exact functor

B : Γ´Sh{E Ñ ΓSh{EˆΓ

between Γ-sheaves (of R-vector spaces) on E and sheaves (of R-vector spaces) on the Borel construction of

E. On objects, this functor sends a sheaf F to the pullback by projection onto the first coordinate π˚
1F on

E ˆ X; via the Γ-action on F , this is a Γ-sheaf on the product space. It hence descends by the Γ-cover a

sheaf E ˆΓ X . It is defined on arrows similarly, and since exactness of sequences of sheaves can be checked

on stalks, it is formal that B is exact.
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Now, the constant sheaf C on E with trivial Γ-action has a acyclic resolution given by the total complex

C‚pΓ,W ‚
Eq. Thus, the equivariant cohomology groups H‚

ΓpEq can be identified with the image of R derived

functor R‚ΓΓ
E of the functor of Γ-invariant global sections18

ΓΓ
E : Γ´Sh{E Ñ C´Vector.

Meanwhile, BpCq is the constant sheaf on EˆΓX , and W ‚
EˆΓX

is an acyclic resolution of this object. Hence

we can identify it as a derived functor as well:

H‚
pE ˆΓ Xq – pR‚ΓEˆΓXqpBpCqq

But one can also check that we have the identification of abelian functors ΓΓ
E “ ΓEˆΓX ˝ B. Since B is

exact, one finds from the the degeneracy of the corresponding Grothendieck spectral sequence [Tohoku] the

identification

H‚
pE ˆΓ Xq – pR‚ΓEˆΓXqpBpCqq – R‚ΓΓ

EpCq – H‚
ΓpEq,

as desired.

We abbreviate the de Rham Borel construction E ˆΓ X to BorpEq, etc. for the rest of this section for

convenience.

In the geometric translation, the localization sequence for BorpCq Ă BorpEq is then the long exact sequence

in ordinary cohomology

. . . Ñ H i
pBorpEqq Ñ H i

pBorpEq ´ BorpCqq Ñ H i`1
BorpCq

pBorpEqq Ñ . . .

and the Gysin isomorphism

H i
BorpCqpBorpEqq – H̃ i´d

pBorpCqq

is given by the excision axiom for cohomology: the pair of spaces pBorpEq,BorpEq ´ BorpCqq, by excising

everything but a small tubular neighborhood of BorpCq as a closed submanifold of BorpEq, is homology

equivalent to pBorpCq ˆ Bd,BorpCq ˆ Sd´1q where Bd the closed unit d-ball (in each fiber of the normal

18We use the usual notation for global sections Γ, which due to the choice of the name of our group, gives an unfortunate overload-
ing of notation.
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bundle of BorpCq in BorpEq embedded as the tubular neighborhood), and Sd´1 its boundary in each fiber.

This last pair of spaces is the d-fold suspension ΣdBorpCq, and so its homology can be identified as

H i
pΣdBorpCqq – H i´d

pBorpCqq.

In the context of BorpCq a set of torsion sections inside BorpEq a torus bundle, [BCG1, §3] calls this a “Thom

isomorphism” (terminology which is traditionally is used only for the zero section).

In some ways all of this this is just a formal change of language, but the upside is that we will be able to equip

the space playing the role of BorpEq with a natural Riemannian structure. This structure we will leverage,

following [BCG1, §5-8], to obtain canonical de Rham representatives for the cohomology classes we are

interested in.

3.2.3. A de Rham model for the classifying space. The uniformization map from the connected GpRq-

symmetric space

GpRq{K8pGpRqqZGpRq – XGpRq Ñ Y pΓq

is the quotient of a contractible space by a Γ-action by holomorphic isometries. The stabilizer of a point is

compact [Hel], and therefore Γ acts with finite stabilizers of points modulo the kernel of the action.

The kernel of the Γ-action is contained in K8pGpRqqZGpRq. For G with no central anisotropic torus split-

ting over a totally real extension, the Dirichlet unit theorem implies there is no infinite arithmetic subgroup

contained in this image. In this case, we conclude that if Γ Ă GpZq is a torsion-free arithmetic subgroup,

then the Γ-action is free.

If G does have such a torus, we can instead replace XGpRq by

(3.5) X 1
GpRq :“ GpRq{K8pGpRqqZsGpRq

where ZsGpRq is just the split part of the central torus; this now again has finite stabilizers since the Z-points

of a split torus have no infinite discrete subgroup. For the rest of this section, the quotient of X 1
GpRq

by Γ is

what we will mean by the notation Y pΓq in this specific case. Note we mean this only for the group playing
29



the role of Γ and not for the group playing the role of H , which we need to have a natural algebraic structure

(which (3.5) never carries).

Example 3.2. If G “ ResOF
Z Gm for F {Q a real quadratic extension, we have that

XGpRq “ H ˆ H,

i.e. two copies of the upper half-plane. The action of GL2pOF q then has kernel Oˆ
F ; the replacement X 1

GpRq

is a (trivializable) R-bundle over H ˆ H on which Oˆ
F acts nontrivially.

In any case, we can construct the de Rham model as in (3.4):

(3.6)

|EΓ| XH

|BΓ| Y pΓq

ρ̃

ρ

Here, ρ̃ is defined as follows: given a choice of basepoint τ0 in XH, we linearly map the geometric realization

of the k-simplex labelled rg0 : g1 : . . . : gks to the geodesic simplex ∆τ0pg0, g1, . . . , gkq.19

For torsion-free Γ, ρ is a homotopy equivalence onto the connected component containing τ0, realizing Y pΓq

as a classifying space for the group Γ.20

In the remainder of the analytic treatment, for simplicity we will only work with the single connected com-

ponent Y pΓq0 of Y pΓq (and Y pHq, etc.) containing some given basepoint τ0, which we will choose to be the

class of the identity under the analytic uniformization by GpRq{K8, for simplicity. Consequently, we will

drop the superscript 0 indicating the neutral connected component from the notation. We do not expect the

general case does not introduce any new real complications to the theory as presented here; this choice is

only for convenience of formulating the results.

Example 3.3. Choose an arithmetic subgroup Γ Ă GL2pZq acting freely on the upper half-plane H via

Möbius transformations. Then H Ñ H{Γ is a quotient by a free action, and can be identified (in the homotopy

19When k “ 2, this is simply the geodesic from g0τ0 to g1τ0. Otherwise, it is defined inductively as the geodesic join g0τ0 ˚

∆τ0pg1, . . . , gkq, meaning the union of all geodesics connecting the former point to the latter simplex.
20More generally, the map ρ is a homology equivalence away from the primes for which Γ has torsion.
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category) with |EΓ| Ñ |BΓ| via (3.6): for example, if we choose τ to be i P H, then the 1-simplex rg0 : g1s

is sent to the geodesic sending g0i to g1i. If V is the standard 2-dimensional real representation of Γ, the

corresponding local system on Y pΓq “ H{Γ can be identified with flat sections of the Hodge bundle ω if we

forget the complex structure, i.e. the relative Lie algebra of the universal elliptic curve EpΓq Ñ Y pΓq.

3.2.4. More torus bundles. Recall from Section 3.1 the Γ-space ApHq, which is a torus bundle over Y pHq.

To this Γ-space there corresponds, from the equivariant-geometric dictionary, a bundle ApΓ, Hq Ñ Y pΓq

whose fibers are copies of ApHq, which is the bundle over Y pΓq given by

ApΓ, Hq – ApHq ˆΓ XGpRq

Notice that ApΓ, Hq can equally be viewed as a bundle of tori over Y pΓq ˆY pHq since the Γ-action fixes the

base Y pHq.

Even assuming the fibers of this bundle carry the structure of abelian varieties when considered over the

algebraic structure on Y pHq alone, the total bundle usually has no canonical algebraic or even complex

analytic structure even if Y pΓq is also a Shimura variety: the complex/algebraic structure one might hope for

coming from considering the bundle over Y pΓq is incompatible with that coming from considering it over

Y pHq.

Example 3.4. The example considered in [BCG1] is that of G “ GLn, H “ GL2 with H endowed with

the usual Shimura datum parameterized by the upper half-plane. We take d “ 2n, and ιG : GLn ãÑ GL2n,

ιH : GL2 ãÑ GL2n to be given by the external tensor product of the natural representations of G and H.

In this case, ApHq is given by the self-product of n copies of the universal elliptic curve over Y pHq, with

the natural action of Γ Ă GLnpZq “ GpZq. The bundle ApΓ, Hq is kind of a “tensor product torus bundle”

over the product Y pΓq ˆ Y pHq, in the sense that the fiber over a point of Y pΓq is the bundle over Y pHq

corresponding to the n-fold self-product of the standard representation of H , and conversely, the fiber over a

point of Y pHq is the bundle over Y pΓq corresponding to the squared standard representation of Γ.
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Even if n “ 2, so that Y pΓq is also an open modular curve with a natural algebraic structure, the bundle

ApΓ, Hq still has no natural algebraic structure over the base Y pΓq ˆ Y pHq; the complex structures implied

by the G- and H-structures are incompatible.

The space ApΓ, Hq is uniformized by the Γ-cover

ApXG, Hq :“ ApHq ˆ XGpRq.

Over the diagram (3.6), we have the analogous diagram of bundles

(3.7)

ApHq ˆ |EΓ| ApXG, Hq

ApHq ˆΓ |EΓ| ApΓ, Hq

where the horizontal arrows are defined in the same way, i.e. the simplex tau ˆ rg0 : . . . : g0s is sent linearly

to the geodesic simplex ∆pa,τ0qpg0, . . . , gkq in the top row, and this descends along the pair of Γ-covers.

ApΓ, Hq hence plays the role of the space BorpEq we discussed in the more abstract treatment earlier. Per

the general discussion in that subsection, we have the identification

H‚
ΓpApHqq – H‚

pApΓ, Hqq.

The formalism of §2.1 now gives rise to the same cohomological manipulations as found in [BCG1, §3]: for

any C P H0pCqdeg“0, we get a class in Hd´1pApΓ, Hq ´ Cq, with ambiguity of Hd´1pApΓ, Hqq. Writing

ras for the fiberwise multiplication-by-a isogeny; in a slight abuse, we will also use the same notation for

restrictions thereof. If pa, cq “ 1, ras gives a map

ras : ApΓ, Hq ´ ApΓ, Hqracs Ñ ApΓ, Hq ´ ApΓ, Hqrcs.

The composition in cohomology with the reverse inclusion is then an endomorphism of ApΓ, Hq´ApΓ, Hqrcs,

and we will abusively also refer to it as ras.
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Then as defined previously, for a ” 1 pmod cq the projectors

e
paq

L :“
pras˚ ´ aqpras˚ ´ a2q . . . pras˚ ´ adq

p1 ´ aqp1 ´ a2q . . . p1 ´ adq

can combine linearly to give a map

eL : H0
pCq

deg“0
Ñ Hd´1

pApΓ, Hq ´ Cq, C ÞÑ ztopC

with Zr1{cs-coefficients.

3.3. Transgressing the Mathai-Quillen form. Now that we are done with the set up, the goal is to construct

a canonical differential form representing ztopC P H‚pApΓ, Hq ´ApΓ, Hqrcsq. This subsection is a rephrasing

of the contents of [BCG1, §5-8] in our language.

We work in a superficially more general context than loc. cit., in the sense that they only consider bundles

over the symmetric spaces for general linear groups. However, all these constructions are functorial for maps

of Riemannian bundles of metrized tori, and so can be pulled back from the analogous ones for some general

linear group. In particular, all our constructions are for the representation V of G ˆ H, whose Riemannian

structure will be defined (see (3.8) below) by restriction of structure from considering V as a representation

GLd, which is precisely the setting considered in [BCG1].

We hence do not need any original arguments, and do not pretend to give any in this subsection. We will

abbreviate calculations and technical details inessential to presenting the main ideas, since they are identical

in form to those of loc. cit.. The only notational differences of note are that we will use a tuple pg, hq

to represent group elements instead of just g (because we want to emphasize that we are parameterizing

elements of a product of groups), and we will use η for the Mellin transform of ψ, notation which does not

appear in the original work [BCG1] (having been introduced in the follow-ups [BCG2] and [BCG3]).

The construction proceeds as follows: there is a Hodge line bundle ωpΓ, Hq “ Lie ApΓ, Hq; it is the geo-

metric counterpart to the representation VpRq of Γ ˆ H in the equivariant-geometric dictionary. The sub-

lattice L :“ VpZq is the uniformizing lattice for ApΓ, Hq; i.e. the Borel construction for the pΓ ˆ Hq-torus

VpQq{VpZq yields the torus bundle ApΓ, Hq.
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Associated to the pair pG,Hq, we have an embedding

(3.8) pG ˆ H ˙ VqpRq{K8pG ˆ H ˙ Vq ãÑ pGLd ˙ VqpRq{Opdq.

The latter bundle has a universal metric as given in [BCG1, §4], which is a symmetric positive definite bilinear

form along each fiber of the vector bundle, agrees with the metric induced by the Killing form along the base

(viewed as the zero section) GLd{Opdq – XGLd
, and is GLdpRq-invariant. Its pullback via this embedding

thus descends to a Riemannian metric on ApΓ, Hq which is a flat metric invariant by translation by the group

structure on each toroidal fiber.

A construction of Mathai and Quillen [MQ] yields, given such a Riemannian structure, a canonical rapidly

decreasing d-form φ on the total space of ωpΓ, Hq, such that its class in HdpωpΓ, Hq, ωpΓ, Hq ´ t0uq is the

Thom class. This construction is for any Riemannian bundle, and is functorial for (isometric) maps of such

bundles.

They further construct a pd ´ 1q-form ψ on the same space such that

dprts˚ψq “ t
d

dt
rts˚φ

where rts is the multiplication-by-t isogeny on the fibers for t ą 0. The key is that the Mellin transform

η :“

ż 8

0

rts˚ψ
dt

t

satisfies [BCG1, Proposition 15]

dη “ δ0 ´ π˚x˚
0φ

where π : ωpΓ, Hq Ñ Y pΓq ˆ Y pHq is the projection and

x0 : Y pΓq ˆ Y pHq Ñ ωpΓ, Hq

is the zero section.

Remark 3.5. [BCG1] describes η as a “transgression of the Euler class”: since φ represents the Thom class,

its pullback x˚
0φ represents the Euler class by definition (as pullback of the Thom class by the zero section).
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Recall from our discussion of the de Rham presentation of the Gysin isomorphism that the class correspond-

ing to a torsion cycle

C “
ÿ

xPC

axx

in H2n´1
C pApΓ, Hqq is represented by a sum

ÿ

xPC

axδx

of currents of integration corresponding to x. Morally, then, it looks like to find the form zC lifting C, we

should take some kind of sum of suitable translates of η.

The form η, however, lives on the vector bundle ωpΓ, Hq and not the torus bundle ApΓ, Hq. Thus, we would

like to to take some kind of weighted sum (with weights corresponding C) of η over a lattice commensurate

L to descend η to a form on the torus bundle ApΓ, Hq representing zC . Because η is not rapidly decreasing,

we cannot actually sum it over a lattice in this way. Instead, the idea is that since η is the Mellin transform of

ψ, we instead take the corresponding sum for the form ψ, and only then take its Mellin transform. This leads

to the expression

Eψps, φf ; g, h, zq :“

ż 8

0

tdsθψpφf ; g, h, zq
dt

t
.

which we hence can we can view as a “regularized sum” of η over the lattice. Here, φf is a function in the

adelic Schwartz space21 SpVpAf
Qqq encoding the cycle C, i.e. if C correponds to the formal sum

ř

i cirλis for

λi a set of coset representatives in V pQq{L encoding the suitable torsion sections via the uniformization of

the torus bundle, then

φf :“
ÿ

i

ci1λi`V pAZq

The theta series in the integral is then defined by

(3.9) θψpφf ; g, h, zq :“
ÿ

λPV pQq

φf ppgf , hf q
´1

pλ ´ zf qqψpλq

where ψpλq denotes pullback by translation by ´λ of the form ψ, viewed as a form on pG ˆ HqpAq ˙ VpAq

via the uniformization (3.1) for the representation V of G ˆ H. Here, s is a complex variable, g and h are

elements in the adelic groups GpAq and HpAq respectively, and z is an element of VpAq (and λ is viewed as

21Meaning the space of locally constant functions with compact support on the finite adelic points of V.
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such via the diagonal embedding Q ãÑ A). We write gf , respectively, g8, for the finite adelic, respectively

archimedean, part of the element g, and similarly for h and z. The action of pg, hq on λ´ z in the expression

is then just the action of pG ˆ HqpAq, broken into its separate parts.

For s in a right half-plane, the regularization integral converges absolutely, and it admits analytic continuation

to s “ 0. A priori, then, Eψpsq is a differential form on the underlying space of the group

(3.10) XG ˆ XH ˆ pG ˆ HqpAf q ˙ VpAq,

but [BCG3, Chapitre 7, §3] shows that it descends to ApΓ, Hq - or rather, they show it for the group GLd,

which implies it also for G ˆ H by pullback/restriction of structure.

Remark 3.6. In fact, the regularization integral already converges at s “ 0, making analytic continuation

unnecessary for simply defining our desired form Eψp0q, but it is still useful for the following reason: if we

set

ηpsq :“

ż 8

0

tdsrts˚ψ
dt

t

then for Re s ą 0, the theta series does converge absolutely and we can exchange sum and integral to make

valid the naive definition

Eψpsq “
ÿ

λPVpQq

φf ppg, hq
´1

pλ ´ zf qqηpλq

Thus, Eψp0q is an analytically continued sum of η over the lattice, in a way reminiscent of the Hecke regular-

ization of classical Eisenstein series [Hecke]. In fact, if one works this out for the universal elliptic curve over

the upper half-plane, one gets precisely this classical regularization for the weight-1 and weight-2 Eisenstein

series; see [BCG1, §11.2].

In any case, our desired pd ´ 1q-form Eψp0, φf ; g, h, zq then descends to the torus bundle ApΓ, Hq via the

uniformization

ApΓ, Hq “ VppZq ¸ Kf pΓ ˆ HqpG ˆ H ˙ VqpQqzpG ˆ H ˙ VqpAQq{K8pGR ˆ HRqZGˆHpAQq

(with a slight alteration to the central term when G has a central torus of the form described at the end of

section 3.2.3).
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For reasons that will become clear in section 3.5, we also will wish to consider the variant

ApΓ, XHq “ VppZqKf pΓqpG ˙ VqpQqzpG ˙ VqpAQq ˆ XH{K8pGRqZGˆHpAQq

fibered over the symmetric space XH, which uniformizes ApΓ, Hq via an H-covering map.22

Conceptually, the role of the Schwartz function φf should be understood as corresponding to the torsion cycle

C. In particular, a torsion cycle is a linear combination

C “
ÿ

xPC

axx

where each x is a torsion section, which can be viewed as an element of VpQq{L via the uniformization of

ApΓ, Hq. To this, we associate the Schwartz function

φf pCq :“
ÿ

axχpx ` Lq

where χpx ` Lq denotes the compactly supported indicator function of the closure of the coset x ` L inside

VpAq (i.e. the function which is 1 on this compact open, and 0 elsewhere). Then, as in [BCG1, Theorem 19],

we have that

dEψp0, φf pCq; g, zq “ δC :“ deg C ¨ vol `
ÿ

xPC

axδx.

where vol is the volume form on each fiber of the torus bundle ApΓ, Hq. In loc. cit., they consider this

derivative only in the case φf “ φf pp0qq, but the expression (3.9) for φf pCq is just a sum of translates

of the theta series for φf pp0qq - at least, over the base pG ˆ HqpAq, which is a valid way to calculate as

exterior derivatives are computed locally. In particular, for C of degree zero, Eψp0, φf pCq; g, zq is closed

when considered as a differential form on ApΓ, Hq ´ C.

As in [BCG1, Proposition 20], the form Eψ satisfies the isogeny invariance property

ras˚Eψp0, φf ; τ, zq “ Eψp0, ras˚φf ; τ, zq

22The reason for this is technical: to obtain the edge map (2.12) in the argument sketched in section 2.2, we need the base (whose
role is played by Y pHq or XH in this case) to be acyclic, which the latter is and the former is not (necessarily). We thus will run
the argument over the latter base, then descend back to results over Y pHq using H-invariance of the constructions.

37



for any integer a. In particular, ras˚Eψp0, φf ; τ, zq “ Eψp0, φf ; τ, zq for any a with ras˚φf - in particular, for

φf “ φf pCq for C annihilated by an integer c, this is true for all a with pa, cq “ 1.

Putting the above together, we have the following culmination of our desires, which is [BCG1, Theorem 21]:

Proposition 3.7. Writing ztopC for the Eisenstein class defined earlier, we have

rEψp0, φf ; g, zqs “ zC

for any torsion cycle C (over ApΓ, Hq) of degree zero.

Proof. As in the proof of [BCG1, Theorem 21], this follows from the fact that isogeny-invariance and the

exterior derivative together characterize the class ztopC by construction. □

Naturally, the same holds for the form and the cohomology class viewed (via pullback) as H-invariant con-

structions on ApΓ, XHq.

3.4. Analytic Eisenstein theta correspondence in the algebraic setting. From here on, we always assume

(Alg1) and (Alg2) in the rest of the thesis, except where otherwise specifically noted.

Recall that we write W ip‚q for the smooth complex-valued i-forms on a space. From the uniformization by

(3.10), any component of ApΓ, Hq is a discrete quotient of

XG ˆ XH ˆ VpRq{L.

The contangent bundle (whose sections are 1-forms) on this product space then splits according to the product

structure. Moreover, the quotient in (3.10) preserves this decomposition, meaning we have a corresponding

decomposition of the cotangent bundle of ApΓ, Hq into corresponding parts which we denote as

W 1
Y pΓq ‘ W 1

XH
‘ W 1

A

which in turn induces a splitting on all differential forms by taking exterior powers, along with a splitting on

the differential d “ dΓ ` dH ` dA. Further, since the fibers are naturally complex tori,23 we have the further

23Using the complex structure coming from the HpRq-structure.
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splitting

W 1
A “ W

p1,0q

A ‘ W
p0,1q

A

into holomorphic and anti-holomorphic parts, and a corresponding splitting dA “ B ` B. Thus, in total, we

have the decomposition

(3.11) W 1
Y pΓq ‘ W 1

XH
‘ W

p1,0q

A ‘ W
p0,1q

A

and we can project any smooth differential k-form on ApΓ, Hq to its pa, b, cB, cBq-component for any four-

tuple of nonnegative integers such that a ` b ` cB ` cB “ k.

Naturally, all of the preceding discussion applies also to the cover ApΓ, XHq. Considered on either space, we

wish to consider the component

θφf
:“ Eψpφf q

pd{2´1,0,d{2,0q.

We have the following important closedness result:

Proposition 3.8. For any φf “ φf pCq, θφf
is closed along Y pΓq, i.e. dΓθφf

“ 0.

Proof. A weaker version of this proposition (after pulling back by a torsion section) for the globally split

case pGLN ,GL2q is claimed without proof in [BCG1, Lemma 28]. The proof we give below follows from a

computation by the same authors in [BCG2], and so is surely known to them.

We will prove the result in fact for the (non-closed) form

θ :“ E
pd{2´1,0,d{2,0q

ψ pφpp0qqq,

since, as we mentioned previously, every other case is a linear combination of translates of this one.

Choose some point p P XH; it suffices to prove the result for the fiber p˚θ for all p; each of these fibers is a

punctured d-torus bundle over Y pΓq.

We can consider of p˚θ as a form on (an open subset of) the uniformizing space

XGpRq ˆ VpRq – Gad
pRq ˆK8pGadpRqq VpRq
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where the isomorphism is given by prgs, vq ÞÑ rg, g´1vs. Since closedness is a local property, it is equivalent

to check it on this space.

The representation ιG gives rise to an embedding

GpRq ãÑ GLdpRq.

Since G centralizes H, it also preserves the C-linear structure on VpRq given by any Hodge structure pa-

rameterized by some point of XHpRq, and in particular for the point p. It hence gives rise to a more refined

embedding

GpRq ãÑ GLd{2pCq

corresponding to ιG and the complex structure associated to p, which induces an embedding of bundles

Φp : G
ad

pRq ˆK8pGadpRqq VpRq ãÑ SLd{2pCq ˆSUd{2
Cd{2

which fiberwise is an isomorphism of complex vector spaces.

The Riemannian structure on the latter bundle considered in [BCG2] agrees with the one pulled back from

restriction of structure from the GLdpRq-structure on Cd{2, as we described in the beginning of §3.3. Hence,

if we run the Mathai-Quillen formalism using this metric to obtain a degree-d Thom form φCd{2 and a degree-

pd´1q transgression form ηCd{2 (and its s-deformations), then we have the functorial relationship η “ Φ˚
pηCd{2 ,

and we have similar functorial agreements for the analogously defined pEψqCd{2 , θCd{2 , etc. In [BCG2, §3.27],

it is shown that the component θCd{2 is closed along XSLd{2pC, whence

dΓθ “ dΓΦ
˚θCd{2 “ Φ˚dXSLd{2pCθCd{2 “ 0.

□

As a result of this computation, we may obtain a cohomological invariant by integrating θ (or its stabilizations

θφf
for various Schwartz functions φf ) along closed pd{2 ´ 1q-cycles in Y pΓq. This proceeds as follows:

consider θ as a form in

W
d{2´1
cl pXGpRq,W

p0,d{2,0q
pApXHq ´ 0qq.
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Here, the notation should be interpreted as closed pd{2´1q-forms on XGpRq valued in multidegree-p0, d{2, 0q

forms on the fiberApXHq´0 (where we drop the first coordinate corresponding to Y pΓq in the decomposition

(3.11)). Since θ is Γ-invariant, this can equally be viewed as a closed differential form on Y pΓq with values

in the local system defined by W p0,d{2,0qpApXHqq, representing hence a cohomology class

Θan :“ rθs P Hd{2´1
pY pΓq,W p0,d{2,0q

pApXHq ´ 0qq.

We note now that by the H-invariance of the form θ, we can equally do all of this on the level of the quotient

by H , giving a cocycle representing a cohomology class in

rΘan :“ rθs P Hd{2´1
pY pΓq,W p0,d{2,0q

pApHq ´ 0qq,

i.e. valued in smooth p0, d{2, 0q-forms on the fibers over Y pΓq. This is the cocycle and class we are interested

in, though it turns out the target can be given a more refined structure, as we shall see.

Example 3.9. The case G “ GLn{Q and H “ GL2{Q is the one considered in [BCG1, §13]. In particular,

the evaluation on the pd ´ 1q-homology class associated to the embedding of a nonsplit torus

TF Ă GLnpRq

coming from a totally real field F of degree d in [BCG1, p. 13.3] yields, upon pullback by a pΓˆHq-invariant

torsion section, the diagonal restriction of a Hilbert-Eisenstein series associated to F .

3.5. Hodge theory and the de Rham polylogarithm. Having constructed a Γ-cocycle valued in differential

forms analytically, we turn now to working with the class ztopC . In order to obtain an appropriate edge map in

the formalism from §2, we need to decrease the cohomological dimension of ApΓ, XHq to d{2.24

Under the geometric-equivariant dictionary, ztopC corresponds to a class

zeqC P H
d{2´1
Γ pApHq ´ Cq.

24It is here that it becomes necessary to work with Θan rather than rΘan, as it is not clear to us how to do this when the fibers
are copies of ApHq rather than ApXHq: the base Y pHq (unlike XH) is not necessarily contractible, and can contribute extra
cohomology.
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In the previous section, we were computing the total cohomology of the bundle ApΓ, XHq via the de Rham

complex

W ‚
pApΓ, XHqq “ W p‚,‚,‚,‚q

pApΓ, XHqq

to which we assigned a quadruple grading (3.11).

Similarly, the Γ-equivariant cohomology groups ofApXHq and related spaces with Γ-action can be computed

with a de Rham model which looks like

C‚
pΓ,W p‚,‚,‚q

pApXHqqq

where the triple grading is as in the previous subsection, dropping the first coordinate of (3.11).

For our chosen basepoint τ0 P Y pΓq, the natural map of Z4-graded complexes

W p‚,‚,‚,‚q
pApΓ, XHqq Ñ C‚

pΓ, Ap‚,‚,‚q
pApXHqqq

given by

(3.12) ω ÞÑ

˜

pγ1, γ2, . . . , γkq ÞÑ

ż

∆τ0 p1,γ1,...,γkq

ω

¸

is a quasi-isomorphism inducing the equivalence between the cohomology theories from the equivariant-

geometric dictionary; further, the map on cohomology groups is independent of the basepoint τ0.

In particular, (3.12) associates to Eψpφf q a Γ-cochain

Aψ P C‚
pΓ,W ‚

pApXHq ´ 0qq

of total degree d´1 (but in various Γ-degrees).25 For φf “ φf pCq, this yields an element with total differential

zero representing the class zeqC . Further, Proposition 3.8 shows that its pd{2 ´ 1, 0, d{2, 0q-component is a Γ-

cochain.

25This notation is intended to be reminiscent of the simplicial differential form considered in [BCG3], since they are essentially
the same thing.
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It now remains to finesse the fibers of the Γ-space ApXHq to cut down their cohomological dimension.

However, we will first only be doing this for certain pairs pG,Hq.

3.5.1. Formality and comparison for split global pairs. In this subsection, we consider the case where the

family ApXHq (or equivalently ApHq) is isogenous to a power of a (relative) elliptic curve. Equivalently, we

ask that VQ decomposes into a power of a rank-two representation of HQ, since this implies a splitting of the

corresponding complex torus uniformized by (3.1) up to isogeny.

We will call this the rationally-split setting. The subclass of examples in which ApHq genuinely splits, not

just up to isogeny, we will call the split setting.

Remark 3.10. In the case where pG,Hq form a type II dual pair, it is equivalent to ask that VQ decomposes

into rank-two summands (alternately, that the complex torus bundle is isogenous to a sum of elliptic curves).

Indeed, one can prove using the classification of endomorphism rings of elliptic curves over C that all the

type II dual pairs satisfying (Alg1) and (Alg2) with a representation V of this form are either globally split

of the form pGLn,GL2q, or “CM-split”, of the form

pResK{QGLn,ResK{QGL1q

for some imaginary quadratic field K.

In a slightly different but essentially equivalent setting, [BCG3] have constructed an edge map class in

Hd{2´1
pΓ, Hd{2

pa pro-subspace of ApXHqqq

by excising an elliptic hyperplane arrangements. By this we mean an effective divisor, flat over the base

Y pHq, such that in each fiber it is a union of images of abelian subvarieties embedded affinely (i.e. by a

translation of a group homomorphism).

Done correctly, this excision makes the fibers affine as we discussed in §2.2, implying they have cohomo-

logical dimension at most n [Hamm]. As the base XH is contractible, this implies the same for the total

space, yielding the existence of the Hochschild-Serre edge map (2.12). They hence deduce an explicit class

valued in meromorphic differential forms by mapping (relative) cohomology classes to differential forms via
43



Orlik-Solomon formality of hypersurface complements in families, as treated in [Dup]. We roughly follow

their approach in this subsection, though with the important caveat that they do not work up to isogeny.

Remark 3.11. We are also mostly interested in the split setting, and not the rationally-split one, as all of

the most naturally occurring rationally-split examples are actually split. In fact, to a large extent, results

about the rationally-split setting can simply be deduced from the split setting if one analyzes how the various

cohomology classes and cocycles we construct transform under isogenies. We choose in this thesis to directly

consider the isogeny-split setting on equal terms mostly because it is useful as a technical tool in the proof of

Theorem 3.27.

We define our family of hyperplanes as follows: pick T an H-representation such that

VQ “ T
‘d{2
Q

and we have an index-N inclusion of lattices

(3.13) L Ă T‘d{2

as H-representations, with N minimal. Fix a torsion cycle C annihilated by an integer c ą 1 such that

pc,Nq “ 1.26

For any p P Pd{2´1pQq_, let Lp be the locus in 3.10 defined by the kernel of the composition

(3.14) VpRq{VpZq ↠ pTpRq{TpZqq
‘d{2 projection

ÝÝÝÝÝÑ TpRq{TpZq
rcs
ÝÑ TpRq{TpZq

where the first arrow is the N -isogeny dual to the inclusion of lattices (3.13), and the second arrow is given

by the quotient corresponding to the hyperplane x. In particular, the family of hypersurfaces corresponding to

Lp (which we abusively denote by Lp as well) contains the c-torsion in ApXHq, and is fixed by the parabolic

subgroup of GpZq fixing the kernel of projection to the last coordinate.

26This is perhaps unnecessarily restrictive, but it suffices for us, as we are not overly concerned with optimizing the rationally-split
setting per se.
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For any subset S Ă Γ, consider the open hypersurface complement

(3.15) US :“ ApXHq ´
ď

γPS

γLp;

these are partially ordered by inclusion in a system U‚. This inverse system is finally affine fiberwise (in the

categorical sense of finality) and, by construction, Γ-stable.27

Since colimits are exact, we may take the Γ-pro-bundle lim
ÐÝ

U‚ as the target of our restriction of zeqC . The

pro-affine family U‚ over the contractible base XH thus has cohomological dimension at most d{2 [Hamm].

We deduce from (2.12) a class

(3.16) Hd{2´1
pΓ, lim

ÝÑ
Hd{2

pU‚qq.

Fix some integer a which is 1 pmod cq. By construction, zeqC is in the submodule on which ras˚ acts by the

identity. We also have an action of ras˚ on the cohomology of U‚ just as in (2.10), since the kernel of (3.14)

maps to itself under multiplication-by-a.

Then by functoriality, the image of zeqC in (3.16) is in the pras˚ “ 1q-part as well. In fact, we claim that it even

can be refined to a class in

Hd{2´1
pΓ, lim

ÝÑ
Hd{2

pU‚q
ras˚“1

q.

This follows from the following result:

Lemma 3.12. Under the action on the cohomology of the pro-space U‚ by any isogeny ras : U‚ Ñ U‚ with

a ” 1 pmod cq, it transforms under said isogenies by the weights ras ÞÑ ak for k P t0, . . . , du.

Proof. It suffices to prove this for US for any S, since the limit of modules satisfying this condition also

satisfies the condition. Recalling the definition (3.15), there is a Leray spectral sequence converging to

the cohomology of US whose terms are the cohomology of the various pure strata of the arrangement, i.e.

intersections of γLp [W].

27If one prefers not to think about pro-spaces, one can equivalently consider the Leray spectral sequence for the corresponding
bundle over EΓ as in the proof of [BCG3, Théorème 8].
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Each of these strata is topologically a union of torus bundles of dimension ď d, which is a subgroup of the

bundle ApXHq translated by a c-torsion point. Thus, they are acted on by ras via their own a-isogeny for any

a ” 1 pmod cq; hence, each of their cohomologies is a module for such ras˚ satisfying the condition of the

lemma by the same argument we already used for the total bundle (from [BCG1, §3]). By functoriality of the

Leray spectral sequence under the pushforwards ras˚, the result follows. □

Thus, the Lieberman projector eL makes any cocycle representative of (3.16) actually isogeny-invariant by

the isogeny a, and not just up to a Γ coboundary.28

By the edge map in the Leray spectral sequence for the pro-bundle π1 : U‚ Ñ XH, we deduce an element in

Hd{2´1
pΓ, H0

pXH, R
d{2π1

˚Zr1{csqras˚“1
q.

With C-coefficients, [BCG3, §3] proves using the formality29 results of [Dup] that the map

(3.17) π1
˚pΩ

d{2
U‚{Y pHq

q
ras˚“1

Ñ OXH
b pRd{2π1

˚Cq
ras˚“1

induced by the Hodge-de Rham spectral sequence is finally an isomorphism. We hence deduce a class

ΘC P Hd{2´1
pΓ, lim

ÝÑ
H0

pXH, π
1
˚Ω

d{2
U‚{XH

q
ras˚“1

q “ Hd{2´1
pΓ, lim

ÝÑ
H0

pU‚,Ω
d{2
U‚{XH

q
ras˚“1

q,

the equality by the definition of the pushforward sheaf.

Recall that integrating θC yielded in the previous subsection a class

Θan
C :“ rθpφf qs P Hd{2´1

pΓ,W p0,d{2,0q
pApXHq ´ 0q

ras˚“1
q.

where φf “ φf pCq.

Proposition 3.13. Under the inclusion

H0
pU‚,Ω

d{2
U‚{XH

q
ras˚“1 ãÑ W p0,d{2,0q

pU‚q
ras˚“1,

28Note that this also follows from [BCG3, Proposition 9.5], cited below.
29Here, the term “formality” is in the sense it is used in the field of rational homotopy theory, wherein cohomology classes are
assigned distinguished differential form representatives.
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Θan and ΘC are cohomologous.

Proof. Write g :“ pg0, . . . , gd{2´1q. [BCG3, Proposition 9.5] tells us that

(3.18)
ż

∆τ0 pgq

Eψpφf q

is equal up to a Γ-coboundary to

S˚
ellrφf spgq ` pdH ` dAqHd{2´1pφf qpgq

where S˚
ellrφf s is an explicit ras˚-invariant Γ-cocycle defined in [BCG3, §7])30 and Hd{2´1pφf q is the integral

of Eψpφf q over a certain d{2-cycle (indexed by g) in the Tits compactification of EΓ.

By the closedness of Eψpφf q and Proposition 3.8, the contribution of pdH ` dAqHd{2´1pφf qpgq to the

p0, d{2, 0q-component
ż

∆τ0 pgq

θpφf q

of (3.18) is then necessarily zero. The corresponding component S˚
ellpgqp0,d{2,0q is valued in isogeny-invariant

holomorphic (or rather meromorphic) forms, and S˚
ellpgq differs from this component by a pdH ` dAq-exact

form by [BCG3, Lemme 9.6]. Hence, it represents the class ΘC by Proposition 2.2 and the formality result

(3.17). This class then is cohomologous to Θan
C “ rθpφf qs. □

Remark 3.14. S˚
ellpgqp0,d{2,0q actually furnishes a cocycle valued in H0pU‚,Ω

d{2
U‚{Y pHq

q, i.e. over Y pHq and

not just over XH. Notice that since Eψpφf q is Γ-invariant, Θan
C also descends to a cocycle valued in

H0
pU‚, A

p0,d{2,0q

U‚{Y pHq
q,

i.e. also over Y pHq. However, the Hochschild-Serre edge map can only be defined over XH, as it is not clear

how to cut down the cohomological dimension of ApHq to d{2 due to the possibly nontrivial contribution of

the base Y pHq. Thus, we have the curious state of affairs that these two cocycles, both of which descend to

the bundle over Y pHq, can only be proven cohomologous over XH. This tension disappears upon pullback

by a torsion section, as we will see later.
30It is also given by an integral of θpφf q, in fact, by moving it to infinity and integrating it “along the Tits boundary”.
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Remark 3.15. It is worth remarking that the method from [BCG3, §7-8] of integrating along the Tits bound-

ary to produce S˚
ellpgq thus is the only method thus far that produces a cocycle valued in meromorphic forms

over the base Y pHq. We will see another way (due to [KS]) using coherent cohomology in the next section,

though that produces only rather a cohomology class rather than a cocycle.

Write ω for the weight-1 Hodge bundle on Y pHq. For any pΓ ˆ Hq-invariant section x : Y pHq Ñ U‚,

consider the composite

epxq : Apd{2,0q
pU‚q Ñ H0

pU‚, π
1˚ωbd{2

b C8
pU‚qq Ñ H0

pY pHq, ωbd{2
b C8

pY pHqqq

given by contraction with the polyvector field

Bz1 b Bz2 b . . . b Bzd{2

and then pullback by x, to smooth sections of the bundle ωbd{2 on the base Y pHq. Here, we are identifying

Apd{2,0q
pU‚q – H0

pU‚,Ω
d{2
U‚

bOU‚
C8

pU‚qq

to define the first map, as every pd{2, 0q-smooth differential is locally a holomorphic differential times a

smooth function, then using the same argument to in (2.13) to pass to the pullback of the Hodge bundle.

With this setup, the preceding proposition implies:

Corollary 3.16. The cocycle given by epxq˚θpφf q is cohomologous to epxq˚S˚
ellrφf s (from the proof of 3.13),

both representing the class

ΘC,x :“ epxq
˚ΘC.

In particular,

epxq
˚θpφf q P Hd{2´1

pΓ, ωbd{2
b C8

pY pHqqq

considered via the universal coefficients theorem as a homomorphism

Hd{2´1pΓq Ñ H0
pY pHq, ωbd{2

b C8
pY pHqqq,
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is actually valued in H0pY pHq, ωbd{2q.

In review, we have finally exhibited θC as an explicit representative of our Eisenstein theta class after pullback.

Remark 3.17. When d “ 4 and we are looking at degree-1 cohomology, the 1-simplices are themselves

closed cycles, as the standard model of BΓ has a unique 0-simplex. Thus, due to the lack of 1-coboundaries,

cocycle representatives are unique and epxq˚θpφf q is actually identical to epxq˚S˚
ellrφf s as a cocycle. This is

the case, for example, for the split pair pGL2,GL2q.

Remark 3.18. Since we are removing hyperplanes to obtain U‚, the choice of the pullback section x must be

considered carefully: for example, if Γ is too large, we may end up with no torsion sections at all.

Remark 3.19. Note that the cocycle given by integrating θC over geodesic simplices does not necessarily take

value in meromorphic forms; it is only cohomologous to ΘC after extending coefficients to smooth forms.

After the aforementioned pullback to the base, the preceding corollary says that there is the nice interpretation

that the integrals over closed cycles on Y pΓq are in fact holomorphic since now the Γ-action is trivial, but a

priori it is still unknown whether the integrals over ∆g (for simplices of dimension ą 1) are holomorphic or

only smooth.

If the values of θC (as a Γ-cocycle) are known to be in meromorphic forms on the bundle ApHq, then we can

say more. These values are given by regularized sums

(3.19)
ÿ

vPV pQq

ż

∆pgq

v˚ηpsqφf pvq

analytically continued to s “ 0. In some cases, this sum is computable to be holomorphic; e.g. on real-split

anisotropic tori, it reduces to the definition of Hecke regularized Hilbert-Eisenstein series [BCG1, §13]. For

Γ corresponding to modular or Shimura curves, for example, the classes of such tori exhaust the 1-homology

of BΓ. It is not clear to us what can be said more generally as of writing this. Assuming we can compute the

sum (3.19) and check that it is holomorphic, Lemma 2.2 and the formality result of [BCG3, §3] show that θC

coincides with (a stabilization of) the cocycle denoted Sell in loc. cit. Additionally, the φf -stabilization of

the cocycle denoted S˚
ell in loc. cit. (which we referenced above) differs from it by a Γ-coboundary.
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3.5.2. Coherent cohomology and the Kings-Sprang construction. We now turn to a different perspective on

the construction of these cocycles, due to [KS], which is more abstract and algebraic in flavor. Roughly, it is

the top Hodge-filtered layer of the de Rham construction, using coherent cohomology of schemes in place of

Betti or de Rham cohomology. This gives a more flexible approach which gives us the ability to work with

arithmetic coefficients and avoid the formality result (3.17), at the cost of being harder to compare to explicit

formulas (more on which later).

In this section, we consider an arbitrary discrete group Γ acting on an arbitrary abelian scheme π : A Ñ Y

over an integral base on which a fixed integer c is invertible.

The formalism of the polylogarithm in coherent cohomology is slightly different from, but very analogous to

that presented in §2.1. Following [KS, Appendix A], we can define the Borel equivariant coherent cohomol-

ogy of a sheaf F on a scheme S as the derived functors of the abelian functor of Γ-invariant global sections

on Γ-quasi-coherent sheaves

ΓΓ
S : Γ-QCohShpSq Ñ OS-Mod

without reference for complexes. This makes functoriality and the localization sequence formal, and the

Hochschild-Serre spectral sequence is the Grothendieck spectral sequence for the identification of the functor

ΓΓ
S as the composition of the functor of Γ-invariants with the functor of global sections on S. The Gysin

isomorphism is proven in [KS, Corollary 2.14].

It will still be useful to us, however, to compare this definition with the formalism we gave in §2.1, for the

purposes of comparison maps with other constructions we are interested in. Rather than follow that formalism

precisely, however, we will establish a link with functorial complexes solely in the case where the sheaf F

is the sheaf of algebraic i-differentials Ωi, and the base scheme is defined over over C, which will suffice for

our purposes.31

To be precise, we employ the distributional Dolbeault resolution

(3.20) Ωi
S ãÑ Di,0

S
B
ÝÑ Di,1

S
B
ÝÑ . . .

B
ÝÑ Di,2 dimS´i

S

31To be clear, we will pursue the Kings-Sprang construction over arbitrary integral bases, but the comparison with the topolog-
ical/analytic construction of the previous sections is necessarily defined only over C, as is the archimedean regulator we will
consider in the motivic case later in §4.2.3 - actually, the latter can be defined over R also, but this is not of huge concern to us.
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where Dp,q are the smooth pp, qq-currents: these are the subspace of the smooth pp ` qq-currents defined in

§3.2.2 supported on pdimS ´ p, dimS ´ qq-forms. The Dolbeault operator (or anti-holomorphic derivative)

B is, as in the earlier setting, defined as the adjoint of the analogous operator on forms.

Remark 3.20. This can be thought of as a refinement of the distributional de Rham complex by the Hodge

filtration afforded from the complex structure on S: concretely, the natural inclusion map from (3.20) to the

distributional de Rham complex (as i varies) realizes the Hodge decomposition of de Rham cohomology [Voi,

§2.3].

This construction gives an acyclic resolution of Ωi
S . As per our formalism, the corresponding double complex

of Γ-cochains

(3.21) C‚
pΓ,Di,‚

S q

can be used to define H‚
ΓpS,Ωiq. Since (3.21) is an acyclic resolution of F as a Γ-sheaf on S, this definition

coincides with the derived functor definition of [KS], by the general formalism laid out in [Tohoku].

Our desired functoriality properties, the localization sequence, and the Hochschild-Serre spectral sequence

are realized at the level of complexes identically to those in the setting of §3.2.2 considering currents without

the Hodge refinement. Even the Gysin isomorphism is defined by the same map: the map (3.3) respects the

Hodge decomposition in the sense that it restricts to

Di´k,j´k
Z Ñ kerpDi,j

X Ñ Di,j
X´Zq

for Z Ă X of complex codimension k (so real codimension 2k), leading to a Gysin isomorphism of the form

Hj´k
Γ pZ,Ωi´k

q – Hj
Γ,ZpX,Ωi

q.

Remark 3.21. It actually is possible to adapt the formalism of §2.1 over an arbitrary base with arbitrary

quasi-coherent sheaves, not just in this special setting over C. In this case, the category of spaces S should be

thought of as pairs pS,F q of a scheme equipped with a quasicoherent sheaf, and we can take DpS,F q to be

the Godemont resolution of F [God]. This is a suitably functorial complex giving an acyclic resolution of
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an arbitrary sheaf, meaning its complex of global sections can be used to define the equivariant cohomology.

It is well-suited to defining the localization sequence (2.4), but otherwise it is a quite formal and unwieldy

object not very well-suited to explicit manipulations. It is possible to define a natural transformation from the

Godemont complex to the distributional Dolbeault complex when F “ Ωi for schemes over C, but we have

no need for this comparison.

Having concluded these preliminaries, we briefly reproduce now the proof of [KS, Theorem 2.18] in our

language, specialized to the base class with trivial coefficients.

As before, suppose we have a degree-zero Γ-invariant cycle C made of torsion sections; we write C for the

support of C, and suppose that c ą 0 is the positive integer annihilating C. C then naturally can be identified

with a Γ-invariant element in the coherent cohomology group H0pC,OCq. Moreover, the fact that it is degree

zero means that it further lives in

H0
pC,OCq

0 :“ kerpH0
pC,OCq

π˚
ÝÑ H0

pY ,OYqq.

The main point is that the replacement for the cycle class encoding residues in Hd
ΓpA ´ Cq in the coherent

setting is the group H
d{2
Γ pA ´ C,Ωd{2q (where we implicitly identify the sheaf with its restriction to the

complement of C in a slight abuse).

For brevity, we will denote Ω
d{2
A{Y by Ωd{2 in what follows; we also write i : C Ñ A denotes the inclusion

map.

Concretely, we have a map

H0
pC,OCq

Γ
Ñ Extd{2

OA
pi˚OC ,Ω

d{2
q
Γ

To see this, we can identify

H0
pC,OCq – Ext0OA

pi˚OC ,OAq – Extd{2
OA

pi˚OC ,Ω
d{2

q
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as Γ-modules: the first isomorphism is the adjunction between i˚ and i˚, and the second is Serre duality on

A with the dualizing sheaf Ωd{2.. By the argument in [KS, §2.6], there exists a canonical inclusion

Extd{2
OA

pi˚OC ,Ω
d{2

q ãÑ H
d{2
C pA,Ωd{2

q.

The edge map in the Hochschild-Serre spectral sequence yields

H
d{2
C pA,Ωd{2

q
Γ

Ñ H
d{2
Γ,CpA,Ωd{2

q.

Finally, we have the equivariant localization sequence [KS, §2.3.2]

H
d{2´1
Γ pA,Ωd{2

q Ñ H
d{2´1
Γ pA ´ C,Ωd{2

q Ñ H
d{2
Γ,CpA,Ωd{2

q
deg
ÝÝÑ H0

pY ,OYq

and therefore by Lieberman’s trick (recalling that c is invertible on the base) we obtain a map

H0
pC,OCq

0,Γ
Ñ H

d{2´1
Γ pA ´ C,Ωd{2

q “ H
d{2´1
Γ pA ´ C, π˚ωbd{2

q,

where ω :“ π˚Ω
1 is the Hodge bundle in this context.

We define zKSC to be the image of C, considered as a section of OC constant on connected components, under

this map.32

We wish to obtain a group cocycle valued in sections of π˚ωbd{2 on something approximating the torus

bundle A. Indeed, if it were possible pass to an affine subspace U Ă A still rich in torsion sections, vanishing

of coherent cohomology on affines in the Hochschild-Serre spectral sequence would buy us a cocycle

ΘKS
C P Hd{2´1

pΓ, H0
pU ,Ωd{2

qq “ Hd{2´1
pΓ, H0

pU , π1˚ωd{2
qq.

If A is rationally split, for example if it is isogenous to a power En of the universal elliptic curve over some

open modular curve Y “ YpHq over a characteristic zero base, we can take advantage of the fact that Y

itself is affine: as in the previous section, we can take UY “ pU‚qY to be the pro-bundle given by excising

hyperplanes in the same manner as before, as these hyperplanes were all already defined scheme-theoretically.

32The fact that we choose only such functions here, instead of more general functions along the base, is fundamentally the same
restriction as our choosing only flat sections in (3.17).
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Then the total space UY is itself again (pro-)affine by Serre’s criterion for affineness [EGA, Vol. II 5.2.2], and

the definition of ΘKS
C makes sense:

Definition 3.22. If in the case where A is rationally split, we define the big Kings-Sprang Eisenstein theta

kernel

ΘKS
C P Hd{2´1

pΓ, H0
pUY , π

1˚Ωd{2
qq

as the image of zKSC under the edge map (2.12) in the coherent cohomology of UY , per the preceding discus-

sion.

We have the following comparison result between this definition and the earlier analytic one:

Proposition 3.23. Upon base change to C and analytification, ΘKS
C coincides with the class ΘC defined

earlier, as elements in Hd{2´1pΓ, H0pUY , π
1˚Ωd{2qq.

Proof. We work entirely in the complex analytic category, since this is where the comparison is being made;

write A and Y for the complex-analytic spaces associated to the schemes A and Y . First, we claim that the

image of ΘKS
C and ΘC coincide under the natural pullback map

(3.22) Hd{2´1
pΓ, H0

pUY ,Ω
d{2
UY {Y qq Ñ Hd{2´1

pΓ, H0
pUXH

,Ω
d{2
U{XH

qq
H .

Indeed, recall that the image of ΘC under the composite

(3.23) Hd{2´1
pΓ, H0

pUY ,Ω
d{2
UY {Y qq Ñ Hd{2´1

pΓ, H0
pUXH

,Ω
d{2
U{XH

qq Ñ Hd{2´1
pΓ, Hd{2

pUXH
qq

is the image of zC under the edge map for the affine bundle UXH
over the contractible space XH. Noting that

zC is the image of zKSC under the equivariant Hodge-de Rham edge map

H
d{2´1
Γ pA ´ C,Ω

d{2
U{Y q Ñ Hd´1

Γ pA ´ Cq

by Remark 3.20 (compare [KS, Remark 2.20]), we see that functoriality of the corresponding Hochschild-

Serre spectral sequences implies that the image of ΘKS
C under the same Hodge-de Rham edge map is the

same class.
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Since Proposition 3.13 tells us that ΘC in fact gives a class inHd{2´1pΓ, Hd{2pUXH
qras˚“1q, which by formality

(3.17) can be identified with a submodule of Hd{2´1pΓ, H0pUXH
,Ω

d{2
U{XH

qras˚“1q, we see that the two images

under (3.22) indeed coincide.

We claim now that (3.22) is injective, from which the result would follow. Indeed, consider the composite

(3.24)

Hd{2´1
pΓ, H0

pUY ,Ω
d{2
UY {Y qq Ñ Hd{2´1

pΓ, H0
pUXH

,Ω
d{2
U{XH

qq
H

Ñ H0
pY,Hd{2´1

pΓ, H0
pUY ,Ω

d{2
UY {Y qq

where the notation Hd{2´1pΓ, H0pUY , π
1˚Ωd{2q means the sheaf on the complex-analytic space Y which is

the sheafification of the presheaf with sections on an open V Ă Y given by Hd{2´1pΓ, H0pUV ,Ω
d{2
UV {V qq. The

last map in the composite is defined as follows: given

φ P Hd{2´1
pΓ, H0

pUXH
,Ω

d{2
U{XH

qq
H

we send φ to a section sφ defined as follows: on any sufficiently small analytic open V Ă Y such that

there exists V 1 Ă XH so that V 1 Ñ V is an isomorphism under the restriction of the H-uniformizing map

XH Ñ Y , sφ is defined to be the restriction of φ to Hd{2´1pΓ, H0pUV 1 ,Ω
d{2
UV 1 {V 1qq. The various choices of V 1

are permuted by H , so this gives a well-defined map as φ is H-invariant.

But in fact, Hd{2´1pΓ, H0pUY ,Ω
d{2
UY {Y qq is a coherent sheaf on the analytic space Y , because these group

cohomology sheaves can be computed via the complex of Γ-injective sheaves on Y

π1
˚Ω

d{2
UY {Y Ñ C1

pΓ, π1
˚Ω

d{2
UY {Y q Ñ C2

pΓ, π1
˚Ω

d{2
UY {Y q Ñ . . .

each of which is visibly coherent. H0pY,´q is an exact functor on coherent sheaves by Cartan’s Theorem B

[Ca] since Y is Stein (i.e. Y is affine), and thus the composite (3.24) is actually an isomorphism. Injectivity

of (3.22) follows. □

3.5.3. Bootstrapping to the non-split case. When A is not rationally split, it is unclear whether there exists a

suitable family of ample divisors whose Γ-orbits avoid prescribed torsion sections, so we do not know what

the analogue of the hyperplanes should be. Thus, we do not have an easy analogue of the formality result

(3.17), nor of [BCG3]’s technique of “moving to the boundary.” The Kings-Sprang construction in coherent
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cohomology is therefore our only recourse. We further note the extra complication that the base Y is not

necessarily affine in general.

In the absence of a natural family of ample divisors to excise from the fibers, we instead resort to violence:

write D for a finite Γ-invariant set of torsion sections disjoint from C, and ηD for the union of the generic

points of the corresponding closed subscheme. We set UD to be the localization of A at ηD.

Writing ηY for the generic point of Y , we have the restricted projection map UD Ñ ηY . With this structure

map, U is the spectrum of a semi-local ring over the function field of Y , and in particular is affine.

The discussion of the previous section then affords us a cocycle

ΘKS
C P Hd{2´1

pΓ, H0
pUD, π1˚ωbd{2

qq

Remark 3.24. There is a natural inclusion UD Ă US for any subset S Ă Γ such that there exists Lp with

˜

ď

γPS

γLx

¸

Y D “ H.

Under pullback by this inclusion, we see that this notation is then consistent with the definition of ΘKS
C by

excising hyperplanes from the previous section, by functoriality of Hochschild-Serre spectral sequences.

For any Γ-invariant section x P D, ΘKS
C can be pulled back to

ΘKS
C,x P Hd{2´1

pΓ, H0
pηY , ω

bd{2
qq.

It may seem like a major problem that this class is defined only on the generic point, but in fact we can

bootstrap ourselves to a class defined over the whole base:

Proposition 3.25. ΘKS
C,x takes values in the submodule H0pY , ωbd{2q ãÑ H0pηY , ω

bd{2q.

Proof. For any point p P Y , write Dp for the fiber of D over p, and UDp for the corresponding localization.

This is again a semi-local scheme, and following the same construction preceding this proposition affords us
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a class valued in sections over the localization of Y at p

Hd{2´1
pΓ, H0

pYp, ωbd{2
qq

whose restriction to ηY agrees with ΘKS
C,x by functoriality. This is true for every point p P Y , so the proposition

follows. □

Thus we have successfully produced a cocycle valued in holomorphic forms on the base, but without the

argument of §3.5 in the split case, it is unclear how to find an explicit representative for this.

Let us now respecialize to the case A “ ApHq and Y “ YpHq. For the remainder of the section, we may as

well take the latter as defined over C, since our interest is in comparing the Kings-Sprang construction with

analytic constructions in non-rationally split cases.

Using different embeddings of Shimura varieties and the functoriality of these two constructions, we will

bootstrap from the split comparison to the non-split comparison, for the pulled back cocycles Θan
x and ΘKS

C,x .33

In particular, considering the following statement, depending on any arithmetic group Γ acting fiberwise on

any abelian family A (and thus the corresponding topological bundle over ΓzXGpR) fixing the point x, and

invariant torsion cycle C of order relatively prime to x:

‚ (Comp) Θan
C,x is equal to ΘKS

C,x .

Proposition 3.26. (Comp) is true for any Γ, C, x in any rationally split case.

Proof. Proposition 3.23 (or rather Corollary 3.16) shows that this is true so long as we can pull back by the

section x after excising the Γ-orbit of the hyperplane collection Lp. But since the torsion orders of x and C

are relatively prime, we certainly can pick p so that Lp avoids x, and then its Γ-orbit must do so as well, since

Γ fixes x. isogenies. □

We now prove a “bootstrapping” lemma which says that if we can find a single fiber of the family over Y pHq

on which Γ acts which splits as a power of an elliptic curve, then we can extend by using the “constellation”

given by the rational orbit of that point.
33There is little hope of a comparison up on the bundle, considering how violent the localization process is.
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Theorem 3.27. If any fiber of ApHq is rationally split, then (Comp) is true for pApHq,Γ, C, xq, for any Γ, x,

and C with the torsion section and cycle fixed by Γ, and such that the torsion orders of x and C are relatively

prime.

Proof. Let τ0 be a point in XHpRq mapping to the point of Y pHq (under the uniformization (3.1)) whose fiber

is rationally split. Then every fiber of the family ApHq over a point of HpQqτ0 is then also rationally split,

since the matrix M Ă HpQq furnishes an isogeny between the fibers over τ0 and Mτ0. Thus, the family

ApHq in fact has infinitely many fibers which are isogenous to an elliptic self-product.

For each such point p P Y pHq, consider the automorphism group AutpApHqpq. Certainly it contains Γ;

further, by construction, it is contained in

Aut0pApHqpq “ GLd{2pKq

as an arithmetic subgroup, where K is the rational endomorphism ring of the associated elliptic curve (either

Q or imaginary quadratic). Hence we can apply Proposition 3.26 deduce that ΘKS
Cp,xp and Θan

Cp,xp coincide as

AutpApHqpq-cocycles valued in H0pkppq, ωbd{2q, hence by restriction as Γ-cocycles.

By the universal coefficients theorem, and the fact that all the cocycles we are considering are valued in

modules with trivial Γ-action, we can think of them as homomorphisms from the group homology groups

Hd{2´1pΓ,Cq. Then by functoriality, for any closed pd{2 ´ 1q-cycle ∆ in this group homology, we have the

restriction

pΘKS
C,x p∆qqp “ ΘKS

Cp,xτ p∆q

and

pΘan
C,xp∆qqp “ Θan

Cp,xτ p∆q.

Thus, for all ∆, the differential forms “ ΘKS
C,x p∆q and Θan

C,xp∆q agree on a analytically dense subset of YpHq,

whence they coincide as homomorphisms from Hd{2´1pΓ,Cq, i.e. as cohomology classes. □

This result allows us to prove that the Kings-Sprang cocycle coincides with the analytic one in a wide range

of settings; we give some examples:
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Example 3.28. Let B be the units of an indefinite quaternion algebra over Q; then the dual pair pB,Bq cor-

responds to the action of BpZq on the universal abelian variety with quaternionic multiplication (by precisely

that group). Each CM point in the upper half-plane corresponding to an imaginary quadratic field K yields a

seesaw

(3.25)

GL2pKq B

B GL1pKq

Since the CM dual pairs are split and thus satisfy (Comp), so does the pair pB,Bq. The first homology of a

quaternionic Shimura curve is spanned by real quadratic geodesics, each of whose corresponding quaternionic

modular form under ΘC,x we can explicitly compute as a certain restriction of a Hilbert-Eisenstein series

following the example of 3.9 (in the modular curve case).

Example 3.29. For the dual pair pFˆ,GL2pF qq for a totally real field F of degree n over Q, the corresponding

Hilbert modular scheme parameterizes abelian schemes with F -multiplication. Any sum of n identical CM

elliptic curves, together with a distinguished F -torus in its automorphism group, has a corresponding dense

orbit in the corresponding symmetric space Hn. We obtain that the class

ΘKS
C,x pγq,

for γ a generator of the free rank-1 group Γ Ă Oˆ
F , is given by a Hilbert-Eisenstein series of parallel weight

p1, . . . , 1q, as computed in [BCG1, Theorem 30].

Example 3.9 is the diagonal restriction of this example along the seesaw

(3.26)

GL2pQq GL2pF q

Fˆ GL2pQq

written down in [BCG1, §13].

We henceforth feel justified in denoting this common cocycle simply by ΘC,x for any arithmetic group acting

on a family of principally polarized abelian varieties, without any qualifying superscript.
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Remark 3.30. What can we say if we drop the assumptions (Alg1) and (Alg2) on the dual pair pG,Hq? Is

there anything to be done in the non-algebraic setting? Consider just the split case pGLa,GLbq for b ą 2:

we have something like GLapZq acting on a copies of a b-torus bundle over some locally symmetric space for

GLb. By removing codimension-b tori, we can cut the cohomological dimension of this torus bundle down

to apb ´ 1q; this suggests the possibility of obtaining an pa ´ 1q-cocycle valued in weight pab ´ aq-forms.

Indeed, 2.2 implies that integration of Eψ gives a theta kernel representing, at the level of cohomology on

either side.

It seems likely there is some formality statement generalizing Orlik-Solomon, but in the absence of Propo-

sition 3.8 and the close relationship to complex structures, it is not clear how to formulate it; probably one

needs some representation-theoretic generalization.

4. ARITHMETIC AND MOTIVIC REFINEMENTS

Notational convenience: in the rest of this thesis, the symbols K‚ denote Milnor K-theory, which is usually

denoted KM
‚ . We will not make use of (Quillen’s) algebraic K-theory at any point in this thesis, so this will

cause no ambiguity.

In this section, based on the idea in [SV], we produce an analogue of the Eisenstein theta kernel ΘC valued in

motivic cohomology or MilnorK-theory (the latter being just parallel-degree motivic cohomology for a semi-

local scheme). Over a characteristic zero field, this is possible unconditionally without too much trouble,

using a similar “violent localization” approach as in the previous section. We further show in subsection 4.2.3

that the differential cocycle ΘC (using the Kings-Sprang definition) is the regulator of the motivic cocycle up

to a simple period by exhibiting a map of complexes realizing the regulator map. Finally, we consider some

extra structure we can put on the motivic cocycles we construct, with respect to their distribution and norm-

compatibility properties.

To begin, we will again work in the context of a arbitrary discrete group Γ acting on an abelian scheme A

over a general base Y defined over a characteristic zero field. Further additional conditions will be specified

as needed.

4.1. Technical preliminaries.
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4.1.1. Motivic cohomology. For a smooth equidimensional scheme X over a general base, we define the

motivic cohomology

H i
pX,Zpnqq

as the Zariski hypercohomology

Hi
pX,ZpnqXq

of Bloch’s weight-n cubical complex of sheaves ZpnqX ; this is the approach followed in [Tot] and [GL], for

example. It is more standard to use simplicial language instead of cubical, but the two are equivalent for

formal reasons, as proven in loc. cit.

Remark 4.1. This construction should more properly be called Borel-Moore motivic homology (or, histori-

cally, “higher Chow groups”), but we elide this technical point in this thesis, since for smooth schemes over a

perfect field, Borel-Moore motivic cohomology agrees with the “standard” motivic cohomology, defined via

Voevodsky-style motivic complexes, thanks to the results in [V] and [FS].

The Bloch complex of sheaves is defined as follows: let

z̃npU, iq :“ Zn
pU ˆ 2i

q

be the group of codimension-n cycles on U ˆ 2i meeting all faces properly. Here, 2i is the algebraic i-cube

which is simply the affine space

Spec Zrt1, . . . , tis

and the jth face map is given by the difference of the pullbacks to the subvarieties cut out by tj “ 0,

respectively tj “ 1; the alternating sum of face maps gives, as usual, a differential from z̃npU, iq to z̃npU, i´

1q. It turns out that the resulting complex splits into a direct sum

z̃npU, iq “ dnpU, iq ‘ znpU, iq

where the former summand consists of degenerate cycles which can be pulled back from one of the faces of

2i given by tj “ 0, and the latter summand consists of the reduced cycles which are in the kernel of of the
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restriction to each face tj “ 0. We define

pZpnqXq
i
pUq :“ znpU, 2n ´ iq.

This complex is suitably functorial for flat pullbacks and proper pushforwards.

By Zariski descent for the cohomology groups of this cycle complex (see [FS, Corollary 12.2]) the natural

map

H i
pZpnqXq Ñ Hi

pX,ZpnqXq

is an isomorphism, where ZpnqX :“ ΓXpZpnqXq is the global sections onX of the Bloch complex of sheaves;

we will refer to this complex as the Bloch cycle complex.

Therefore, if Γ is a discrete group acting on X , we may define the equivariant motivic cohomology using the

global sections of ZpnqX for DpXq, in our usual style of defining Borel-equivariant analogues from §2.1. For

the same reason as the non-equivariant theory, the cohomology of the corresponding double complex also

computes the Γ-hypercohomology

Hi
ΓpX,Zpnq

X
q.

Functoriality and the existence of the Hochschild-Serre spectral sequence are, as usual, fully formal from the

generalities in §2.1, but we need to check the existence of the localization sequence and Gysin isomorphism.

The two together follow from the distinguished triangle of complexes

(4.1) Zpn ´ dqZr´ds Ñ ZpnqX Ñ ZpnqX´Z

whose existence is proven in [Bl2, §3], which gives the localization/Gysin sequence in the form

(4.2) . . . Ñ H i´d
Γ pZ,Zpn ´ dqq Ñ H i

ΓpX,Zpnqq Ñ H i
ΓpX ´ Z,Zpnqq Ñ . . .

It will also be useful for us to consider the coniveau spectral sequence in bare motivic cohomology given by

the filtration on cycles by codimension [Geis, §4], which is of the form

(4.3) Ep,q
1 “

à

xPXppq

Hq´p
pkpxq,Zpn ´ pqq ñ Hp`q

pX,Zpnqq
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where Xppq denotes the codimension-p points.

4.1.2. The Gersten conjecture and Milnor K-theory. A key tool for us is the Gersten complex, a complex

associated to various cohomology theories with Zariski descent; one form of it is constructed in [Bl2]. The

Gersten complex for Milnor K-theory, the case of interest to us, is given by

(4.4)

ZGerpKpnqqpXq :“ KnpXq Ñ
à

xPXp0q

Knpkpxqq Ñ
à

xPXp1q

Kn´1pkpxqq Ñ . . . Ñ
à

xPXpdq

Kn´dpkpxqq Ñ 0

for a semi-local scheme X over a characteristic zero field,34 where the first map is the natural pullback and

the successive maps are the tame residue symbols.

The exactness of this complex is known as the Gersten conjecture for Milnor K-theory, which is known for

regular schemes over a field by [Kerz]. Motivic cohomology (in our sense) also admits a Gersten complex;

we will focus only on the degree pn, nq-case. In the same setting as above, it is given by

(4.5) Hn
pX,Zpnqq Ñ

à

xPXp0q

Hn
pkpxq,Zpnqq Ñ . . . Ñ

à

xPXpdq

Hn´d
pkpxq,Zpn ´ dqq Ñ 0

for which we write ZGerpHpnqqpXq. For any semi-local X , there is a canonical morphism

K1pXq Ñ H1
pX,Zp1qq

which is an isomorphism if X is the spectrum of a field; this induces

(4.6) µ : KnpXq Ñ Hn
pX,Zpnqq

by sending the symbol f1 b . . . b fn to rf1s ! . . . ! rfns; this factors through the Steinberg relation by

[MVW, Proposition 5.9]. For a field, this is an isomorphism.

We also have a natural map of complexes ZGerpKpnqqpXq Ñ ZGerpHpnqqpXq induced by µ, which we also

denote by µ in a slight abuse of notation; this is a degree-wise isomorpism, since all the terms involved are

motivic cohomology/Milnor K-theory of fields, meaning that the Gersten conjecture is also known in the

motivic setting.

34This hypothesis is more restrictive than necessary, but we choose it to avoid technicalities.
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A different phrasing of the Gersten conjecture is that we have the exact sequence of sheaves

Hn
XpZpnqq Ñ

à

xPXp0q

Hn
pkpxq,Zpnqq Ñ . . . Ñ

à

xPXpdq

Hn´d
pkpxq,Zpn ´ dqq Ñ 0.

Here Hn
XpZpnqq is the Zariski sheaf associated to motivic cohomology, which is the Zariski sheafification of

the presheaf

U ÞÑ Hn
pU,Zpnqq,

whose stalk at a point x is the motivic cohomology of the localization of X at x. The other terms are

interpreted as sums of skyscraper sheaves associated to the corresponding points x.

Consider now the hypercohomology spectral sequence

(4.7) Ep,q
2 “ Hp

pX,Hq
XpZpnqqq ñ Hp`q

pX,Zpnqq.

In the presence of the Gersten conjecture, this Ep,q
2 term can be then be interpreted as the hypercohomology

of the complex of sheaves Z‚
GerpHpnqq

pXq, which is just the cohomology of the complex of the corresponding

global sections
à

xPXp0q

Hn
pkpxq,Zpnqq Ñ . . . Ñ

à

xPXpdq

Hn´d
pkpxq,Zpn ´ dqq Ñ 0.

(now interpreted as just literal groups, not sheaves) since skyscraper sheaves are flasque. We will equally

write ZGerpHpnqq for this complex of global sections as in (4.5), even for non-local schemes X , though in

general exactness is of course lost. We will do the same for ZGerpKpnqq as in (4.4). From this discussion,

we see that descent spectral sequence can be identified with the coniveau spectral sequence (4.3) from the

E2-term on.

Proposition 4.2. There is a map of complexes of Zariski sheaves

ψ‚
X : pZpnq

‚
Xq Ñ Z‚

GerpKnqpXqr´ns

defined as follows: for the class of an irreducible closed subvariety rZs P znpU, 2n ´ iq, the projection of Z

to U is at most codimension-pi´nq. If it is strictly higher codimension, we set ψiXprZsq “ 0. Otherwise, Z is

dominant over a codimension-pi´ nq integral closed subscheme Z̃ of X; write p : Z Ñ Z̃ for the projection
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map. We set

(4.8) ψiXpzq :“ Npprσt1 ! . . . ! σt2n´isq P K2n´ipkpZ̃qq

where

σx :“
x

x ´ 1

and N is the norm35 in Milnor K-theory (as defined in [BaTa, §5]) for the finite map p.36 The map ψX is

functorial for quasi-finite flat pullbacks and proper pushforwards.

Proof. This map was first constructed and its properties proven in [La]. □

Remark 4.3. One may wonder about the reason for the transformation σ in the above statement. It should

be thought of as the Mobiüs transformation for the 2-torsion matrix

¨

˝

1 0

1 ´1

˛

‚P SL2pZq

which fixes 0 and interchanges 1 and 8 in P1
Z. The reason for this is that the tame symbols in the Gersten

complex consider zeroes and poles, i.e. restrict to behavior at 0 and 8, but the cubical face maps in the

complex Zpnq restrict to behavior at the faces ti “ 0 and ti “ 1, so 1 and 8 need to be swapped to compare

the two. Perhaps the more canonical approach, followed in [Tot], would be to give a more natural definition

of the cubical complex by identifying 2i with pP1 ´ t1uqi and setting the cubical face maps to correspond to

0 and 8. We opted instead to use the more standard definition of the cubical complex, which also is more

obviously geometrically “cubical” at a glance.

Remark 4.4. The isomorphism KkpXq Ñ H2kpX,Zpkqq is given by sending

pkpZq, rf1 b . . . b fksq ÞÑ rΓpσf1,...,σfkqs

35Also called transfer map or pushforward.
36Recall from the definition of the cubical Bloch complex that ti are the coordinate functions on the algebraic cube.
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where pσf1, . . . , σfkq : Z 99K 2k is a (rational) map from the cycle Z to the algebraic k-cube, and Γ‚ is its

graph. Note, however, that these maps cannot be lifted to the level of cubical cycles, and so do not furnish

any kind of inverse to ψ‚
X .

Proposition 4.5. If X is a semi-local scheme defined over a characteristic zero field, the Γ-equivariant

motivic cohomology of X can be computed as

C‚
pΓ, Z‚

GerpHpnqqpXqq.

Proof. We claim that ψX is a quasi-isomorphism in this setting; then by functoriality, it is a map of Γ-modules

and the result is formal.

In [Zhong, §2], it is proven that the maps µ ˝ ψ‚
X are the edge maps in the coniveau spectral sequence (4.3)

for X . As we identified the hypercohomology/coniveau spectral sequences earlier, this map hence induces

the hypercohomology spectral sequence edge map

H i
pX,Zpnqq Ñ H i´n

pX,Hn
pZpnqqq

for each i ě n. In particular, when X is semi-local, the Gersten conjecture implies that the only non-zero

term is for i “ n, where the edge map is thus an isomorphism; see [Geis, Corollary 4.4]. □

4.2. Constructing cocycles.

4.2.1. The equivariant motivic polylogarithm. We now briefly recapitulate the formalism of section 2 in the

motivic context. Recall that π : A Ñ Y is our relative abelian scheme over an integral base defined over

a characteristic zero field, with Γ-action trivial on the base Y . Recall also that C is a closed Γ-invariant

subscheme of A consisting of a union of c-torsion sections on each fiber.

We take the Γ-equivariant theory

H‚
“ H‚

p´,Zpd{2qq

where d{2 is the relative dimension of A; we then have the equivariant Gysin sequence (4.2) in the form

. . . Ñ H‚
ΓpA,Zpd{2qq Ñ H‚

ΓpA ´ C,Zpd{2qq Ñ H
‚`1´d{2
Γ pC,Zq Ñ H‚`1

Γ pA,Zpd{2qq Ñ . . .
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In addition, by the construction of the maps in [Bl2, §3] we can identify the map in the above sequence

Ztπ0
pCqu

Γ
“ H0

pC,Zp0qq
Γ

Ñ Hd
ΓpA,Zpd{2qq

with the cycle class map. Thus, after inverting c, any degree-0 cycle C lies in the kernel of this map, since

the cycle class map preserves torsion order on abelian schemes.37

The same Lieberman projector eL used in section 3 annihilates Hd´1
Γ pA,Zpd{2qqr1{pd ` 1q!s over a charac-

teristic zero field; this follows from the argument in [SV, §6]. We thus write

Z1 :“ Z
„

1

cpd ` 1q!

ȷ

for the finest coefficients we are allowed. Following §2.1, we hence deduce a cocycle

zMC P Hd´1
Γ pA ´ C,Z1

pd{2qq.

4.2.2. The motivic cocycle over a field. As in section 3.5.3, we localize A at ηD the union of the generic

points of a torsion cycle D of order relatively prime to c, and call the result U ; this is a semi-local scheme, so

H i
pU ,Zpd{2qq “ 0

for i ą d{2. As before, we have the restricted projection map U Ñ ηY .

Thus, we obtain as in 2.12 a Hochschild-Serre edge map

Hd´1
Γ pU ,Z1

pd{2qq Ñ Hd{2´1
pΓ, Kd{2pU ,Z1

qq

and we define ΘM
C as the image of the restriction of zMC under this map. For any torsion section x : Y Ñ A

whose image is contained in D, we can also define the pullback

ΘM
C,x “ x˚ΘM

C P Hd{2´1
pΓ, Kd{2pηY ,Z1

qq

valued in Milnor K-theory of the base.

37This is due to the push-pull identity rcs˚rcs˚ “ cd in motivic cohomology, which is visible already on the level of the Bloch
complex ZpnqX .
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Analogously to section 3.5.3, we wish for this class to be defined over the whole base, not just the generic

point η. To do this, we will follow a similar approach as in that section.

For any codimension-1 point y P Y , let ADy be the localization of A at the finite set of points Dy (and Yy

the analogous localization of the base); we have the natural projection map ADy Ñ Yy. Running the above

formalism in the setting of these semi-local schemes, we obtain a class in

Hd{2´1
pΓ, Kd{2pYy,Z1

qq

which restricts to ΘM
C,x by functoriality. This implies that the pushforward of ΘM

C,x by the tame symbol

Kd{2pYy,Z1
q Ñ Kd{2´1pkpyq,Z1

q

vanishes. Using the existence of these restrictions for as y varies, the best we are able to prove is:

Proposition 4.6. There exists a class in

Hd{2´1
pΓ, H0

pY ,Hd{2
pZ1

pd{2qqqq

which restricts to the class in of ΘM
C,x over ηY . If we invert h “ |Hd{2´2pΓ,Zqtor|, then there is a unique such

lift.

Proof. By the Gersten conjecture and the left exactness of the global sections functor, we have a left exact

sequence

(4.9) H0
pY ,Hd{2

pZ1
pd{2qqq Ñ Hd{2

pY ,Z1
pd{2qq Ñ Hd{2

pηY ,Z1
pd{2qq Ñ

à

yPYp1q

Hd{2
pkpyq,Z1

pd{2qq

where the second arrow is the sum over tame symbols of all codimension-1 points. From the preceding

discussion, the pushforward of ΘM
C,x by the last map is zero. Then by the long exact sequence in cohomology

associated to (4.9), there certainly exists a lift of ΘM
C,x toHd{2´1pΓ, Hd{2pY ,Z1pd{2qqq, though not canonically

determined.

If we invert h, by the universal coefficients theorem Γ-cohomology classes in degree d{2´1 valued in Zr1{hs-

modules with trivial action can be identified with homomorphisms from the Γ-homology in the same degree.
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ΘM
C,x is identified then with a homomorphism

hompHd{2´1pΓq, Kd{2pηY ,Z1
qqr1{hs

such that its composition with every tame symbol is trivial; hence again by (4.9) it is actually valued in

H0pY ,Hd{2pZ1pd{2qqq. □

When Γ is an arithmetic group (so in particular, has finitely generated cohomology), we thus recover uncon-

ditionally a motivic theta cocycle valued in H0pY ,Hd{2pZ1pd{2qqq with integral coefficients outside a finite

number of primes.

It would be nicer to obtain a class in Hd{2pY ,Z1pd{2qq. In fact, we can do this if we are willing to invert more

primes:

Proposition 4.7. If we invert the set S of all primes for which the integral cohomology of Γ has torsion, there

exists a unique class in

Hd{2´1
pΓ, Hd{2

pY ,Z1
pd{2qqqrS´1

s

which restricts to the class of ΘM
C,x over ηY .

Proof. We begin with the class

x˚zMC P Hd´1
Γ pY ,Z1

pd{2qqrS´1
s,

noticing that the Γ-action on the space Y is trivial. As such, the double complex computing this equivariant

cohomology

C‚
pΓ,Z1

rS´1
spd{2qY q

is actually a tensor product

C‚
pΓ,ZrS´1

sq b Z1
rS´1

spd{2qY

and hence by the Künneth theorem (see [Hatcher, Theorem 3B.5] for a statement in this generality) we have

a natural decomposition

(4.10) Hd´1
Γ pY ,Z1

pd{2qqrS´1
s –

à

p`q“d´1

Hp
pΓ, Hq

pY ,Z1
pd{2qqqrS´1

s.
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where we have used the inversion of S to ensure the vanishing of the Tor term in [Hatcher, Theorem 3B.5]

due to the freeness of the cohomology of Γ. Taking the projection to the term with pp, qq “ pd{2 ´ 1, d{2q

affords us a class in the desired group Hd{2´1pΓ, Hd{2pY ,Z1pd{2qqqrS´1s.

Upon restriction to ηY , we claim that the edge map (2.12) for the Γ-scheme Y

Hd´1
Γ pηY ,Z1

pd{2qqqrS´1
s Ñ Hd{2´1

pΓ, Hd{2
pηY ,Z1

pd{2qqqrS´1
s

coincides with the Künneth projection (4.10). Indeed, the Künneth decomposition implies that we can take

a representative of the equivariant class in the double complex considered in Proposition 2.2 each of whose

components is already both d´ and B-closed, whereupon the explicit construction of the edge map in that

proposition is reduced to simply taking the corresponding component.

Then the pullback by x maps the Hochschild-Serre spectral sequence (and hence the edge map (2.12)) for U

(the subbundle of A, recall) to that for Y , showing that the Künneth-projected class coincides with ΘM
C,x. □

4.2.3. Computing regulators in equivariant Dolbeault complexes. We proceed to comparing the motivic

cocycle ΘM
C to the differential cocycle ΘC over C.

There is a Betti/de Rham regulator of motivic cohomology given in bidegree-pn, nq by38

Hn
pX,Zpnqq ÑHn

pX,Cq(4.11)

rf1 ! . . . ! fns ÞÑrd log f1 ^ . . . ^ d log fns, fi P kpXq
ˆ.(4.12)

This is explained, for example, in [LW, §2.1.5]. In fact, this regulator is well-defined even in the top-filtered

part of Hodge cohomology [G1], in that it factors through

(4.13) Hn
pX,Zpnqq Ñ H0

pX,Ωn
q Ñ Hn

pX,Cq;

we will use this to compare ΘM
C , valued in Milnor K-theory, with ΘC , valued in coherent cohomology.

38Note that not every cup product of elements in kpXqˆ will give an element in the motivic cohomology group (because of poles
and zeroes), but by the exact sequence (4.9), every element in the motivic cohomology can be written as a sum of such cup products.
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Remark 4.8. The map in the form (4.13) is sometimes called the Bloch map, first defined in [Bl3] (and

attributed to “secret papers” of Gersten). Note that despite the fact that we will only define it over C using

the Dolbeault complex (see below), it actually is algebraically defined and thus makes sense over any base.

Let U be as in the previous section. Recall from (3.20) the Dolbeault resolution of Ωd{2
U

(4.14) Ω
d{2
U ãÑ Dd{2,0

U
B̄
ÝÑ Dd{2,1

U
B̄
ÝÑ . . .

B̄
ÝÑ Dd{2,d{2

U

where we write Dp,q
U for the direct limit under pullbacks by the inclusion maps

lim
ÝÑ

UĂVĂA
Dp,q

V

of Zariski opens V containing U , and Dp,q
V denotes the smooth pp, qq-currents on the analytification of V over

C.

We have a map of complexes [Kerr, Lemma 2.2]

(4.15)

Kd{2pUq
À

xPUp0q Kd{2pkpxqq . . .
À

xPUpd{2q K0pkpxqq

Ω
d{2
U Dd{2,0

U . . . Dd{2,d{2
U

d logbd{2 ρ0pd{2qpUq ρd{2pd{2qpUq

where Kd{2 is the Zariski Milnor K-theory sheaf (in the same manner as H‚pZpnqq for motivic cohomology

earlier), and where ρkpd{2qpUq is the regulator map defined by sending

pkpxq, rf1 b . . . b fn´ksq ÞÑ p2πiqkδx ^ d log f1 ^ . . . ^ d log fn´k

where δx is the current of integration along the closed cycle x. This map of complexes induces the de Rham

regulator on the Milnor K-group Kd{2 as defined in [LW, §2.1.5]. Further, the definition of the map makes it

clear it is Γ-equivariant, so we can upgrade the collection of ρipd{2q to a map of equivariant complexes

(4.16) ρ‚,‚
Γ pd{2qpUq : C‚

pΓ, Z‚
GerpUqq Ñ C‚

pΓ,Dd{2,‚
pUqq
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inducing on cohomology maps

(4.17) H‚
ΓpU ,Zpd{2qq Ñ H

‚´d{2
Γ pU ,Ωd{2

U{Cq.

which can justly be called equivariant de Rham regulators.

We similarly can define maps of complexes ρ‚,‚pnqpXq, ρ‚,‚
Γ pnqpXq for any smooth finite type scheme, re-

spectively Γ-scheme, X{C and any integer n. These maps have the following properties.

Proposition 4.9. (1) The maps ρ‚,‚pnqpXq and ρ‚,‚
Γ pnqpXq are functorial for flat pullback of schemes,

respectively Γ-schemes, X , as well as for pushforwards by finite maps.

(2) The map on cohomology induced by ρ‚,‚pnqpXq refines the usual de Rham regulator of motivic coho-

mology (under the Hodge filtration).

(3) The maps ρ‚,‚
Γ pnqpXq induce maps of Hochschild-Serre spectral sequences, from that of equivariant

motivic cohomology to that of equivariant coherent cohomology.

(4) Given a closed subset Z Ă X , the maps ρ‚,‚pnqpXq, respectively ρ‚,‚
Γ pnqpXq, induce maps from the

localization sequence for motivic cohomology to the localization sequence in coherent cohomology,

respectively localization sequence for equivariant motivic cohomology to the localization sequence

in equivariant coherent cohomology; unfortunately, we were unable to locate one in the literature.

Proof. (1) is proven in [LW, §2]. (2) is a consequence of the fact, also from [LW], that the d log map induces

the usual de Rham regulator for motivic cohomology. (3) follows because ρ‚,‚
Γ pnqpXq are defined via the

maps of double complexes (4.16), and the respective Hochschild-Serre spectral sequences are simply the

spectral sequence of these respective double complexes. (4) follows because ρ‚,‚
Γ pnqpXq induces maps of the

corresponding distinguished triangles used to construct these localization sequences. □

Theorem 4.10. The map (4.17) sends zMC to p2πiqd{2zKSC .

Proof. zKSC is characterized as the unique eL-fixed class whose residue is δC in its localization sequence,

for the pair C Ă A. By Proposition 4.9(4), (4.17) maps the motivic localization sequence to the coherent
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localization sequence, equivariantly for the action of isogenies by Proposition 4.9(1). Since zMC has residue

C and is also eL-fixed, its regulatir has residue p2πiqd{2δC and the result follows. □

From the above theorem and (3) from proposition 4.9, we finally deduce the comparison theorem:

Corollary 4.11. The de Rham regulator of the big motivic theta cocycle is the big differential theta cocycle;

i.e.

pd logbd{2
q˚Θ

M
C “ p2πiqd{2ΘC.

Notice that it is not the case that the regulator of ΘM
C,x is ΘC,x, since the latter pulled-back cocycle was

constructed by contracting with a polyvector field in (2.13) before pulling back by a section x. To illustrate

in a toy example with one-dimensional fibers, we have

(4.18) d log θpτ, xq “
θ1pτ, xq

θpτ, xq
dθ

which is different from

(4.19) rιBzd log θpτ, zqsz“x “
θ2pτ, xq

θpτ, xq

Here θ is a function on the bundle A with partial derivatives θ1 and θ2 with respect to the coordinates τ and

z on the base and fiber respectively, and z “ x defines the locus of the torsion section. In the most classical

setting where A is the universal elliptic curve over a modular curve, (4.18) yields weight-two Eisenstein

series while (4.19) yields weight-one Eisenstein series; see [BCG1, (9.6)].

APPENDIX A. WORK OF GONCHAROV AND THE WEIGHT-2 ARCHIMEDEAN REGULATOR

[G1, §3.5] constructs the Beilinson regulator map to Deligne cohomology directly on the level of complexes

in weight 2.39 We here put ourselves in the split pGL2,GL2q setting for simplicity.

39He also has a construction for weights 1 and 3, but these are, respectively, not very interesting and much messier.
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By identifying his weight-2 polylogarithmic motivic complex with the Gersten complex earlier, obtain the

following version of his construction:

(A.1)

K2pQpApHqqq
À

ZPApHqp1q

K1pQpZqq
À

ZPApHqp2q

K0pQpZqq

pD1,0‘D0,1qRp1q

D0,0
R p1q

D1,1
R p1q D2,2

cl,Rp2q

r2p2q

B

r2p3q

B

r2p4q

D1,1 2BB

For an explanation of all the notation, see [G1, §2, 4, 5]; we will not fully explain it here, only give a brief

description and indicate any differences.

‚ Dp,q
R pkq denotes the space of smooth pp, qq-currents on ApHq, with values in Rpkq :“ p2πiqkR.

If p ‰ q, this real structure only makes sense if we sum Dp,q and Dq,p, since one needs complex

coefficients to separate these.

‚ D denotes the de Rham differential on currents.40

‚ We, unlike Goncharov, have denoted the second occurrence of D with a subscript D1,1, to make clear

that we are considering not the full differential, but only the projection to the p1, 1q-distributions (i.e.

throwing out the part in p2, 0q ` p0, 2q).

‚ The subscript cl in the bottom right term indicates we only consider closed distributions.

The top complex, as we have seen, computes motivic cohomology H ipApHq,Zp2qq at the ith place, while

the bottom computes Deligne cohomology H ipApHqR,Rp2qq. The maps r2piq induce the Beilinson regulator

map on these cohomology groups. For us, the relevant formulas are:

r2p2q :f ^ g ÞÑ ´ log |f |di arg g ` log |g|di arg f(A.2)

r2p3q :pY, fq ÞÑ 2πi log |f |δY(A.3)

r2p4q :Y ÞÑ p2πiq2δY(A.4)

40Note that it does not necessarily coincide with the de Rham differential on forms d “ B ` B embedded inside distributions; in
particular, the famous Poincaré-Lelong formula gives the example d2i arg f “ 0, but Ddi arg f “ δdiv f , the current associated to
the divisor of f . That is, the two differentials differ on residue behavior. On globally holomorphic forms, the two coincide.
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(Here, we use concatenation instead of wedge product for the module structure on currents by forms defined

in §3.2.2, to follow Goncharov’s notation.)

To obtain the differential form-valued cocycles we focused on in this thesis, we extend the diagram (A.1) to

(A.5)

K2pKpAqq
À

ZPAp1q

K1pKpZqq
À

ZPAp2q

K0pKpZqq

pD1,0‘D0,1qRp1q

D0,0
R p1q

D1,1
R p1q D2,2

cl,Rp2q

F 2D2 F 2D3 F 2D4

r2p2q

B

r2p3q

B

r2p4q

D1,1

π´1
2 ˝d2,0`0,2

2BB

π´1
2 ˝d π´1

3

D D

where the last row now computes the second Hodge filtered piece of de Rham cohomology. The lower map

of complexes realizes the natural map from Deligne to de Rham cohomology

H2
pAC,Rp2qDq Ñ F 2H2

pA,Cq

coming from the Deligne complex’s defining triangle

Ωă2
AC

r´1s Ñ Rp2qD Ñ Rp2q.

This computation is implicit in the proof of [G3, Proposition 2.1].

Let us call the bottom vertical maps of (A.5) s2piq for i “ 2, 3, 4 by analogy. We have the formula for the

composition

ps2p2q ˝ r2p2qqprg1 ^ g2sq “ d log g1 ^ d log g2

which is the regulator map sending the motivic cocycle to the differential one. We thus see that Goncharov’s

regulator map is a strict refinement of the one we consider.

Remark A.1. In [BCG1, §13.5], it is computed (though details are not given) that the Beilinson regulator

r2p2qpΘM
C q is represented by a “doubly transgressed” theta kernel defined using the “further transgressed”
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Mathai-Quillen forms due to [BGS]. In more general settings, we ewxpect these forms can be used to con-

struct theta kernels valued in these refined regulators in Deligne cohomology; this could be an interesting

subject of future work.

APPENDIX B. COMPARISON WITH SHARIFI-VENKATESH AND EXPLICITIZATION

In the case when A “ E2 with the action of Γ Ă GL2pZq (i.e. the case of the type II dual pair pGL2,GL2q),

[SV, §6] constructs a cohomology class (indeed even a cocycle) for Γ valued in a subbundle of E2, as well as

pulled back versions, with greater explicitness than our methods.

In this appendix, we show that their construction, when restricted to an appropriate subbundle of A for the

purposes of comparison, coincides with our motivic cocycle ΘM
C . This will furnish a an example (in, arguably,

the simplest nontrivial case) of how one can leverage our approach to equivariant cohomology with double

complexes to explicitize our constructions, a subject we will broach in greater generality in future work.

To begin, we briefly recapitulate the construction of [SV]:

Proposition B.1. [SV, Proposition 6.2.1] We have an exact sequence of Γ-modules

(B.1) 0 Ñ pK2pkpAqqq
p0q

Ñ

˜

à

xPAp1q

K1pkpxqq

¸p0q

Ñ

˜

à

xPAp2q

K0pkpxqq

¸p0q

where the superscript p0q denotes the fixed parts under the isogenies ras˚ for all but finitely many integers a.

Thus, for any Γ-fixed class

C P

˜

à

xPAp2q

K0pkpxqq

¸p0q

“ Z2
pAq

that lifts to a class

η P

˜

à

xPAp1q

K1pkpxqq

¸p0q

,

we can define a Γ-cocycle by sending γ P Γ to the unique lift of pγ ´ 1qη in pK2pkpAqqqp0q, as is standard in

group cohomology from a short exact sequence.

The problem is finding the lifting class η. Sharifi and Venkatesh’s solution is very reminiscent of the hyper-

surfaces idea discussed in the previous cohomological constructions: in [SV, (6.3.2)], they find a particularly
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natural choice of C built out of c-torsion sections which they call epcq; namely,

epcq “ Vpcqp0q

where Vpcq is a certain degee-zero operator built from Hecke operators. This epcq lifts to an η which is fixed

by a parabolic subgroup of GL2pZq, resulting in a parabolic cocycle representing a class we will call

rθSV s P H1
parpSL2pZq, KM

2 pUq
p0q

q

where U is a certain complement of hyperplanes, and the par subscript means that the class vanishes upon

restriction to any parabolic subgroup. Thanks to the parabolicity, this cocycle turns out to be very computable

in terms of explicit cup products of theta functions.

Remark B.2. The method of [SV] in fact applies equally well to any case with n “ 2, i.e. where the abelian

scheme is a relative surface, in the sense that we may always construct the exact sequence (B.1). However,

when the dual pair is nonsplit (e.g. the Hilbert modular case, or a quaternionic abelian surface over a Shimura

curve), the desired lift η does not exist for any nontrivial torsion cycle, as there are essentially no nontrivial

fiberwise divisors in the p0q-part of the K1 term. Thus, the exact sequence is useless for producing a Γ-

cocycle by the same means in these cases. Note, however, that η does exist for the action of GL2pOKq on the

square of an elliptic curve with CM by an imaginary quadratic field K; this is the subject of ongoing work by

the first author of [SV].

We now turn to comparing their construction with ΘM
Vcp0q

. This requires introducing quite a bit of new-looking

yet familiar formalism, in the form of yet another instantiation of §2.1: we define the equivariant theory for

Γ-schemes X

H‚
ΓpX,H2

pZp2qqq

as the cohomology of the double complex

C‚
pΓ, ZGerpKp2qpXqq
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with the localization sequence and Gysin isomorphisms for the pair pA,A´Cq realized by the distinguished

triangle

ZGerpKp0qpCqqr´2s Ñ ZGerpKp2qpAqq Ñ ZGerpKp2qpA ´ Cqq

where the latter map simply forgets all terms in the direct sums corresponding to points contained in the

closed subvariety C Ă A, and the former map is concentrated in the single degree

à

xPCp0q

K0pkpxqq Ñ
à

xPAp2q

K0pkpxqq

given by considering codimension-0 points ofC (i.e. generic points of its connected components) as codimension-

2 points of A.

Now the key to linking this to our constructions in motivic cohomology is the following result:

Proposition B.3. µ ˝ ψ‚
A induces a Γ-equvariant quasi-isomorphism from τě2Zp2qA to the Gersten complex

in degrees r2, 4s

(B.2) ZGerpKp2qqpAq “ K2pkpAqq Ñ
à

xPAp1q

K1pkpxqq Ñ
à

xPAp2q

K0pkpxqq.

Proof. From the analysis of the coniveau spectral sequence in [SV, Example 2.2.2], it converges already on

the second page at the terms corresponding to (B.2). As in Proposition 4.5, the result then follows from the

fact that µ ˝ ψ‚
A gives the edge maps also in the hypercohomology spectral sequence. Hence the maps they

induce on cohomology

H i
pA,Zp2qq Ñ H i´2

pA,Hn
pZpnqqq

are isomorphisms, implying the proposition. □

This proposition implies that in the localization sequence we constructed

(B.3) . . . Ñ H1
ΓpA,Hn

pZp2qqq Ñ H1
ΓpA ´ C,Hn

pZp2qqq Ñ H0
ΓpC,Hn

pZp2qqq Ñ . . .

that µ ˝ ψA´C induces an isomorphism from the equivariant motivic cohomology H3
ΓpA,Zp2qq to the term

H1
ΓpA,HnpZp2qqq, hence it is killed by the Lieberman projector eL. We thus can construct, still following
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§2.1, a class we call

z̃MVcp0q P H1
ΓpA ´ C,Hn

pZp2qqq

which, as always, is characterized by having residue Vcp0q P H0
ΓpC,HnpZp2qqq and being fixed by almost all

isogenies ras˚. Further, the preceding proposition implies that image of zMVcp0q
under µ ˝ ψA´C is z̃MC . We

conclude:

Proposition B.4. The Sharifi-Venkatesh cocycle defined above by

γ ÞÑ θSV pγq

represents the restriction of ΘM
Vcp0q

to K2pkpAqq.

Proof. We claim that the class z̃MVcp0q
is represented by the total-degree-1 element

θSV ` η P C‚
pΓ, ZGerpKp2qqpAqq.

Indeed, this element is closed when considered as an element of

C‚
pΓ, ZGerpKp2qqpA ´ Cq

‚
q

but has total differential Vcp0q when considered in the obvious way as an element of

C‚
pΓ, ZGerpKp2qqpAq

‚
q,

hence by the usual snake lemma construction of the boundary map in the localization sequence, it has residue

Vcp0q in (B.3). Further, by construction it is fixed by almost all isogenies ras˚. Since these two properties

characterize the class z̃MVcp0q
, we conclude this is a representative.

Upon restriction to kpAq, Proposition 2.2 implies the result. □

Remark B.5. The argument above applies not just to the restriction to the generic point kpAq, as its only

property we used is the fact that its weight-n motivic cohomology vanishes above degree n. We only used

the generic point for convenience and to avoid introducing technicalities of particular semi-localizations,
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hyperplanes avoiding particular torsion sections, etc. since these are secondary to the main idea we wished

to illustrate.
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des Hautes Études Scientifiques. 8 (1961).

[FS] Eric Friedlander and Andre Suslin. “The spectral sequence relating algebraicK-theory to motivic
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