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Abstract 

La méthode des graphes fait appel autant à la théorie des algèbres 
de quaternions qu'auz courbes elliptiques ou aux formes modu- 
laires pour en amuer à déterminer tous les ints supersinguliers 
en une chamctérktique donnée et ainsi obtenir une base de 
S2W) - r 
La présente thèse uiae donc à exposer le principe de la méthode 
des graphes: elle se divise en deux grandes parties. Dana un pre- 
mier temps, on introduit les bases essenbielles de I'arithméti ue 
des quaterniow. Cette partie est conçue pour r4'ndm à la fois 
aux besoins des ntfophytes (en présentant une introduction re- 
fativement complète) et des initiés, en devenant une référence 
courte et rapide. La seconde partie porte plus spécifiquement 
sur la méthode des grcr hes en elle-même: après divers mppekr, 
notamment au niveau 1 es formes modulaires et des courbes ellip- 
tiques, le trolsièrne chapitre se penche sur la mithode pmpwment 
dite. Une dernière section montrera pour sa part une application 
concrète de la théorie. 

The gmph method simultaneowly w e s  the theory of quaternion 
algebms, elliptic curves and modular forms in order to determine 
alf superszngular points in a gMien charocteristic and hence to 
obtain a basis of S 2 ( N ) .  The god of thM thesis is to expose the 
principles of the graph method: it is therefore diuided into two 
main parkr: First, we introduce the essentiah o the ahthmetic 
of quaternioru. TIiU part U made to fit two nee f : on one band, 
o good introduction for notices; on the other hand, a fast and 
puick teference for those who are already famtliar with the subject. 
The second port ocusses on the gmph method itaelf: after some 
recalk, namely a 6, ut rnodular formr and elliptic curves, the t h i d  
chapter îr morc specl'fically oriented towarrl the method as the lu t  
section gives a pmctical application of it. 





Preface 

Doing mathematics is something 1 always enjoyed. Back to Elementary 

school, 1 loved to rack rny brain, trying to figure out how could work the 

mathematical trick dlowing my uncle to guess my age simply by playing with 

numben which could not be choosen randomly ... Throughout the years, I 

became more and more familiar with maths. 1 even thought it could be a 

simple amusement: how fun it was to search for Fibonacci sequence in a 

pine cone... 

So I decided to pursue studies in maths. It then became a serious matter, 

as subjeds became harder and harder, as years go by. Being engaged in a 

Master's thesis didn't ease my task: like everyone else, 1 had my ups and 

downs, even dunng the last two years ... 

That is why I would like to thank dl of you of the small cornmunity 

of students in number theory from the four Montreal universities. Special 

thanks to Dr. Andreas Schweizer for his precious help in my general studies 
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on quaternion algebras (of which you will only see a small part in those 

pages). Good thoughts also to my supervisor, Henri Darmon, for his trust, 

his respect and the simplicity of our relationship. Et enfin, merci à toi 

Daniel, pour tes encouragements constants, ta patience et ton écoute. 

That work is dedicated to dl of them: after dl, it is for people like them 

that 1 still love to do maths: because beyond the computer, there are men 

and women... 
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Introduction 

A lot of people use the introduction of their manuds to justify the need of 

writing 'yet-another-book-on-the-subject ... ' This part will be easy for us, as 

the g a p h  method touches on two strong topics of algebraic number theory: 

elliptic curves, which are fairly well treated (especially since Wiles proved 

Fermat's last t heorem), and the arithmetic of quaternion algebras, somehow 

more neglected. In that case, the researcher is confronted with a choice: 

either work with original articles and therefore face the difficulty of various 

notations and laquages, or use one of the main references such as the book 

of Marie-Rance Vignéras [Vig80], written in Rench. 

We therefore saw a good occasion to prepare a thesis which would present 

an up-to-date synthesis on that particular matter. The first chapter may 

serve either as a quick introduction guide, providing important results for 

the beginners, or as a concise reference for those who are already familiar 

with the subject. Therefore, the emphasis will not be made on how the 

theorical results themselves are obtained, but rather on how to use them in 



pradice. 

After presenting elliptic curves and modular forms, we get to the heart of 

the matter: the graph method developped in the mid 1980's by Li?. Mestre 

and J .  Oesterlé. It can sometimes be used to obtain explicit equations of 

strong modular elliptic curves, which are fundamentah in number theory, 

but mainly for computing spaces of modular foms of a given level, their 

Fourier expansion, and the action of Hecke operators on them. 



Chapter 1 

Quaternion Algebras 

The study of quaternion algebras from an arithmetic point of view gained 

its prominence around the L930's, thanks to the important work of Eichler. 

Today, the subject has become an important part of modem number theory. 

In this chapter, we use a minimalist approach to introduce quaternion 

algebras: our goal is to exploit them in regard to the graph method. 

One will therefore find only few justifications, as well as few comments 

between definitions, lemmas or examples: this is done on purpose in order 

to ease the reading. 

Those less familiar with the subject or wanting to Ieam mon  about a 

particular aspect wi11 aiways find cornpiete reference for each specific result 



4 CHAPTER 1. QUATERNION ALGEBRAS 

not thoroughly explained. 

1.1 Basic Concepts 

Let K be a field. 

Definition 1.1 : 

A K-algebra A is said t o  be central if its center equals K*lA (:= {k - IAIk E K ) )  

Definition 1.2 : 

A K-algebra is said to be simple if it has no two-sided ideal except {O) and 

itself, 

Definition 1.3 : 

A quaternion algebra H over K is a central simple K-algebra of degree 4 

over K. 

Remark : One can show that the following statement is indeed equivalent 

to the definition of a quaternion algebra just given: 

H is a central K-algebra of degree 4 over K such that there is a separable 

K-algebra L of degree 2 mer K for which there exista 0 E K\{O) and u E H 
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such that 

where m H f i  is the nontrivial K-automorphisrn of L. 

In this case, we write H = {L, 0). 

Rernark : One may write L = K ( i ) ,  where i2 = a E K\{O) if Char(K) + 
2, and i 2+ i  = a E K\{O) if Char(K)  = 2 (this follows from Kummer theory 

and Art in-Schreier t heory respectively ) . 

Setting u = j ,  one has H = K + Ki + K j  + K i j ,  where 

and 

Reference: For details, see [VigBO, 1.1, p.1-51 

Example 1.4 : M2(K)  

M2(K), the K-algebra of 2 x 2 matrices over a field K is a quaternion algebra. 
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Example 1.5 : Hamilton's quaternions 

Take K := IR as the base field. The ring 71 := IR + W + Iftj + l R i j  defined 

by the relations i2 = -1, jZ  = - 1 and i j = -jz is a quaternion algebra over 

IR. Note that it is not isomorphic to M2(IR) (since ?i is a division ring). 

Definition 1.6 : 

The conjugation ' is the K-anti-automorphism h H h of H extending the 

nontrivial K-automorphism ' 7 ' of L determined by ü = -u. 

Lemma 1.7 : Basic properties of conjugation 

r ag + bh = a9 + bh (Linearity) 
d = h  (Involution) 
e g h = h g  ( Ant i-isomorphism ) 
l + m u = L m u  

Definition 1.8 : 

The (wduced) T h c e  TT(*)  is defined by: 

Deflnition 1.9 : 

The (reduced) n o m  N(b) is defined by: 
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Remark : The trace and n o m  are well-defined since for al1 h E H. 

Lemma 1.10 : Basic properties of the Trace and N o m  

Va$ E K,Vg, h E H, 

W g h )  = N ( g ) N ( h )  
a N(h) # O if and only if h E H x .  - 

In this case, we then have h-' = h o  N(h)- l  
a Tr(ag + bh) = a - Tr(g) + b Tr(h) 

Remark : For an eiement h = w + x i + y  j+zij, we get h = w-zi-y j-zij ,  

Tr(h) = 2w , N(h)  = w2 - or2 - by2 + ab& 

With the matrices in M2(K), we have, if h := [ c  d ]  
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1.2 Interna1 structures 

At first sight, the notions of this section môy inevitably sound famiiiar. One 

will read the same words he is used to read, in a context that seems to be 

the same... But what if experience could sometimes betray us? 

What if, dl of a sudden, 'the set of integers would no longer f o m  a ring' 

or if 'ideah would not always be subrings' ? 

Indeed, al1 the above occurs with quaternion algebras. That is why we 

suggest to the reader to keep his/her mind wide open, even if i t  means to 

pretend a temporary amnesia, for he will meet many 'homophones' in the 

next few pages. 

That little warning completed, let us now introduce the actors we will 

play with throughout this section: let R be a Dedekind ring, K be its field 

of fractions and H be a quaternion algebra over K. 

Deflnition 1.12 : 

Let V be a vector space over K. A R-module L of V is said to  be an R-lattice 

if L C V and L is finitely generated. 
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Deflnition 1.13 : 

Let V be a vector space over K. An R-lattice L of V is said to be complete 

i f K & L Z V .  

Definition 1.14 : 

An ideal of H is a complete R-lattice. 

Definition 1.15 : 

An element h E H is said to be an integer over R if R[h] is an R-lattice of 

H. 

Lemma 1-16 : Let h E H be given. Then, 

h is an integer over R if and only if Tr(h)  E R and N ( h )  belong to R. 

Remark : In practice, one uses the above lemma instead of the definition 

in order to identify integers. 

Warning : The sum and produa of two integers is not necessaty an inte- 

ger! For example, take R := Z , K := Q , H := M2(Q), 

Here, a and 6 are integers, but neither (a + 6 )  or (a* 6) is. 
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Hence, the set of integers does not form a ring. For this reason, we will 

focus on specific subsets (called ordea) having a ring structure. 

Definition 1.17 : 

An ideal 8 of H is said to be an order if O is itself a ring. 

Remark : The concept of order is fundamental in the study of the &th- 

metical properties of quaternion algebras. In our case, we will be ultirnately 

interested in working with quaternion dgebras over the rationals. So, if we 

set R := Z, K := Q and H to be a quaternion algebra over Q, it might be 

a good idea to explicitely rewrite the definition of an order in this case. 

( a O c H  
a  O is a ring O is an order of H a  O  is finitely generated as a Z-module 

Lemma 1.18 : Let O Ç H be given. Then, 

r R C O  
V h E O, h is an integer O is an order 

a O is a ring 
e K O = H  

Reference: [VigBO, proposition 4.2, p. 201 

Example 1.19 : 

Mz(Z) is an order of M,(Q). 
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Example 1.20 : 

For the Hamilton's quaternion N, the ring B [i, j, '+iyii] is an order. 

Definition 1.21 : 

Let O be an order of H. The units of O are the elements of O which have 

an inverse in O. This g o u p  is denoted OX. 

Lemma 1.22 : Let O be an order of H. Then, an element h E O belongs 

to OX if and only if N ( h )  E R X .  

Proof Simply remark that h-' = B -  N(h)- ' .  

Deflnition 1.23 : 

An order O is said to be mMmal if i t  is not properly contained in any other 

order. 

Deflnition 1.24 : 

An order E is said to be an Eichler order if it is the intersection of two 

mascimal orders. 

Definition 1.25 : 

Let 1 be an ideal. Let Oi := Oi(I)  := { h  E HlhI C I )  and 
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O, := C),(I) := { h  E H l I h  1). Then, O1 and 0, are called respectively 

the left and right order of 1. We also Say that I is 'on the left of' O1 and 

'on the righl of' O,. 

Definition 1.26 : 

Let I be an ided. The redvced n o m  N ( I )  is the fractional ideal of R 

generated by the set {N(h) l  h E I ) .  

Definition 1.27 : 

Let I be an ideal. Then, I is said to be: 

a two-sided if Oi = 0, 
a nonnal if Cl1 and 0, are maximal 
a integral if I C Oi and 1 C O, 
a principal if 3 h E H such that I = Oih = hO, 

Definition 1.28 : 

Let 1 be an ideal of H. Its inverse is defined by 

Lemma 1.29 : Let I be an ideal of H. Then, 

( 2 )  I-1 is also an ideal of H 
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Reference: See (Vig80, Lemme 4.3(3), p.211 for details. 

1.3 Quaternion algebras over local fields 

The goal of this section is to characterize al1 the quaternion algebras over a 

given local field. We first reduce the problem to quaternion division rings. 

Then, we treat the cases where the base fields are respectively IR and é. 

Then, after some recalls from valuation theory, we expose the main result. 

Let IR+ denote the nonnegative red numbers and let K be a field. 

Lemma 1.30 : Let H be a quaternion algebra over K. Then, either 

H I M2(K) or H is a division ring. 

Proof By Wedderbum's structure of simple rings theorem ', there exists 

a unique n E #' and a unique (up to isomorphism) division algebra D over 

K such that H E M,(D). But since H is of degree 4 over K, the only 

possibilities for n are 1 and 2: 

'See. for exampie. [Wei73. theonm M.1, p. 1641 
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a If n = 1, then H S M@) D. So, H D with D being a division 
algebra. Hence, H is also a division algebra. 

0 If n = 2, then H S M@).  Hence, their center are isomorphic: 
K =Center(H) -Center(M2(D)) 2 D. We get that K S D aad so 
H S M2(K), as wanted. 

Corollary 1.31 : For a quaternion algebra H over KT the lollowing axe 

equivalent : 

(i) 3h E H\{O) such that N ( h )  = O 
(ii) H M2(K)  
(iii) 3h E H\{O) such that Tr(h)  = N ( h )  = O 

( i )  + (ii) By hypothesis, O = N ( h )  d"=1 h -K 
So, h is a zero divisor and hence H cannot be a division ring. 

Proof Therefore, by the above iemma, H "- M2(K) .  

(ii) (iii) Set h := 1 . Then, clearly, TT@) = N ( h )  =O.  
C J 

(iii) + (i) Trivial. 

We are now ready to classify the quaternion algebras over any algebraically 

closed field: 

Theorem 1.32 : 

Let K be an algebraicaliy closed field and H be a quaternion algebra over 

K. Then H 5 M2(K). 
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Proof Say H = {L, 8 ) .  Then, since K is aigebraically closed, L cannot be a 

field. So, L\(O) contains a non invertible element m. Therefore, N(m) = O 

(otherwise, m (me N(m)-') = 1 with m- N(m)-' E L, so rn would be 

invertible). Finally, H Z M2(K) by above corollary. 

Remark : M?(é) is the only quaternion algebra over Q. 

We already know that 'H (section 1.1 on page 5) is a quaternion division 

algebra over IR. Indeed, much more is tnie ... 

Theorem 1.33 (Robenius) : 

Any division quaternion algebra over IR is isomorphic to the Hamilton's 

quaternion 7L 

Reference: See [Vig80, corollary 2.5, p. 71 or [Hun74, corollary IX.6.8, 

p. 4611 for details. 

Definition 1.34 : 

A map 1 1 : K + IR+ is said to be an absolute value on K if, for dl 
a H 14 
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(i) la1 = O if and only if a = O 
(ii) (a 61 = la1 161 
(iii) la + bl 5 la1 + 1 bl (Riangle inequality) 

Definition 1.35 : 

An absolute value 1 - 1 on K is said to be non-archimedean if, for al1 a, 6 K: 

(iii') la + 61 < max (lai, 161) ( Strong triangle inequality) 

Definition 1.36 : 

The absolute value 

is called the trivial absolute value of K .  

Deflnition 1.37 : 

An absolute d u e  1 - 1  on K is said to be discrete if the image of K\{O) under 

1 - 1 is a cyclic group. 

Deflnition 1.38 : 

A discrete valuation Rng is a principal ideal ring that has exactly one nonzero 

prirne ideal. 
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Definition 1.39 : 

Let R be a commutative discrete valuation ring with identity and let p be 

its only nonzero prime ideal. Then, R/p is called the residue field of R. 

Definition 1.40 : 

A field K with an absolute value ( -1 is called a local field if it satisfies the 

following condit ions: 

(i) 1 1 is non-archimedean, discrete and non-trivial. 
(ii) K is cornplete relative to 1 -1. 
(iii) The residue field of 1 -1 is finite 

Example 1.41 : 

For every prime number pl the field of padic numbers Q, is a local field. 

Example 1.42 : 

IF,[[x]], the field of formal Laurent series in one indeterminate over the finite 

field IF,, is a local field. 

Theorem 1.43 : 

Any local field is (isomorphic to) either IF,[[x]] for a finite field IF,, or to a 

finite algebraic extension of Q,, for some p. 

We are now ready t o  state the classifleation theorem of quaternion 

dgebras over local fields 
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Theorem 1.44 : 

Let K be a local field. Then, there is a unique (up to  isomorphism) quater- 

nion division dgebra over K. 

Reference: See [Vig80, theorems 1.1 and 1.3, p. 31-36] for details. 

1.4 Quaternion algebras over global fields 

Definition 1.45 : 

A global field is a finite dimensional extension of one of the following fields: 

O Q, the field of rational numbers 
O IFP(x), the field of rationd fractions in one indeterminate with 

coefficients in the finite field IFp , where p is a prime number. 

Definition 1.46 : 

Let K be a globd field. 

Let &:= { ilfor some local field L, i : K -+ L, i embedding }. Two embed- 

dings i, i' E C, say i : K -+ L and i' : K -+ L' are said to be equiualent 

if 3 f : L + L' , f isomorphism such that Z = f O i and we wnte i - i'. 
An equivalence class under ' A. ' is called a place of K. Let u be any place 

of K. We denote by z, : K -+ K. a dense embedding of K in a local field 

Kv representing the place v .  If Kv contains a field isomorphic to IR, then v 

is said to be an infinite (or archimedeun) place of K. Otherwise, v is said to 

be a finite place of K. 
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Example 1.47 : Places of Q 

r Only one infinite place 'w' represented by the natural embedding 
of Q into IR 
The finite places are represented by the naturd embeddings of Q 
into Q,, the field of pad ic  numbers, for every pnme number p. 

For more details, see [VigBO, section III.1, p-581. 

Definition 1.48 : 

Let K be a global field and H be a quaternion algebra over K. Let v be 

a place of K and z, : K -+ K. be a representative of v.  If H BK Kv is a 

division ring, then v is said to  be mmified in H. 

Definition 1.49 : 

Let K be a global field and H be a quaternion algebra over K. 

Let Ram(H):= { vlv is a place of K ramified in H ) 

Definition 1.50 : 

Let K be a global field and H be a quaternion algebra over K. The reduced 

discriminant d of H is defined by 

Lemma 1.51 : Let K be a global field and H be a quaternion algebra over 

K. Then,lRam(H)I < ao (Le. the number of places of K ramified in H is 
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Reference: See [Vig80], lemma IIL1, p. 58 

Theorem 1.52 : 

Classification of Quaternion Algebras over Global Fields 

Let K be a global field. Then, 
a If H is a quaternion algebra over K, then IRam(H)I is even (i.e. the 

number of places of K ramified in H is even). 
Let S be a finite set of places of K such that JSI is even. Then there is 
a unique H (up to isomorphism), H quaternion algebra over K such that 

Reference: See [Kg801 , theorem 3.1, p. 74 

Definition 1.53 : 

Let H be a quaternion algebra over Q. H is said to be defin. 

ramified at m. Otherwise, we Say that H is indefinite. 

ite 

Let p be a prime number. Let HP,, be the definite quaternion algebra over 

Q such that Ram(H,,,) = ( p ,  a) . 

Remark : By the classification theorem over globai fields (section 1.4, 

on page 20) since IRam(Hp+,)l = 2 is even, HP,, exists and is uniquely 

detennined (up ta isomorphism). 
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Rernark : We have that Hz,, = 'H, the Hamilton's quaternions (See 

section 1.1 on page 5). 

Until now, Our exposition of quaternion algebras has been very general, 

first because we wanted to give a true self-contained introduction and also 

because it wnçn't more tedious to treat the whole theory. But for the defini- 

tion of the next concept, we will restrict ourself to quaternion algebras over 

Q in order to simplify the exposition. It is indeed this particular case t hat 

we will be interrested in later on. 

Notation: Let Q, := IR 

Definition 1.55 : 

Let H be a quaternion algebra over Q and L be a lattice of H. The quater- 

nion algebra H 8 9  Q, over Q, 4s denoted by HP and the lattice L & Zp of 

HP is denoted by L,. 

Until the end of the section, let p be a fixed prime. 

Definition 1.56 : 

Let r E IN be given, M E M' be such that p AM and let N := gr+' M. 

Also, let L be the unique unramified quadratic field extension of Q, and R 

be the set of integers in L. 
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Deflnition 1.57 : 

An order O of HP,, is said to have level N if, for every q, we have the 

following isomorphism over a,: 

At first sight, this definition is not very intuitive. However, one can 'think' 

about the level as follows: 

Let K be a field, H a quaternion algebra over K and E be an Eichler 

order of H. Then, by definition, there are maximal orders O and 0' of H 

such that E = O n 0'. Then, the levei of E is somehow a measure of the 

'distance' belmeen O and 0'. 

Later on, what we will want to do is to pick an Eichler order of a given 

level. Hence, we better make sure of its existence, and this is exactly what 

the following result shows in the case we will be treating: 

Theorem 1.58 : 

Let p be a prime number and Ni be a positive integer such that p ANi. 

Then, HP,, contains an Eichler order of level pNr . 

Reference: See [VigBO, p.39 and p. 841 as welI as [BD96, p.4171 for the 



1.5. CLASS NUMBER 23 

details. Also, a method to obtain explicitely the Eichler orders of a given 

level N is explained in [Piz80, section 5, p. 368-3711. 

1.5 Class number 

Definition 1.59 : 

Two ideals I and J are said to be left equivalent (respectively right equiva- 

lent) if 3 h E H x  such that I = h J (respectively I = Jh) .  In this case, we 

wnte I -1 J (respectively 1 J). 

Remark : Of course, and '-,' are equivalence relations on any set S 

of ideais of H. We can therefore form left and right classes of ideals on S. 

Definition 1.60 : 

Let O be an order, Si := {III ideai of H and Of = 0) and Sr := {III ideal 

of H and 0, = O). The left classes (respectively Rght classes) of O are the 

ideal classes of Sl (respectively Sv). 

Lemma 1.61 : Let K be a field, H be a quaternion algebra over K and O 

be an order of H. Then, there is the same number of left and right classes 

of O. 

Reference: See [Vig80, lemme 4.9(1), p. 251. 
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Convention: The above lemma allows us t o  get rid of the specification 'left' 

or 'right' when talking about the 'number of classes of 0'. 

Lemma 1.62 : Let K be a field and H be a quaternion algebra over K. 

Then, the class number of al1 maximal orders of H coincide. 

Reference: See [Vig80, lemme 4.9(2), p. 25-26] 

Definition 1.63 : 

The class number h of H is the number of ideal classes of some maximal 

order. 

Theorem 1.64 : Finiteness of the class number 

Let K be a global field and H be a quaternion algebra over K. Then, the 

class number h of H is finite. 

Reference: See [Vig80], theorem 5.4, p. 87. 

Theorem 1.65 : Eichler's class number formula for indefinite quaternions 

Let H be an indefinite quaternion algebra over Q and h be its clas number. 

Then, h = 1. 

Reference: The result follows from the 'strong approximation theorem' 

(See [Vig80, theorem 4.3, p. 811 for details). 
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Theorem 1.66 : Eichler's class number formula for HP, 

Let p be a prime number and h be the class number of H,,. Then, 

wheçe (:) is the Legendre syrnbol. 

Reference: See [Eic38] for the original proof (in German) or [Vig80, 

proposition 3.2, p. 1461 for a more general case. 

Remark : Using the well-known properties of the Legendre's symbol , 
one can rewrite the above formula for h in a case-by-case format that makes 

calculations by hand quicker. 

151 if pa l(mod 12) 

h =  { +l if p ~ 2 , 3 o r p ~ 5 , 7 ( m o c i  12) 
L&] +2 if p = ll(rnod 12) 

where LgJ is the 'floor function' (that is, LtJ is the unique integer such that 

L;J 5 ; c L;J + 1). 

Table 1.1 : Value of some class number h of H,, 

Note : As we can see in the above table, the lowest value of p for which the 

class number is higher than one is when p = 11. This first nontrivial case will 

'That can found. for example. in [STS?. p.242-2501 or mto your favorite book on basic 
number theary. 
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often be used in order to illustrate some parts of the theory: calculations 

by hand will then be less tedious and therefore make our exposition less 

laborious. Sometimes, we will even use various ways to compute the same 

quantities: this will give us a flavour of the difference of complexity between 

methods, which could not be done if we would use new examples each time. 

Moreover, we believe that keeping p to be 11 wiil make us appreciate how al1 

the small steps we do will soon transform into parts of a global procedure. 

At the end, it might be a good idea to reread without interruption al1 the 

examples where p = 11 in order to see a full concrete application of the 

method. As we just saw, Eichler's class formula for HP,, (see 1.5 on page 

24) gives us a simple expression for the class number of a given maximai 

order. In fact, it can be extended as  follows to treat the case of any order. 

Theorem 1.67 : 

Let p be a prime number, Ni E IN* be such that p A& and let r E IN be 

given. Let N := $*+'NI and O be an order of level N in HP,,. Then, the 

c h  number h ( N )  of O is given by: 

y prime 
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where ( t )  is the Legendre symbol. 

In particular. the class number of any order of a fixed level N is inde- 

pendent of the particular order of level N. 

Reference: See [Piz80, theorem 1.12, p. 3461 for details. 

1.6 Brandt matrices 

Let p be a prime number and NI E IN be such that p JNi. We let N := pNi. 

Throughout this section, we will restrict our study to the quaternion algebra 

HP,,. As above, let h ( N )  be the class number of level N. For each n E IN, 

we will build frorn HP,, a matrk B(n) = (b$")) E hIh~lh(N)(Q) called the nth 

Brandt mat&. These matrices are of primordial importance for our later 

study of Hecke operators 7,, but as in the best rnovie previews, let's keep 

the suspense on for the moment. .. 

We fix our guest star  to  be an Eichler order O of HP,, of level N. Hence, 

O has h ( N )  left classes of ideals. Let il . . . Ih(l) be representatives for each 

of these classes (so, by definition, Oi(li)  = O for 1 5 i 5 h ( N ) ) .  To ease 

the notation, let, for 1 5 i 5 h ( N ) ,  Oi := Or(li) and ei := (O: 1. Lady ,  let, 
M I  for 1 5 i ,  j 5 h ( N ) ,  A!;) := {a E 17'1~  IN(^) Niifi = *} . 

'In the litterature, they are sometimee d e d  Ecbkr-Brandt matrices. 
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Definition 1.68 : 

With the above notations, the general term b!;) of the nth Brandt mat* 

B ( n ) h ( ~ ) x h ( ~ )  is defined by 

Remark : For a generalization of the Brandt matrices to arbitrary quater- 

nion algebras, see [Vig80, p.100]. 

Example 1.69 : N=ll 

Below are the first Brandt matrices when N = 11: 

F'rom here, it's child's play to compute the eigenvalues a, as well as other 

important quantities related to each B(n). The following table reassemble 

some of them. 
Properties of Bln) for N = 11 



Chapter 2 

Elliptic Curves and Modular 

As we did earlier, we will not be vexy general in this chapter: elliptic curves 

and modular forms being quite familiar for many mathematicians, we will 

assume that the basics of the subject are mastered by the reader. Those 

who would want more information before beginning this new chapter could 

find a good starting point in the article [Mur911 or on the web, at these two 

URL adresses http://www.best.com/'cgd/home/flt/0tO3.htm or 

http://www.best.com/-cgd/home/flt/fltO5.htm. For more complete refer- 

ences, one can find good help in [Si186], [Kna92] or [Kob93]. 

We will therefore present elliptic curves and modular forms in n very 

precise manner, concentrating specifically on results regarding the graph 

method. However, some classical elements will be rnentionned, as we do in 
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our first section. 

2.1 General recalls on elliptic curves 

As usual, let K be a field. 

Let m E Z and let E be an elliptic curve over K. The multiplication by m 

map [ml is defined by: 

Definition 2.2 : 

Let m E B', E be an elliptic curve and m E Z*. 

E[m] := {P E El [ml P = O), the set of points of order m in E,  is called 

the m-toraion subgroup of E. 

Lemma 2.3 : Structure of the torsion subgoup 
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Let na E Z', K be a field and E be an elliptic curve over K. Then, 

(i) deg([m])  = na2 
(ii) If Char(K) = O or (m, Chot (K) )  = 1, then 

E[na] (Z/rnZ) x (ZlmZ) 
(iii) If Char(K) = p, t hen 

V n  E IN*, E [ f ]  {O) or V n E IN', E[p"] 5 Z/pnB. 

Reference: See [Si186, corollary 6.4, p. 891 for details. 

Theorem 2.4 : On the value of IAut(E)( 

Let E be an elliptic curve over K and Aut(E) be the automorphism group 

2 if j ( E )  # 0,1728 
4 if j ( E ) = 1 7 2 8  and Char(K) # 2,3 
6 if j ( E ) = O  and Chor(K) # 2,3 
12 if j ( E )  = O = 1728 and Char(K) = 3 
24 if j (E )  = O = 1728 and Char(K) = 2 

So, in al1 cases, Aut(E) is a Inite group such that IAut(E)I 1 24. 

Reference: See [Sil86, theorem 10.1, p. 1031 

Definition 2.5 : 

Let N IN*, be given. The Hecke subgmup l?,(N) is defined by: 
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Note : h ( N )  C SL2(Z)  

Theorem 2.6 : 

Let p E IN be a prime number, K be a (perfect) field such that Char(K)  = p 

and E be an elliptic curve over K. For each r E IN', let #r : E -t E ( p r )  

and & : E(pr) -t E be the pr-power Frobenius map and its dual. Then, 

the following are equivalent : 

( i )  E[p'] = O for one (dl)  r 2 1. 
(i i)  6, is (purely) inseparable for one (dl) r 2 1. 
(iii) The multiplication by p map [pl : E + E is purely inseparable 

and j ( E )  E IFd. 
(iv) End&!?) is (isomorphic to) a maximal order in the quaternion 

algebra HP,. 

Reference: See [Si186, theorem 3.l(a), p. 1371 and [Gro87, p.1241 for 

details. 

Definition 2.7 : 

An elliptic curve satisfying the above equivalent conditions (i)-(iv) is said to 

be supersingular, or to have Hasse invariant 0. Otherwise, we Say that E is 

ordinary, or that E has Huse  invariant 1. 

Theorem 2.8 : Characterization of supersingular elliptic curves over finite 

fields 

(i) Let K be a finite field such that Chai(K) = 2. Then, the only supenin- 
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gular elliptic curve over K is + y = x3. 

(ii) Let p E IN\{2) be a prime number, K be a finite field such that 

Char(K) = p and E be an elliptic curve over K with Weierstrass equa- 

tion E : = f (x), for sorne cubic polynomial f (x) E K[x] having distinct 

roots in K. Then, 

E is supersingular the coefficient of x p l  in / ( x ) ( ~ ' ) / '  equals O 

Reference: See [Sii86, theorem 4.1(2), p. 1401 for al1 details. 

Coroilary 2.9 : Supersingular curves in Legendre form 

2 
Let p E IN\{2) be a prime number, rn := (p - 1)/2, H p ( t )  := C Z ~  (y )  t', K 

be a finite field such that Char(K) = p, X E K\{O, 1) and 

E : y2 = x(x - 1)(x - A), an elliptic curve in the Legendre form over K. 

Then, 

E is supersingular HP()<) = O 

Proof By part (ii) of above theorem, 

E is supersingular L. the coefficient of t"-l in (r(z - l ) (r  - x ) ) ' ~ ' ) ' ~  

equals zero 

the coefficient of xZm in (x(x - 1)(x - A))" 
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equals zero 

M the coefficient of xm in (x - l)"(x - A)" 

equals zero 

the coefficient of xm in 

equals zero 

C;o ( ~ ~ ) ( - i ) " - ~ ( ~ ) ( - x ) ~  = O 
2 

M (-1)" -Cr-* ( y )  Xi = O 

(-1)'" *eHp(X) = O 

Hp(X) = O 

Example 2.10 : N = p = 11 

Hence, m = 5 and 

H u ( t )  = t5 + 25t4 + 100t3 + 100t2 + 25t + 1 

t 5 + 3 t 4 + t 3 + t 2 + 3 t + l  (rnod 11) 

( t2 - t + l)(t + l)(t - 2 ) ( t  + 5 )  (mod 11) 

Hence, the oniy supersingular j-invariants in characteristic 11 are j = O and 

j = 1 = 1728. 
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2.2 Number of supersingular elliptic curves 
in characteristic p 

Theorem 2.1 1 (Igusa): 

Number of supersingulôr elliptic curves in characteristic p 

Let p E IN be a prime number and h be the number (up to isomorphism) of 

supersingular elliptic curves in characte ristic p. Then, 

Reference: Oddly enough, when Deuring first conjectured this nsult, he 

thought that a direct computation of the number of supersingular invariant 

of characteristic p was nicht leicht '. In 1958, Jun-Ichi Igusa took up the 

challenge: the key was indeed to notice that the Hasse invariant satisfies a 

differential equation of the Gauss-Legendre type. The result? The whole 

article containing the proof [Igu58] is only two pages long! It is still the 

same proof that one can read in today's litterature, for example in [Si186, 

theorem 4.l(c), p. 140-1411. 

Example 2.12 : p = 11 

There are, up to isomorphism, two supersingular elliptic curves in charac- 

teristic p. 

'Not easy at all! 
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Remark : It is on purpose that we used the letter 'h' in the above pro- 

position just as we used it for the class number of a quaternion algebra. 

It is not ambiguoue. since a quick glance at the Eichler9s class number 

formula for HP,, (page 24) reveals that they are equal! We thus obtain 

the following very important corollary: 

Corollary 2.13 (Deuring) : Quaternion alge bras vs elliptic curves (Part 

11) 

Let p E IN be a prime number, hE be the number (up to isomorphism) of 

supeaingular elliptic curves in characteristic p and hQ be the class number 

of HP,,. Then, hE = hq. 

Remark : This is the second time that we establish a connection between 

the seemingly unrelated quaternion algebras and elliptic curves. We recall 

that the first occurence was when we gave the equivalent definitions of a 

supersingular elliptic curve E on page 32: we then had that "End(E) is a 

maximal order in HP,". This time, however, the affirmation is as strong as 

it is surprising. For the matter of being impressed, let's hold our breath a 

little more as there is still more (thrill) to corne... 

The main consequence of this is of course to be able to use quaternion 

dgebras to derive properties of elliptic curves, just as we are used to do with 

modula forms. We must therefore always keep those relations in mind as 

they will be a tme helping hand later on. 
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2.3 Supersingular points 

Throughout the section, let p E IN be a prime number, NI E IN' be such 

that p &VI and N := pNl. 

Definition 2.14 : 

Let E (respectively Et)  be an elliptic curve over Fp containing a cyclic 

subgroup C (respectively C') of order NI. The two couples ( E , C )  and 

(Et, Cl) are said to be equzvalent if 39 : E + E', 4 Fp-isomorphism such 

that d(C) = C'. 

Definition 2.15 : 

Let E be a supersingular elliptic curve over TF, and C be a fixed a cyclic 

subgroup of order NI. Let S denote the equivalence class (É,C) of (E,C) 

under the above equivalence relation. Then, S is said to be a supersingular 

point of Xo(Nl  ) in charneteristic p. 

Definition 2.16 : 

Let S := {SI S is a supersingular point of Xo(Ni) in characteristic p). 

Definition 2.17 : 

Let MN := esEs Z[S]. 

The set S just defined will play a crucial role throughout our study. Let's 
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first draw our attention to /SI, the cardindity of S. In order to count its ele- 

ments, we first need to know the number of (non isomorphic) supersingular 

elliptic curves over F, : this is indeed Igusa's theorem (section 2.2 on page 

35). Then, for each of these curves, we must know al1 of its cyclic subgroups 

of order Ni (recall that we dready know their number by the 'structure 

of the torsion subgroup' lemma (section 2.1 on page 30)). Finally, it only 

remains to identik among al1 couples ( E , C )  found the ones that axe not 

equivalent (in the sense defined above). One then gets the rather surprising 

result : 

Lemma 2.18 : Cardinality of S 

Let h ( N )  be the class number of an order O of Ievel N in HP,,* 

Then, ISI = h ( N ) .  

Example 2.19 : N = p = 11 

In this case, Ni = 1 (so Our cyclic subgroups have order one). Therefore, ISI 

is in this particular case equal to the number of supersingular elliptic curves 

over FP. So, by a previous example (section 2.2 on page 35), we get (SI = 2. 

Definition 2.20 : 

Let S E S be given. Then, the group of r,-endomorphisms (respectively 6 
-automorphisms) of S is denoted by End(S) (respectively Aut(S)). 
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Definition 2.21 : 
.- p y l  . For S E S, we let as .- 

Lemma 2.22 : Let S = (Ë, C )  E S be given. Then, in al1 cases, as E IN' 

and as 5 12. Moreover, if p # 2.3, we have as 5 3. 

Proof We surely have: Aut(S) C Aut(E) =+ IAut(S)( 5 [Aut(E)I + as 5 
y. But by the theorem on the value of IAut(E)J (section 2.1 on page 

31), we have that IAut(E)I is always even, that 2 5 IAut(E)I 5 24 in al1 

cases and that IAut(E) 1 5 6 if Char(lF,) # 2,3. 

Hence, as E IN', as < 12 in al1 cases and rus 5 3 if p # 2,3, as wanted. 

This lemma allows us to define the following inner product on MN: 

Definition 2.23 : 

Let C xs[S] E MN and C ys[S] E MN be given. We define the following 
SES SES 

inner pmduct on MN: 

(C xsIS1. C YSPI)) :=  US - X s  9 s )  
SES SES SES 

Definition 2.24 : 
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Let S E S be given. Define Eu := C $[SI and ML := E~S' (That is, 
SES 

M t  is the orthogonal complement of Eis with respect to the inner product 

< *, - > on MN). 

Remark : A straight computation yields that 

2.4 Hecke and Atkin-Lehner operators 

Definition 2.25 : 

Let n E IN* be such that p ln. For each S := (Ë, C) E S , 

let C := {c, 5 E I  \Cal = n  and C,nC = {O)} and 

s := (Ë, C) - T,(S) := C ( E / &  
c* EC 
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Then, we define the Atkin-Lehner involution W,, on MN by: 

Definition 2.27 : 

Let q E M' be such that qlNl and (q, Ni/q) = 1 and let q := N l / q .  We 

then define W, by: 

Then, we define the Atkn-Lehner involution W, on MN by: 

The operators x's, W,'s and W, possess many useful properties that 

axe easy consequences of their definitions. 

Lemma 2.28 : Basic properties of Hecke and Atkin-Lehner operators 



42 

(9 
(ii) 
(iii) 

(iv) 
(VI 
( 4  

(vii ) 

( vi i i ) 

2.5 
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W, is an involution 
Every W, is an involution 
The set of 7,'s for which (n, N) = 1 together with the Wq's 
generates a commutative sernigroup of hermitian operators 
(with respect to the inner product < O ,  - >). 
V n , m ~ I ~ * s u c h t h a t p ~ n a n d p ~ m , ~ o ~ , , = ~ , o ~  
Vn, m E #' such that p ln, p lm and ((n, m) = 1 ,  Tm, = 7, O 7, 
Vq, r  E IN* such that qlNi,r lNl  and (q ,  N i /q )  = (r, N i t r )  = 
( q ~ )  = 1,W, = Wqo W, 
Vd 'd IN' such that dlNl ,  3 #d : MN --+ Mwd , q5d morphism 
such that & ((Ë, c)) = (Ë, dC). 
# sat isfies the following properties: 
O Vn E EH' such that (n, N) = 1, #d cornmutes with the 
7,'s. 

a Vq E IN* such that q / N L ,  q and (q ,  N 1 / q )  = l , 4d  
cornmutes with the W,'s. 
0 Vd id EN4 such that dl& and (d ,  Ni/d) = 1, xq5d = #d(x + Wd) 

Oldforms and newforms 

We will now brïefly introduce the notions of 'oldforms' ans 'newforms' due 

to Atkin and Lehner. A complete exposition on the subject can be found in 

(AL701 or in [Kna92, chapter IX, section 7, p. 2831. We will then relate the 

Aecke spaces MN and S2(ro(N) ) ,  which will tum out to be a key result for 

the graph method. 
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Lemma 2.30 : Fundamental domain in IH for S L 2 ( 8 )  

R is a fundamental domain for the action of SL2(Z)  in M. 

Reference: [Kna92, theorem 8.5, p. 2301. 

Definition 2.31 : 

Let k E IN' and f , g  E Sk be given. Then, we define the Petersson inner 

product < -, > p  by: 

Definition 2.32 : 

Let T I ,  T? E IN*, N E IN* be such that rlr2 1 N and let f (z) be an eigen- 

form for rO($-). Then, it is known that f (r24 is an eigenform for Fo(N) 

with the same eigenvalues. For this reason, we cal1 f (-2) an oldfom.  

Let s f d ( r o ( ~ ) )  denote the linear span of the oldform and Scm(ro(N)) := 

( S Z ~ ~ ( ~ ~ ( N ) ) )  ' (That is, ~"(r0(N)) is the orthogonal cornpiement of 

SZ'~(I'~(N)) with respect to  the Petersson inner product < - , O  >p) .  The 

eigenform belonging to S"(I'o(N)) are said to be newforms. 

We now state an important iu?d deep result that establishes a strong 

connexion between MN and S&(N)).  

Theorem 2.33 : An isomorphism with S 2 ( ï o ( N ) )  

Let R Î ( N )  C S2(ro(N))  be the subspace generated by the newforms of level 
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N and the oldfoms arising from cusp forms of weight 2 and level pd, for d l ~ l .  

Then 3 $ : Mi 8 Q + R2(N),ql isomorphism such that 11 is compatible 

with the action of Hecke operators. 

Reference: See [AL701 for details. 

2.6 Brandt matrices and Hecke operators 

The goai of this section, as the title indicates, is to establish a link between 

Brandt matrices and Hecke operaton. For this purpose, we first need the 

following settings: 

As usual, let p E IN be a prime number, NI E IN' be such that p ANl 

and N := pNi. Also, let n E IN', h ( N )  := ISI, {Si, 4,. . . , S h ( N ) )  := S and 

S := SI. Choose a supeaingular elliptic curve E over jf, containing a cyclic 

subgoup C of order Ni such that  S = (Ë, c). 

One of the equivalent conditions for E to be said supersingular (see 

section 2.1 on page 32, statement (iv)) is that EndF (E) is (isomorphic 
P 

to) a maximal order in the quaternion algebra H,,. Then, the ring of 

endomorphisms End(S) of S is an Eichler order O of Ievel N in HP,,. 

Now, in order to construct the nth Brandt matrix B(n), we have to find 
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representatives of each of the left ideal classes of O. So, for 1 5 i 5 h ( N ) ,  

let 1; := H m ( S i ,  S ) ,  Ji := H m ( S ,  Si) and Oi := End(Si). 

Theorem 2.34 : Quaternion Algebras vs Eiliptic Curve (Part III)  

Let p E IN be a prime number, Ni E IN' be such that p /Ni and N := pNI.  

Then, with above notation, 

v n E IN', 7, = B(nlT 

(where the nth Hecke operator 7, is here viewed as a matrix acting on MN). 

Proof 

We have: 

Hence, we have that Il ,  . . . Ih are the desired representatives of the le& 

classes of O. Similady, 
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We also have: 

Collecting al1 the above informations yields that the general term bij("' of 

the nth Brandt matrix is indeed the number of isogenies from Si to Sj such 

that no two of them diffen only by an automorphism of Si. Finally, we have 

recovered the matrix of the nth Hecke operator, as wanted. 

Example 2.35 : N = 11 

We recall that we already have computed the first few Brandt matrices when 

N = p = 11 (see section 1.6 on page 28). 
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Hence, in the light of the above theorem, we also know the cornespondhg 

matrices of Hecke operaton: 
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Chapter 3 

Graph Method 

In this chapter, we finally amve to the heart of our subject: al1 the various 

results which seemed unrelated until now will be put together with a few 

more specific complements in order to give a global perspective on our puzzle. 

3.1 A procedure to compute the first anYs 

First, we need to recall the following result which will be of main importance 

for the method we are about to explain. 

Theorem 3.1 : Properties of j(r) 

The j-function j(r) has the foilowing properties: 
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a j ( r)  is holomorphic on Ili. 

0 j ( r)  is a modulas fonction of weight O. 

a The Fourier series of j(r) has the form: 

1 x 

j(r) = - + 744 + c,qn, where c, E H for al1 n E IN'. 
9 n=l 

Reference: See [Kna92, corollary 8.2, p. 226-2271 for the proof. 

We first reduce to the case when Ni = 1. That is, N = p, a prime 

number. Let f (q) := C anqn (where q := e2*7  be a normalized newform of 

weight 2 and level N, j = j(r) be the corresponding j-function and K C Q 

be the extension of Q generated by the an's. 

We now explain a procedure to compute the first coefficients anYs of 

f (q). By the 'isomorphism with S2(I'o(N))' theorern (section 2.5 on page 

43) , there is an element C xs[S] E MN @ K such that C xs[S] is mapped 
SES SES 

to  f (q). 

On the ot her hand, we know by above theorem that for each supersingular 
-- 

point S = ( E ,  C) E S, the associated j-function js = jS(r) has the form: 

1 P 

js(r) = - + 744 + C &qn, where c, E H for all n E #*. 
'? h-l 
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Then, the following congruence of Laurent series holds: 

1 for some prime ideal p of K lying over p. 

This congruence really is the key point that sometimes allows us to 

find the first few coefficients a, of f ( q ) .  For instance, suppose that f ( q )  

corresponds to a modular curve of prime conductor N. Then, ail coefficients 

a, of f (q )  lies in Z. Therefore, K = Q, p = p and so C xs[S]  E MN 8 Q 
SES 

and d l  xs are in H. In this case, we always have that C xsjs  # O. This 
SES 

implies that we know all the an's rnod p. 

But, for every prime T such that r < p'/16, we have that 2 6  < p l 2  

and so by virtue of the classical Hasse's inequality ' , we have that (a,I < 
2& < p / 2 .  Hence, we simultaneously know the value of a, mod p and that 

la,l < p /2 .  So, the exact value of a, is known for every prime r such 

that r < #/16. 

3.2 Construction of S 

The procedure explained in this section will fuiiy justify the appellation 

"graph method". We will indeed constact a tree (in the sense of the graph 

'Sec for example [Kna92, theorem 10.5, p. 2961. 
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theory): the vertices of our graph being the supeningular points S E S and 

the edges, the 2-isogenies between them. 

As in botanics, the first step in order for a tree to grow is to  find a seed: 

in our case, a supeningular point SI. Then, we search for the (at most three) 

vertices Si directly connected to S1. Next, we take back each Si found and 

again compute the supersingular points connected to Si by a 2-isogeny. We 

repeat this step with each new vertex found until we have al1 the points in 

S. We recall that we have seen (in section 2.3 on page 38) that ISI equals 

the class number h ( N )  of some order O of level N in HP,, for which we 

already have an explicit formula (See section 1.5 on page 26). 

Therefore, we know right from the start how many vertices our tree 

must have. So, the above procedure contains a finite number of steps and 

terminates as soon as  the h ( N )  vertices are found. 

Let us first recall a useful special case of the class number formula that 

will be of great help later on. 

Theorem 3.2 (Baker, Heegner and Stark): 

Irnaginary quadratic fields having class number one 

Let d E IN' be squarefree and h be the class number of Q(J-~). Thcn, 
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Reference: Consult [ST87, theorem 10.5, p. 1941 for a complete proof (as 

well as for interesting reiated results and rernaxks). 

We will aiso need the following result from basic algebraic number theory: 

Theorem 3.3 : Inert primes in quadratic fields 

Let p E IN be prime and d E a! be squarefree. Then, 

(il 2 is inert in Q ( Q )  - 
d a 3 (mod8) 

(ii) if p # 2, p is inert in ~(a)  - 
p Jd& ( C )  = -1 

where (t) is the Legendre symbol. 

Reference: This is a special case of (Mar77, theorem 25, p. 741. 

Now, to simplify the exposition of the method, we will here suppose that 

N is odd, that an explicit model of the curve Xo(Ni) is known as well as 

the action of the Hecke operator 3 on that specific model. 

Step 1: The seed, SI 

Our goal here is to find any supersingular point Si in S. By the 
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equivalent definition (iii) of a supersingular elliptic curve, we know 

t hat there are al1 defined over IFd. Moreover, t here is always at 

least one lying in IFp : so one always has the possibility of 

enumerating al1 the elements of IFp until one hits a supersingular 

value. However, this way is obviously time consuming since 

there are few (aroud such points. Therefore, one better 

consider the speciai case he is working on in order to find 

shortcuts, 

For instance, suppose that NI = 1. That is, N = p is prime. 

IE 3d~{1,2,3,7,11,19,43,67,163)suchthatpis 

is inert in Q(J-d). 
Then: In this situation, we take as basepoint the j-invariant 

of the elliptic curve with complex multiplication by 

the ring of integers of Q ( a ) .  

Else: lnstead of working with quadratic imaginary fields 

having class number one, the second best thing to do 

is to consider those who have a small number of 

classes. For thern, we again consider the elliptic 

curves with complex multiplication by their ring of 

integers as well as the minimal polynomials of the 

associated j-inV;Viant. Then, after having solved 

the polynomial equation in IFd, we are back to the 

above 'then' case. 
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Finally, in one way or the other, one can always find a super- 

singular point Si to start with. 

Step II: The fbst branches 

Since we assumed at the very beginning that  the action of on 

&(Ni) was known, it suffices to solve a cubic polynomial over 

IFd in order to know the supersingular points Iznked to Sl by 

a 2-isogeny. There are, of course, at most three of them. 

Remark : I t  sometimes happens that we d o n t  even have to do 

that. For example, suppose again that N1 = 1 and that N = p G 

-i(mod 6). In this case, p is always inert in Q ( a ,  so that 

j = O can be taken as Our basepoint. In that  case, we know that 

al1 three 2-isogenies map Si to the curve S2 with complex multi- 

plication by Z[J-3), for which j = 243353 = 54000. 

Step III: Ramifications 

For each new Si found in the previous step, we repeat Step II. 

Except that this time, we know that one of the three bisoge- 

nies is the dual of the 2-isogeny from Si t o  Si that we already 

have encountered in the last step. Hence, in the worst case, we 

don't have to solve a cubic, but rather a quadratic polynomial 

over IF$. 

Again, apply Step II each time a new vertex is computed, until 

we end up having al1 points. 
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Remark : Now that  the method is explained, it only rernains to convince 

ounelves that d l  supersingular points are indeed reached by this process. 

To do so, it is enough to show that the graph of (and more generally 

7,) is connex. But JeamPierre Serre noticed that  the number of connex 

components of the graph of 3 is smaller or equal to the multiplicity of the 

eigenvalue a2 = 3 of 5. 

Indeed, for each connex component R E S of the g a p h  of 3, let un := 

Then, we apply 5 to VQ and get %(vn) = CsEn A$], for some As E Z. 

Remark that the sum stays over Q (and not over S), since R is connex. We . 

then compute the value of a given As: 

As l {S  E SI there is a 2-isogeny <p : S -t S)I 

But by the existence of the dual isogeny, we get: 

As = I{Sr E SI there is a 2-isogeny $J : S -.t Sr)I 

But we already know that this 1st quantity equals 3 for each S. Hence, we 

pet that 

That is, %(vn) = 3 - un. So, v~ is an eigenvector of 5 belonging to the 

eigenvalue a2 = 3. 

Moreover, al1 the un's (corresponding to each connex component S2) are 
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obviously independent eigenvecton. Hence, the number of connex compo- 

nents of 5 is smaller or equd to the multiplicity of a? = 3, as wanted. 

So we only have to show that the multiplicity of oz = 3 is one. But 

the subspace hl: of MN has codimension 1, so if a2 = 3 would have a 

multiplicity geater  than 1, we would have 3 = la?[ < 2 f i  < 3, which is a 

contradiction. Finally, we have shown that 5 is connex. 

Example 3.4 : N = 11 

We first notice that since 11 /3 and ($) = (2) - (fi) = ( - I ) ~  - 1 = -1, 

it follows by the theorem on primes inert in quadratic fields that 11 is inert 

in Q(m. Hence, we can take our first vertex t o  be SI := ( E l ,  Cl), where 

El is the supersingular curve with j-invariant zero (e.g. El : = x3 + 1). 

Next, we need to find a second supersingular point. But as we noticed 

earlier, the three 2-isogenies from SI are mapped to S2 := (È2, G?) , where 

Ë2 is the class of supersingular elliptic curves with cornplex multiplication 

by H[m (e-g. E2 : y2 = x3 + x ) ,  for which the j-invariant is 1. 

Since we already know by previous examples that ISI = 2 when N = 11, we 

axe already done. 

Hence, the only supeningular j-invariants in characteristic 11 are O and 1. 

We recall that we obtained this same result with another method using the 

Legendre form (in section 2.1 in page 34). 

Remark : Finaily, let's mention that the tree we have built not only gives 
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us al1 the supelsingular points, but also informations on the second Hecice 

operator 3. Indeed, since the vertices were the supeningular points and the 

edges, the 2-isogenies, given any S E S, we c m  explicitely count the number 

of 2-isogenies from S to S'. This way, we obtain al1 the entries of 5 and 

hence, 5 itself. 



Chapter 4 

Application to Strong Modular 
Curves 

Our general goal in this chapter is to use the graph method to obtain an 

explicite equation of an elliptic curve arising from a newform of weight 2 

and prime level. 

X 

So, we rue given a newform f (q) := C a,qn, where Vn IIN8,a, E Z, 
n=l 

having weight 2 and prime level N .  Hence, f ( q )  corresponds to a strong 

modular curve E of conductor N. 

The task of determining explicitely the coefficients of E ,  even if al1 an's 

are given, is not in general a simple matter. However, the following stepby- 

step method should ease, in most cases, our task. 
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The procedure that we are about to explain will rely on quite a few 

results and hence, in order to keep the exposition as fluent as possible, no 

recall to the theory has been made here '. 

4.1 Construction of r f  

We already know by the theorern 'An isomorphism with S 2 ( r O ( N ) ) ) '  (in sec- 

tion 2.5 on page 43) that f (q) corresponds to  an eigenvector vf := C xs[S]  
r ES 

(where VS E S, xs E Z) of Hecke operators. 

Since we already have described a procedure to  compute in this case the 

fint a,,% (see section 3 on page 49), we can take for granted that they are 

known. 

Moreover, the construction of S we made jk section 3.1 on page 51) by 

building a certain tree gave us simultaneously ail the supersingular points 

and the rnatrix of 5 acting on MN. Therefore, we can compute the eigenspace 

112 associated to the e igendue 02. 

If dim(b) = 1, then we stop the procedure right away and 
set V := K. 
If dim(&) > 1, we apply the Hecke operator 7s on to obtain &: 

a If dim(VJ) = 1, we are done. Set V := & 
If dim(VJ) > 1, apply successively %, %,%, . . . , one at a tirne, 
until a space of dimension one is found. Then, let V be that space. 
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Remark : Although the search of V might theorically require a large 

number of steps, in practice, however, we know that dim(V2) 5 6, for al1 

N 5 80 000. 

Since dim(V) = 1, by construction, the ba i s  of V consists of a single 

vector, say 6. So, V is simply al1 the scalar multiples of 6. Among them, 

there is clearly a unique (up to sign) vector r f  := C x,[S] E V such that 
aES 

rc, E Z, for al1 S E S and such that  the 6,'s are relatively prime. 

4.2 Geometric interpretation of the K,'S 

Since E is defined over Q and that Q has class number 1, it follows (cf. [Si186, 

corollary 8.3, p. 2261) that E possesses a minimal Weierstrass equation Ew. 

Moreover, since E is a strong modular curve, there is a minimal modular 

parametrization (P : , h ( N )  + E (c.f. [Kna92, p. 3921). Then, let A := 

AEtt. = AN' be the discriminant of Ew and n := deg(cp). 

Now, P. Deligne and M. Rapoport in [DR731 showed the following deep 

result: 

'There is o mode1 X 0 ( N ) p  of 4 ( N )  dejined mer  H such that 

X ~ ( N ) , ~ ,  its reduction modulo N ,  is the union of two projective 

lines Co and C, such that: 
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Co classifies the elliptic curves in chamcteristic N 
havàng the "verschiebung " 

a C, classifies the elliptic curves in chamcteristic N 
corresponding to insepamble isogenies. 

Then, the intersection of Co and C ,  are the svpersingular points. " 

So, let EN be the Néron mode1 of E (CL [SilsG, appendix C.15, p. 357- 

360]), ÉN be its reduction modulo N and Ë/4FN be the identity component of 

&. Then, Ëk, is isomorphic (over IFN*) to the multiplicative group G,. It 

can be shown that there is an extension @ of cp to Xo(N)p\S ,  such that cP 

induces (by specialization and restriction) a regular application from C, \S 

to ËyFy, and hence a rational function 4 : C, + C, such that its poles 

and zeros belong to E. Let A := C As[S] E ME be the divisor of # (it is 
SES 

defined up to sign). 

Until now, we have pointed out two special elements of M g ,  r /  and A. 

In the next section, we will see that they are far from independant. 

4.3 An explicit equation for E 

Together, the following two results due to  J.-F. Mestre ([Mes86]) will make 

us achieve our main goal: compute the value of the coefficients of E. 

Lemma 4.1 (Mestre): 
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h =&rf  

Reference: The proof can be found in [Mes86, p.228-2291. It uses the 

famous result (see [Rib9O]) conjectured by J.-P. Serre in 1985 and shown by 

K. Ribet in 1986 that implied that "Fermat 'a l u t  theorem would follow h m  

the Shimum- Taniyama- Weil conjecture ". 

Theorem 4.2 (Mestre): 

Let E be a strong modular elliptic curve with prime conductor N and 

A := C &[SI E hl; be as in the above construction. Then, 3 4 , c ~  E Z 
SES 

such that : 

(9 H I  $*-(b(&J+b),  

where H := sup (fi, $&$ 
and b := ( M ) ~  = 7.74316962 

3- 2 
(ii) Let A' := . Then, 
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A' = { A if E is supersingular at 2 
A or 212 - A  otherwise 

4 

(iii) q = (& A ~ ~ ~ )  (mod N) 

(v) n S 6 =  C Xi-IAut(S)I 
SES 

To efficiently use the above theorem, we use the following steps: 

r First compute V, and hence r/  by the method explained in section 
4 on page 60. Then, use the fact that A = kr l .  

r Next, obtain n (the degree of p) by (v). 
r Obtain by ( i )  an upper bound for 4 and ce. 
r Finally, deduce the value of q and q by (ii). 

Remark : The congruences (iii) in above theorem can be used to reduce 

the computations. 

So, as wanted, we found an explicit equation of the strong modular curve 

E given the corresponding newform f (q). 



Conclusion 

- "Les bonnes idées n'ont pas d'tige: 

elles n'ont que de 1 'avenir" 

"Good ideas are ageless: they only a have future". This statement cer- 

tainly applies to many mathematical topics, including, as we will see, the 

graph method. 

We already saw that this method is very useful to find explicit equations 

of strong modular curves associated to newforms of weight 2 and prime level 

N. We must say that this application is only the first of many more... 

Conversely, we are sornetimes able to show with this method that a given 

elliptic curve is modular. For instance, J.-F. Mestre, in [Mes85], was able to 

demonstrate that the curve 

of conductor 5 077 was indeed modular. Although this curve seems quite 
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ordinary, it is now known, from the work of J. E. Cremona ([Cre97]), to 

be the least modular curve2 to have a Mordell-Weil group of rank strictly 

greater than 2. 

The classification of quadratic imaginary fields having class number one 

(3.2 on page 52) has been really useful in developping the graph method. In 

return, the classification of quadratic imaginary fields having class number 

three follows from that same method: 

Theorem 4.3 (Mestre): 

Imaginary quadratic fields having ciass number three 

Let d E IN' be squarefree and h be the class number of Q(J-d). Then, 

Reference: (Mes86, theorem 4, p. 2321 

Another utility of this method exposed in [Mes86, Section 4, p.232-2371 is 

to test Serre's conjecture. Although it is known to irnply Shimura-Taniyama- 

Weil, no one has yet been able to  prove or disprove it. 

'when ordering eliiptic m e s  by increasing conductors 



Finally, even if this list of examples is not exhaustive, we certainly see 

that applications to this method are as numerous as diversified. 

There is however a last one that we honestly have to mention: the recent 

method developped by M. Bertolini and H. Darmon to find rational points 

on modular curves gave yet a new life to the graph method ... 
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