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Abstract 
Let f be a cusp forrn of weight 2 and level N .  Let K be an imaginary 

quadratic field of discriminant - D, and d an ideai class of K. We obtain 

precise fcrmulas for the special values of the L-functions associated to the 

Rankin convolution of f  and a theta series associated to the ideal class A, in 

terms of the Petersson scalar product of f with the theta series c?ssociated 

to an Eichler order in a positive definite quaternion algebra. Our work is an 

extension of the work done by Gross [7] il. The central tools used in this thesis 

are Rankin's method and a reformulation of Gross of work of Waldspurger 

concerning central critical values. 



Résumé 
Soit 1 une forme parabolique de poids 2 et de niveau N .  Soit K un corps 

quadratique imaginaire de discriminant D, et A une classe d'idéaus de K. 

On donne une formule pour les valeurs spéciales de la fonction L associée à 

la convolution de Rankin de f et d'une série theta associée à la classe A, en 

terme du produit scalaire de Petersson de f et d'une série theta associée à 

un ordre d7Eichler dans une algébre de quaternions positive définie. Cette 

thèse est une extension d'un travail de Gross ['il. L'ingrédient essentiel y est 

la méthode de Rankin et les travaux de Waldspurger sur les valeurs centrales 

critiques de fonctions L. 
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Introduction 

In this thesis we study certain L-series of Rankin type. These Lseries are 

of great significance in the study of elliptic cuves. We d l  obtain the special 

values of these Gseries in terms of theta series associated to some definite 

quaternion algebras. Here we revient these L-series and related topics. 

-An elliptic curve E over a field F is a curve (one dimensional variety) of 

genus one, contained in P ( F ) ,  the projective plane over F. In affine coordi- 

nates the defining equation of the curve E, defined over Q, is an equation of 

the form 

where A, B E Q. For any number field F we let E ( F )  be the set of solutions 

to the equation (0.1) in P2(F) .  This set is indeed an abelian group with a 

natural composition law. We have: 

Mordell-Weil Theorem [14, page2201 For any number field F the group 

E ( F )  is a finitely generated abelian group. 

By the above theorem Ive have 

for some non-negative integer r ,  which we cal1 the (algebraic) rank of E over 



F. The rank r t ums  out to be a mysterious number and there are quite a 

number of fascinating conjectures conceming t hat number. 

The theory of elliptic curves over Q: and in particular the rank, is closeiy 

related to the theory of modular forms through the Shimura-Tmiyama-Weil 

conjecture (14, page 3621 and the Birch and Swinnerton-Dyer conjecture [14, 

page 3621. If E is a n  elliptic c w e  over Q, then 

is an Gseries which somehow records the number of elements in E(Fp)  for 

various primes p in its coefficients [14] . The Shimura-Taniyama-Weil con- 

jecture, which after [16] can be called a theorem (in most cases), says that 

the inverse Mellin transform of LQ(E, s) which is defined as 

is a weight 2 cusp form for the congruence subgroup r o ( N )  of SL2(Z): where 

N is a positive integer called the conductor of E. 

The Birch and Swinnerton-Dyer conjecture predicts that the algebraic 

rank r of E over F is indeed equal to  the analytic rank of E over F which 

is defined to be the order of vanishing of LF(E,  s) at  1. This conjecture also 

predicts a value for the quantity 

in terms of sorne subtle algebraic invariants of E.  There is a great deal of 

evidence for this conjecture. See for example [14] for a list of such evidences. 



In chapter 1 we have given some background materials mhich will be used 

later on. In chapter 2 we review quaternion algebras, which are used in Our 

main result in chapter 4. In chapter 3 in which we will follow the methods 

Here 

is a cusp form in SZeW ( î o ( N ) ) ,  A is an ideal class of the irnaginary quadratic 

field K of discriminant -D, r, = rA(m) is the number of integral ideals of 

norm m in the class d and E is the Dirichlet character associated to K. (See 

section 3.1). 

The Gseries La(f, s) extends analytically to an  entire function of s and 

satisfies the functional equation 

(see Theorem 3.1). Our main result will give the value LA( f: 1) in terms of 

the Petersson scalar product of f and a theta series associated to Eichler 

orders in a definite quaternion algebra. See [2], [iland [5] for some of the 

applications of this result. Note that for any character x on Pic(0) 



where O is the ring of integers of K. Using this fact we will be able to 

calculate LK(f, xi 1). We ni11 use Rankin method to obtain a formula for 

LA (f, 1) as Petersson scalar product (on To (N)) of f with a modula form 

Qa (Theorem 3.8). We nrill conclude chapter 3 with explicitly cdculating the 

coefficients of Qa (Theorem 3.14). Our main result is proved in chapter 4 

(Theorem 4-19)? where we prove that the theta senes <PA is indeed a multiple 

of the theta series BA associated to Eichler orders in a definite quaternion 

algebra (Proposition 4.18). Our main result (Theorem 4.19) was first proved 

by Gross in the special case where N and D are both prime [il. A proof for 

the more general case, where D is not necessarily prime: has been suggested 

in [7] Nithout any details. 



Chapter 1 

Preliminaries 

1.1 Theta series of imaginary quadratic fields 

Let K be an imaginary quadratic field of discriminant -D, and let O = OK 

be the ring of integers of K. We denote by u = u(-D) the cardinality of 

Ox/(*l). where OX is the group of units of O. Then u = 1 except when 

D = -3 or D = -4: where u = 3 and 2 respectively. Let h = h(-D) be the 

class number of I< and A be a fked ideal class of 6. For any ideal class B 

we de fine the t heta series Es ( z )  as 

where b is any ideal in the class B and N is the norm function. The following 

result was proved by Hecke [Il]. 



Theorem 1.1 EB iS a modularfom of weight 1 for T o ( D ) .  with character 

E ,  where E is the character of (Z /DZ)"  defined by 

The following facts MI1 be used later: 

Proposition 1.2 - 

(ii) For a n y  m 3 1 ,  rs(m) is the number of ideals of O of n o m  rn in the 

class B. 

Proof: (i) is clear- 

(ii) : From the definition of rs(rn) we see that 2urs(rn) is the number of 

X E b with 

N(A) = d b .  

For each A E b with N ( X )  = d b ,  the ideal (X)b-l  is an ideal of OK in 

the class f3-' and 

N((A)~-') = m. 

Conversely, if c C OK is an ideal in the class B-l With N(c) = m, then 

cb is a principal ideal. Le, cb = (A) where X E 6. Moreover, 



This gives a bijection 

{A E b : N(X) = d b ) / O x  -+ { c :  c  E B-l ?Nc = m} 

Now (ii) is a consequence of the bijection 

{ b :  b ~ L I , N b = r n ) + { b :  b ~ D - ~ ~ N b = r n )  

in which b rt 6 , where b is the complex conjugate of b. 

We also derie 

mhere the sum is over al1 ideal classes D of O. Then from the above propo- 

sition- R(0) = &, where h is the class number of K and for rn 3 1, R(m) is 

the number of ideals of O of norm m. 

1.2 Poisson sumrnat ion formula 

In our calculation we will use the Poisson summation formula several times. 

Recall that the Fourier transform on IR is the operator on Lebesgue integrable 

functions given by 

For example if f ( t )  = ëTt2 then f ( u )  = e-""'. 

If f is also continuous and j is integrable , then the Fourier inversion formula 

says that 



If ive define the space of Schwartz functions on R as: 

dk f 
S(R) = { f E Cm(R)lP(t)dtr is bounded for all k 2 O and al1 polynomials P } ' 

then the Fourier transform is a bijection on S(W). 

The Poisson summation formula in the one-dimensional case is: 

Theorem 1.3 If f is in S(R) then 

Proof: See for exarnple[l2, page 2111. 

W e  wish to have a similar formula in higher dimensions. 

The standard n dimensional toms is defined as: 

-4 function _J on Tn can be viewed as an n-periodic function on Rn : 

Then standard theory of Fourier series on L2(T") says that for any f E L2 (F), 

where k - x = k tx ,  the inner product of k and x : 

t k-x = klxl+k2x2+. - .+k,x, if x = ( x  x ,  . . , ) , k = ( k , ,  k2, - . . k,)', 

and 



We need to develop the Fourier series of n-penodic functions which are not 

necessarily on standard torus, but on P / A  where :\ is an arbitraq Iattice 

in Rn. These are the functions f on IWn such that 

f ( x + ~ )  = f ( x ) ,  x E Rn : w E A. 

Let 

! I = ~ w ~ + Z ~ ~ + - - - + z c d ~ :  

where wL, u2.. . .un is a basis for IW" and 

PA = (w', w2. - . ,un) E GZn(Z). 

\Ve define 

g(x) = f(fi4- 

Then for k E Zn 

Therefore g is a function on Tn, the standard torus. Hence by (1.3) 

where 

where T,, = Pal (F) is a fundamental region for Tl, and S = det PA is its 

volume. 

But 

k - PcLz = k t P r L z  = tt (pi)-' k = z (P;)-' k. 



Hence 

We define = (Pi)-LZn, and for w' = P i t k  in Â we set 

Then 

implies that 

Theorem 1.4 Let A be a Zattice in W. Set = Rn/A and let S be the 

volume of TA. Also set 

* 

A = {w' E Rn : W' - w E Z, for a l lw zn A ). 

Let f be a function in L2(T,\). Then  f can be expanded znto a Fourier sen'es 

where for w' E A we define 



Proof: Everything was proved except the fact that defined in this the- 

orem is indeed the lattice (PL)-'Zn. The proof of this fact is a direct calcu- 

lation. 

Theorem 1.5 ( Poisson summation formula) Let f be a function in S(W ) . 
the space of Schwartz fvnctions on Rn, and define 

for y E Rn. Then for any lattice A in Rn we have 

where S and are os in the previovs theorem. 

Proof: Define 

Then g is a function on TA = W / h  and by the previous theorem. 

where 



Since J.w is an integer we have 



Chapter 2 

Quaternion algebras 

2.1 Introduction 

In this chapter we will review some facts about quaternion algebras. The 

main reference for this chapter is [IJ]. Let F be a field with charF # 2. 

Definition 2.1 d quaternion algebra H mer F is a 4-dimensional alge- 

bra mer F of the forrn 

where P = a, j2 = 6, ij = -ji and a ,b  E FX. 

CVe will write H = {a, b)F . For h = x + vi + z j + (wij in H we define 



We then define the reduced trace tr(h) and the reduced n o m  n(h)  of IL by 

For any h, k E H and ai, ,O E F nre have 

(i) h is invertible iff n(h) # O 

(ii) n(hk) = n(h)n(k) 

(iii) tr(ah + @k) = atr(h)  + Ptr(k) 

(iv) h satisfies the quadratic polynomial 

Exarnples 

(i) The algebca of Hamilton quaternions is the quaternion algebra over Q 

defined by 

n a =  {-1,-i),=Q+@ +Q +QG, 

which is a division algebra. 

(ii) The algebra M ( 2 ,  F) of al1 2 x 2 matrices with entries in F is a quaternion 

algebra. Indeed M ( 2 ,  F) = (1, by setting 

Then for h = (: :) € M ( 2 , F )  w have 

r, = (bc ib) 

21 



tr(h) = a + d 

n(h) = ad - bc. 

-4 quadratic algebra over F is an F-algebra which is two-dimensional as 

an F-vector space. 

Proposition 2.2 [15, wroliary 1-22] 1f L is a quadratic aigebra over F 

contained in H ,  then there &ts u E H such that H = L + Lu: where 

u2 = B E  K x .  um=fiu ,  fora11 r n ~  LI and G =  -u. 

Notation: With the notation above, we write 

Theorem 2.3 [ls, coroUary 1-2-41 

( i )  A quaternion algebra over F i s  either a division algebm or isornorphic to  

(3, F ) .  
* 

(ii) The quaternion algebra { L : 8 )  is isomorphic to A l ( 2 : F )  if and only i f  

L = F @ F ,  or  8 is the norm of a n  elernent of L. 

2.2 Orders and ideals 

In this and the following sections F will denote either a pad ic  field or a 

number field, and OF Will be the ring of integers of F. 

Definition 2.4 A n  ideal of H is a finitely generated OF-submodule I of 

H such that 1 @a, F H- 

22 



Definition 2.5 An elenent h E H 2s called an  integer z j  it satisfies the 

fol10 wing equiualent conditions: 

( i )  The  ring OF[h] is a finitely generated OF -module. 

(ii) The n o m  n(h) and the trace tr(h) of h are in OF. 

Definition 2.6 A subset R of H is called an  order if it satisfes the fol- 

lowing equiualent cofiditions: 

( i )  R is a n  ideal of H which zs also a subring of H. 

(zi) R is a  subring of H containing OF, F R  = H, and euery element of R is  

a n  integer of H .  

See (15, Proposition 1-4.21 for the equivalence of (i) and (ii). 

-4n order R of H is called a maximal order if it is not contained in any 

other order of H. The intersection of two maximal orders is called an Eichler 

order. Given an ideal 1 of H the subsets: 

are orders of H, and are called the left order and the right order of I respec- 

tively. We also define the inverse of I as: 



Definition 2.7 Given an order R we define, 

(i) RV = { X E  H :  ~ ( x R )  C OF)-  

(ii) (RV)-' is called the different ideal of R. 

(iii) The reduced n o m  n((RV)-') is caiied the reduced discriminant of R and 

is denoted by disc(R). 

Proposition 2.8 [15, lemma 1.4.71 If {el, et, e ~ ,  e4} is an OF-basis for 

an order 

R = O ~ e l +  OFez + 0Fe3 + 0 F e 4  

of H, then 

disc(R) = 1 (det (tr(eiëj))) 1 ''* 

2.3 Quaternion algebras over local fields 

Theorem 2.9 (Classificatzon) [15, Theorem II-i.lJ Ouer any local field 

F # C there exists a unique quaternion division algebra H (up to isomor- 

phism). 

If F is not archimedean, then 

where Lu, is the (unique up to isomorphism) unramified quadratic extension 

of F (in a separable closure F, of F), and ri is a uniformizer in F. The 

valuation v on F c m  be e.xtended to a valuation w on H by setting w(6) = 

- for h E H. 



The notations are as in the previous theorem: 

Theorem 2-10 . 

i) [.5, lemma II.l.5] The valuation ring R, is the unique maximal order 

of {Lw, *). 

ii) [15, Theorem I..2.3] : The maximal orders of M(2, F )  are the conju- 

gates of M(2,  OF) . 

iii) 115, lemma II.2.4] Any Eichler order of M ( 2 ,  F )  of level lin is conjugute 

2.4 Quaternion algebras over global fields 

Let F be a number field. We let PF be the set of places of F. For p in PF 

we denote the completion of F a t  p by Fp. For any F-algebra L we denote 

where the tensor product is over F. If in particular L is a quadratic field 

extension of F then L, is a field if and only if p does not split in L. If H is 

a quaternion algebra over F then by theorem 2.3, ( for each p E PF),  HP is 

either a division algebra or is isomorphic to M ( 2 ,  Fp).  



Definition 2.11 T h e  quaternion algebra H ouer F is said to  be ramified 

ut  the place p of  F (alternatiuely p is said to be mmified in H )  if H, is  a 

division algebra. If HP Ls isornorphic t o  M(2, F,), then H is said t o  be split 

at p. 

We denote the set of places of F which are ramified in H by Ram(H). 

Theorem 2.12 [15, Theorem 111.3.11 

z) T h e  set Ram(H) is finite wzth euen cardinality. 

i i )  H = M(2,  F )  if and only if HP = M(2,  Fp) for al1 places p of F.  

i i i )  If S is a finite set of places of F with euen cardinality, t hen  there 

ezists a unique (up to  isomorphzsm) quaternion algebm H over F with 

S = Ram(H). 

We define the (reduced) discriminant of H by 

Theorem 2.13 [15, Theorem 111-3-81 A quadratic extension L of F can 

be embedded in a quaternion algebra H ouer F if  and only if L, is a field for. 

al1 p E Ram(H). (Le., al1 p E Ram(H) are inert or  ramzjîed in L.)  

2.5 Quaternion algebras over Q 

-4 quaternion algebra H over Q has the form 



where 

i2 = a, y - 6 ,  - i j = - j i :  

with a, b E Q The algebra H ramifies a t  co if and only if a and b are both 

negative. If H ramifies at m, then H is said to be a definite quaternion 

algebra. If H splits a t  oo, then H is said to be indefinite. We ddene the 

Hilbert symbol (a 'b) ,  by 

( -1 if {a,  b )  ramifies a t  p. 

Then we have, 

Theorem 2.14 [15, page37] Let p be an odd rational prime and a: b E Q. 

where (;) i s  the Legendre symbol, and p 11 b means that p(b but p2 t b. 

Definition 2.15 For a n y  Iattzce L of H and any prime p we define 

L, is called the localization of L at p. 

The following proposition gives us a diction- between global and local 

lattices. 



Proposition 2.16 [15, proposition 111.5.11 Let X be a lattice of H. There 

is a bijection between the set of lattices L of H and the set 

{(L,) : Lp is a lattice of HP, L, = ,Y, for almost al1 finite primes 

of sequences of lattices, in which 

A propeny (*) is called a local property for lattices if for ewry lattice L 

of H ,  the lattice L has the property (*), if and only if L, has the property 

(*) , for a l  primes p. We have: 

Proposition 2.17 115, page 821 The following properties for a lattice L 

are al1 local properties: 

iii) L is a maximal order. 

iv) L zs an Eichler order. 

Definition 2.18 The level of an Eichler order L is defined as 

- 

p f inite 

where 1, = p Q p  is the leuel of L,. 



The following criterion is a very usefid one: 

Proposition 2.19 [15, comlla~ylII-5-31 An order R of H is a maximal 

order if and onlg if  

disc(R) = disc (H) . 



Chapter 3 

Special values of L-funct ions 

3.1 Introduction 

In this chapter we will study the special values of a certain L-series of 

Rankin type. Our main reference in this chapter is [8], and ive will follow the 

methods used in [8] in our proofs. 

First we recall some notations from section 1.1: IC is a quadratic imag- 

inary field of discriminant -D, and O is its ring of integers. We let A be 

a Lsed ideal class of O and set u = u(-D)  and h = h(-D).  The Dirichlet 

character associated to K is defined as: 

which is an odd primitive character of conductor D [13, page 2011. The 



modular forrn associated to d is defined as 

where a is any integral ided in the class A. By theorem 1 - l 9  E~( . z )  is a 

modular form of weight 1 and level D: with character E .  We &O define 

where Pic(0)  is the ciass group of 0. 

Now let f E S ~ e w ( î o ( N ) ) ,  where N is a positive integer Mth (N, D )  = 1  

- Here S y ( r o ( N ) )  is the space of cusp forms of weight 2 of level N which 

are orthogonal (with respect to the Petersson product) to al1 oldforms. We 

recall that a modular form of level 1V is called an old form if it it is in the 

span of the forms g(dZ) Rrith g of level -Ml < N and diVI 1 N .  We also recall 

that the Petersson inner product of f with any modular form g of level LV is 

defined as: 

The space S2e' (ro (N)) is spanned by the newforms (Hecke eigenforms) , but 

we do not assume that f is a newform. We let 

be the Fourier expansion of f, and 



be the Hecke L-series of f. Given these data. the Dirichlet senes La(f, s) 

is defined as the product of the Dirichlet L-function 

and the convolution of L ( f ;  s) with the zeta function Cm,, ra(rn)m-' . i.e. 

Here we have set T, = rA(m). 

Theorem 3.1 [8, page 2671 With notations as aboue, the Dirichlet se- 

ries LA( f ,  s )  extends analylically tu a n  entzre function of s ,  and satisfies the 

functional equation 

The above theorem shows that if E ( N )  = f l ,  then LA( f, s) vanishes a t  s = 1. 

In this case [8] gives a formula for the derivative LA(f ,  1). In the case when 

€( IV)  = - 1,  [8] gives a formula for LA( f ,  1). We d l  follow the methods used 

in [8] to give the formulas for La ( f ,  1)  in the case when e ( N )  = - 1. 

In section 3.2, following [BI, we use Rankin's method to obtain a formula 

for LA( f ,  S) as Petersson scalar product (on ro( fVD))  of f ni th  the product 

of a theta series and a non-holomorphic Eisenstein series. Then we d l  trace 

domn the result to get LA( f, S) as a Petersson product (on 170(~V)) of f with 

a modular forrn as. In section 3.3 we 611 calculate the coefficients of @, 



in the case where D is prime. For the more general case where D is not 

necessady prime, but D r 3 (mod4), we will state the final result Nithout 

proof, referring to [8] For details. 

3.2 Rankin's method 

In this section we give an integral representation for LA( f s) using Rankin's 

method. 

Let î, = {t ( 6  y )  : n E Z). Then for Re(s) large enough we have 

Therefore 

-4 direct calculation shows that the last expression is equal to 



where FND is a Fundamental dornain for the action of To(ND)  on 0. For 

7 = (: d )  E r o ( N D )  we have 

Now using these equalities and the invariance of the measure 9 under 

- - dxdy 

1 
- - c // f ( ~ ) ( c z + d ) ~ ~ ~ ( z ) ( c i + d ) ~ ( d )  2~+2 dxd.i~ 2/2 - 

F N D  ICZ +d 
7=*(: 2 )  E ~ - \ ~ ~ ( N D )  

Therefore 

~ ( d )  
f (z) Ed(z) Id* + 

dxdy.  
(3.3) 

7=* ( ; ; ) ~ r a i \ r o ( ~ ~ )  

Definition 3.2 For given M > 1 the Eisenstein series Enro ( s ,  z )  of wezght 

1, leuel M D ,  and character 6 is defined by 



Now from (U), we get 

Hence Ive have proved : 

Proposition 3.3 

The method Ive just used to express the convolution of the Gseries of two 

modular foms  as a scalar product involving an Eisenstein series was first 

used by Rankin and Selberg in 1939 and is commonly referred to  as "Rankin's 

method" . 

LVe now trace down the result given in the previous proposition to mi te  

LA (f: S) as a Petersson scalar product over To (N). 

Definition 3.4 For  any modular fonn g of weight 2 and leuel ND we 

define, 

where f o r  y = ( z  d ) ,  



It is easy to see that ~ r N ~ { g }  is a modular form of level AL 

Lernma 3.5 With notation as above, we have 

Proofi 

Now we have: 
Lemma 3.6 

Proofi This follows fiom proposition 3.3 and lemma 3.5. 



Lemma 3.7 For 1LI 2 1 we have: 

where p is the klobius functzon. 

ProoE The first equality is a direct result of the definition. We prove the 

second one. First suppose M is square-free. \Ve prove the lemma in this case 

using induction on the number of prime divisors of M. If M is prime, then 

CEO ( M D )  
(d ,MD)=l  

1 = - 44 yS 1 - -  € ( M d )  yS 
2 , t d ~ c z + d $  2 

c,dEZ 
cz + Md Icz + M d [ 2 s  

c,&Z 
c=O (MD) c ~ 0  (MD) 

c s 0  (D) c ~ 0  ( D )  

Now suppose that hf = Kp is square-free? and suppose we have 



c=O (MD) 
(d ,KD)=l  

c ~ 0  (MD) 
(d,KDj=L 

In the case where 1M is not necessarily square-free: we have 

where ..&Il is the product of distinct prime divisors of M. Hence 

= (S) C A"'"' Ml 1V.f 

++l (+JS *D'"Y T K  2) 
r l AI1 

r square-free 



Since p( r )  = O for r not square-free , me have 

Xow we c m  prove : 

Theorem 3.8 Define the Ezsestein sers'es Eo ( S .  r )  of level D and weight 

1 and character E as, 

and let 

Then, with notations as in section 1, we have 

Proof: Using the previous lemma we have 

If r ( N  and r > 1,  Ea(r)ED(ii - 1, 5,) is of ievel 9. Since ( l v , D )  = 1: a 

complete set of coset representatives in l?o(ND)\îo(N) is a compIete set of 

coset representatives in r0 ( r ) \ r o  ($) as well. Hence 



which is of level $ . Therefore, since by Our assumption f E Srw(rO(N))7 

for r ] N  if r > I we have 

Now using lemma 3.6 we have 

This proves the theorem. 

3.3 Special values 

In  this section we calculate LA( f t  1) by computing the Fourier coefficients 

of Qo defined in theorem 3.8. This calculation has been doue in [8] for the 

case when D = 3 (mod4). Using the same methods as in [il nTe will do the 

calculation for the special case when D is a prime number. For the more 

general case we d l  state the result from [8] nrithout proot Therefore except 

in the last theorem, the number D rvill be assumed to be prime. 

By theorem 3.8 we have 

On the other hand by [7, page 1541 nTe have 



where as before 

Therefore we have: 

Proposition 3.9 If D is prime, then 

where 

To calcuIate the Fourier coefficients of GA, 6rst we need some lemmas : 

Lemma 3.10 . 

1) If y = ( C i )  is in SL2(Z) and c f  O(modD), then 

where c* is an inverse for c(mod4). 

2) If 7 = ( 2 ) is in ro ( N )  and c $ O (mod D) , then 

Proof: 1) The D matrices 



represent al1 non-trivial right cosets in To (D)\ro (1) [12. page Zig]. For each 

O 5 j < D we have 

and hence 

Using the Poisson summation formula(theorem 1.5): it can be shown that 

Hence 

which means that 1) holds for Oj ,j = O , .  . . , D - 1. Now 

for sorne O 5 j < D and some (: f ) E ro ( D ) .  Hence 



But from 3.5 we see c = 6 and -y + c j  = + 6 j  = d, which means that 

c j  = d(mod D ) ,  since Dly. Hence j = c'd. This completes the proof for 1). 

2) ive have 

Now since E = Cs Eg, h m  1) and the above equality we have 

E(c/IV) E( N z  + Nc*d E (c/N) e (c)  + c'd 
E ( X z )  1 = iJD D 1 = i\/D E ( N -  D > 

as required. 

Lemma 3.11 The D + 1 cosets of I'O(ND)\I'O (N) are represented by ( y ) 
and matrices y = (: 2 )  E ro(N) with c $ O(mod LI) and j = c'd running 

through the D residue classes zn Z/DZ. 

ProoE r o ( N )  acts transitively on PI ( Z / D Z )  by 

(u, u )  9 = (cm + c q  bu + du) 
c d 

for (u, U )  E Pi (ZIDZ) and (: 2 )  E r o ( N ) .  The group ro(MD) is the isotropy 

group of (O, 1) E PL (Z IDZ) .  Therefore we have a bijection 



But 

This proves the lemma. 

Now ive can prove: 

Proposition 3.12 

Proof: By lemma 3.10 for each coset representative 

have 

Therefore 

C(M) *-' z + j  
GA(z)= SAIPY=~A(Z) - -ESA(~ ) -  

TE ro(ND)\ro(N)  j=o 

Using this proposition, now we prove: 



OC Proposition 3-13 The Fourier coeficients of GA = ~ m = o ~ g m  are 

giuen 69: 

- V I  if (n, D) = 1 
where d r ( n )  = 

1-E(N) if ( n , D )  # 1  

Proof: Let gA(z) = E A ( z ) E ( N z )  = xz=o bmqm -4 direct calculation 

shows that 

Hence by previous proposition we have 

By the definition of gd we have 

b, = rA(m - ZN) R(1). 
120 

For rn 2 1: we have rd(m) = rA(Dm) and hence R(m) = r (Dm) .  Hence 



since R(0) = $ by definition. 

Theorem 3.14 With our notations as in section 1, if D = 3(mod 4) and 

where 

is a modular form of weight 2 and level 1V, with 

Here n .is any integral ideal of O satisfying 

N ( n )  = -iV (mod D), 

[An] is the genus class of the ideal class A{n), and RIAnl(n) is the number 

of integral ideals of O of n o m  n in the genus class [An]. Also b(n) = 2"-, 

where A, is the nurnber of primes dividzng both D and n. 

Proof: First let D be prime. Then for n > O, 6(n) = 6'(n), where d'(n) is 

as defined in proposition 3.13. On the other hand, since in this case there are 

no elements of order 2 in Pic(O), there is only one genus class for 0. This 

means that 

R[dn] (n) = R(n) 

for al1 n 3 O. Therefore for D prime the theorem follows from propositions 

3.9and 3.13. For the proof in the general case, see [8, proposition N.5.61. 



Chapter 4 

Theta series in quaternion 

algebras 

4.1 Notations and basic assumptions 

We recall that iV = N -  N f  is a positive integer. tvhere N -  = plpz . . . p, is 

the product of an odd number of distinct primes and ( N - ,  iV+) = 1. Let K 

be a quadratic imaginary field of discriminant -D and O = OK the ring of 

integers of K. W e  set 

0/4 if D = 0 (mod 4 ) 

D i f D = 3 ( m o d 4 ) ;  

and 



Then we have 

O = Z + Z w *  

Let H denote the (unique up to isomorphism) definite quaternion algebra of 

discriminant - N -  . We assume t hat, 

- pl :& p, are allinert in K. Le, for i = 1 ,2  ,... s ,  

- -411 p ~ m e  divisors of N+ are split in K .  

4.2 Description of H 

Our first goal is to  give a concrete description of H rvhich will be usefu 

doing calculations relative to K. For this me choose a prime q # 2 such that 

q = - N -  (mod D).  

We need the followïng 

Lemma 4.1 With notations as aboue, we have 



Proof: First suppose that D and N -  are both odd. Then D = 3 (mod4) 

and hence ( i l )  = - 1 and also (if) = -1. Therefore, 

Now suppose that p, = 2. Then by our assumptions D E 3 (mod 8): (:) = 

-1: and (';-y2) = 1- Hence 

Finally, suppose that D is even. Then D = O (mod 4). If Do = D/4 is odd, 

t hen DO G 1 (mod 4): and we have 

Here ive have used the facts that q G -iV- (mod4) which implies (9') = 

- (NI), and that (k?) = (GO) = -1. If D O (mod 8) we set D" = D/8. 





theorem 2-14, for any odd prime p, the algebra K + K j  is ramified at p if 

and on- if (- D, -N-q) ,  = - 1 ,  where for rational numbers a and b. 

First we have by our assumptions, 

(-a -N-q)pi  = (;y) = - I  f o r i = 1 , ?  , . . ;  s w i t h p i # ? .  

For a- prime divisor p # 2 of D we have q = -N- (modp), and hence 

Finally by the previous lemma, 

Therefore 

By theorem 2.12 h ( K  + Kj) has even cardinaiity. Hence K + K j  is 

ramified a t  2 if and only if 2 1 N - .  Therefore K + K j  is ramified exactly at 

p l ,  . . . , p, and m. This completes the proof of the proposition. 

4.3 Maximal orders in H 

We mish now to give a concrete description of a lked maximai order in H. 



where 

Lemma 4.3 RI is a non-maximal order in H with 

Proof: It is easily seen that RI is closed under multiplication and hence it 

is an order by definition 2.6. By proposition 2.8 the discriminant of RI is 

is a Z-basis for RL. 

If D r O (mod 4), 

If D 3 (mod 4), 
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By proposition 2.19 every maximal order in H has disc(H) = N -  as its 

discriminant. Hence R1 is not maximal. 

Now we define 

mhere q is a prime ideal of OK containing q. 

To prove that R,v- is a maximal order we need: 

Lemma 4.4 Let (el, e2, e3, e4)  and (e;,  e;,  e:, e;) be bases for two Iattices in 

H ,  and let 
4 

ef = for i = 1,2,3,4,  

where ac,i E Q for i, s = 1,2,3 ,4 .  Then 



Proof= W-e recall that by definition 

This proves the lemma. 

Now we can prove: 

disc(el, er, er , e4)  = 

Lemma 4.5 Let 

det 
L<s<4 
1 ,<t<-I 

where 

) ILI2. 

wzth a odd and a* - D (mod q),  is one the prime ideals of Oh- containzng 

Proof: First me assume D = O (mod 4). Then we have 



and 

- - 1 
- ( z q d ~  + z ( a J - D o  + D ~ ) )  . 
2qDo 

For CI + O j  E RLv- we have: 

wbere A E OK, rn, n, m', n' E Z. 

Hence 

Hence RN- is a lattice in H with the Zbasis  {el, ez, e ~ ,  e~ }, where 



Thus using the previous hvo lemmas we have, 

where 

To prove that RN- is a masimal order it remains to show that  RN- is closed 

under multiplication- Let x = X +qo+oj , y = X'+qP1 +O' j be two elements 

in RN- where A; A' E oK, ,O. /3' E (J-D) -' q - l ,  A' = m' + n1J2&. Shen 

We bave XX' E RN-:  qXP + XP1j E RN- : and 

Using the fact that -1V = q + CD for some c Z, \ve have 



We also have 

Therefore, 

XY € RN- 

Thus we have proved the lemma for the case mhere D = O (mod 4). 

The proof in the case mhere D = 3 (mod4) is similar- For the disc(RN-) in 

this case Ive have 

This completes the proof of the lemma. 

4.4 Matrix representations for H 

Here ive give some matrix representations of H and its localizations which 

will be usefd in our calculations. For this, we consider H as a 2-dimensional 



vector space on K with{l, j) as a basis. The algebra H acts on itself by 

multiplication on the right. This action gives us an algebra monomorphism 

: H + M2(K),  

where 

for al ,O E K. 

Let p be a rational prime which splits in K. Then 

K, := KeQ := Q + ~ ~ d - -  

If we X as one of the ~R'O roots of -D in Q, then we get an algebra 

isomorphism, 

K , - % Q ~ Q  

a+6J=D- (a+bX:a-bX) 

for a, b E U& [4, theorem 9.1.11- 

The conjugation on Kp simply switches the components in the direct sum: 

(a, b) = (b? a), 

for a, b E Q . Using this we have the Q-algebra isomorphism 

In the same fashion as for definition of <p above, Rie can define the Q-aigebra 

monomorphism, 



Composing this with the homomorphism 

(c', d') (a', b') 

ive get an isomorphism: 

We have proved: 

Theorem 4.6 Let p be a rational prime which splits in Kand X be a jixed 

root of -D  in Q. Then the rnap 

giuen by: 

for a + O j  E HP, (aJ E Kp) ,  w2th 

is a Q,, -algebra isomorphism. 

4.5 Eichler orders and their ideals 

Now we can give a concrete description of an Eichler order in Hof level Nt. 

For this we let W be an ideal of OK of n o m  IV+. We set 



Then we have, 

Lemma 4.7 R is an Eichler order of H contained in RN- and of level W .  

Proof: By proposition 2.17, it is enough to prove that for every rational 

prime p, if p f iVf, then & := R @ Z, is a masimal order in HP and if 

pe II then R, is an Eichler order of level pe in HP. If p f Ni then it is 

clear that R, = (RN- )p  is a maximal order of HP. If pe II !Vi , then since p 

splits in K, by theorem 4.6 we have the isomorphism, 

which means that R, is an Eichler order of level pe, by theorem 2.10. There- 

fore, using proposition 2- t 7 we get the result. 

-4 left ideal of R is a Z-lattice I in H such that 

Given two left ideals I ,  J of R we define 

Hom(1, J) := {h E H : Ih C J ) .  

We are interested in those left ideals of R which are generated by ideals of 

0- Indeed for any ideal b of 0: the product Rb is a Ieft ideal of R- More 

precisely, 

Lemma 4.8 For any ideal b of O wzth (6, m) = 1, we have, 

-1 -1 +- 
Rb = {a + p j  : : E ( ( ~ 7 ~ ) - ' b ,  /3 E (a) q !YI 6, a! = pB (mod0K)). 



Proof: Let x = a + p j  E R mhere a E (-)-', i j  E (\/_D)-'~-'w 

and a = qp (modOK). Then for b = m + n m  E b we have 

Conversely, let z = a + P j ,  a E ( d T ) - L b ,  .B = -& E ( d - ) - ' q - ' ~ 6  

with ,Y E q-', b = rn - n m  E b and cr = q8 (mod 0 ~ ) -  Then assuming 

a, = qp + X nith A E OK we have, 

with ,ut = qp E 4 0- Now 

and 

Hence x E Rb. 

This proves the lemma. 

Our next step is to give a description for Hom(Rb, Rba) for ideals a and 

b of OK. We have 



Lernma 4.9 Let a and b be split prime zdealî of OK whzch are prime to 

(O). Then 

Hom(Rb, Rbo) = a + O j  : a E (J-D)-'U, ,8 E ( \ / _ ~ ) - ' ~ - ' < n + b - ~ ~ i i ,  { 

Proof: Let 1 be the set in the right hand side of the above equality. By 

lemma 4.8 we have 

Rb = {a + f l j  : : cr ( ~ 3 ) - ' 6 ,  ,O E (J_D)-'~-'F~, a 3 (mod 6-1)) 

Let a and b be rational primes such that ( a )  = au and (6) = b 6  in OK. -At 

any prime p # a, b we have 

and hence 

(Hom (Rb, Rba)), = I, = 4. 

If a # b, then using theorem 4.6, at a nre have, 

and 



and hence 

(Hom (Rb, Rba)), "= (12. zl) % 1, 

For b we d l  have, 

and 

Hence, 

(Hom (Rb, Rb,)),, % ( " '" ) S. 
bzb Zb 

and 

Now using proposition 2.16 we get the result. 



Lemma 4.10 Let Dr > O be a divisor of Dr and ù' = (Dr,  J=D) be the 

integral ideal of OK of n o m  Dr. Then 

a = qp(mod 0,) for p 1 D/D1 

where for any rational prime p 1 D we set p = ( p ,  und O,, is the 

Eocalization of the ring O at the prime ideal p. 

Proof: Let I be the set in the right hand side of the above equality By 

proposition 2.16 it is enough to show that 

for al1 rational primes p, where for a lattice L in H ive define 



Hence 

This completes the proof of the Iemma. 

Definition 4.11 For any positive dzvisor Dr of D we define 

a E D ~  (p)qP (mod Q,), for ail p 1 D , 1 
where for any prime dzvisor p of D,  we set p = ( p ,  m)' 

and 0, zs the localization of O at the the prime ideal p. 

It is readily seen that II' = R = RN+,N- is the Eichler order dehed  before. 

In fact, we have, 

Lemma 4.12 Let D' be a positive divisor of D. With the aboue notations, 

z) The  lattice 



is a maximal order in H .  

ii) The latt ice lZD1 is an Eiehler order of level Nf in RN_. 

Proof: The proof is similar to the proof of lemma 4.5 using a local argument. 

Lemma 4.13 With notations as -in the two previous lemmus we have 

Proof: We prove the lemma using a local argument. Let p be a rational 

prime. If p { D' then, 

(RD') = RD' @ Zp = R, 

and hence 

(Hom(R3', RD')), = Rp = (R~'),. 

Let p 1 D'. Then 

and 

Let z = a' + p'j E ( R ~ J ' ) ~ ,  y = a + P j  E ( R ~ ' ) ~ .  Then 

from (2' s -qDf(mod p,) and cr m -qP(rnod O,), we have ad e q2PP(mod 0,) 

and qa'p = qap' (mod O,). Hence 

CIQ' - 1vqPflt = ua' + q2@ i orcr' - q20@ = O (mod O,), 
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and 

a'p + apt = a',O - a,@ E O (mod O,). 

ti'e also have 

aa' - N & ~  + q(ar@ + û.P) = aa' + q2pP + q(a'0 + orp') = 
a 'b  + !IO) + m a  + qP) = a'(cr+qB)+q@'(a+q@) = 
(a + Q ~ Q '  + qP') = O (mod p,). 

Hence 

XY E (Ra1), 

This rneans that (R*'), C (Horn(R3', Since (R~'), is a maximal 

order, we have 

(Hom(Rut, RD')), = ( R ~ ' ) , -  

Now the lemma follows fiom proposition 3-16. 

4.6 The main identity 

We are now ready to state and prove Our main theorem. As before, A is a 

fked ideal class of O and a is an integral ideai in A. For any ideal class B of 

0 we let b be an integral ideal in 8. We define the theta series 

zEHom( Rb, Rba) 

where for x E Hom(Rb, Rba) the integer p ( x )  which we call the degree of x 

is defined as 



By [6] Bdqp is a modular form of weight 2 and level iV = N-N+: and is 

independent of the choices of a and b in the classes d and B- To make the 

calculation easier we d l  choose a and 6 to be prime ideals which are split 

in K. Now we define 

Our main result (theorem 4.19) nrill be proved by showing that Ba = 2u2GA, 

where Gd is the theta series in theorem 3.14. This nrill be done by computing 

the Fourier coefficients of OA and comparing with those of ad- 
Remark: 

i) Theorem 4.19 was proved by Gross in the case where N and D are both 

prime [ i l .  A proof for the more general case where D is not necessarily prime 

has been suggested in [7]. The suggested proof needs to be modified, since 

the formula on the top of page 162 is incorrect. 

ii) Hatcher has given similar formulas for the special values of LA( f ,  s) in 

the case where N and D are prime, and f is of arbitra- weight (91. Then 

in [IO] she has extended her result to arbitrary D, using Gross' method. Her 

argument in the 1 s t  paragraph on page 341 appears to be incomplete. The 

proof can be completed using an argument similar to the one we use in the 

proof of proposition 4.17. 

For any divisor D' > O of D we let 3' = (Dl, d z )  and (3') be the ideal 

class of a'. We note that 



Hence 

where g is the number of prime divisors of D. This simple observation mil1 

prove crucial in our calcuiations. So me record this as: 

L e m m a  4.14 For ony divisor D' > O of D we let 3' = ( D', d z )  and 
be the ideal class of 3' in O. For ideal classes A and B define 

Then we have 

Now Ive calculate rdYB(m) for a given m 2 O and an ideal class B. 

Lemma 4.15 Let i3 be an ideal class of O and rn 2 O a n  integer. I have 

where for any  ideal I of O and any rational number s, t [ ( ~ )  is the number 

of elernents of norm s  in the ideal 1, and for any integer n > O 

Proof: We let a and b be integral prime ideals in the classes A and B 

respectively, such that N ( a )  = A and N ( b )  = B both split in K. Then 



and 

D'l D zEHom(RiY b,Rù'ba) 

A tocai argument using lemma 4.13 shows that 

where for each prime divisor p of D we set p = @, dz). If x = ct + f l j  
with p(x) = m be an elernent in ~ o r n ( ~ ~ ' b ,  ~ ~ ' b a ) ,  for some Dr 1 D: we set 

= J-a, P) E J-Dp. This gives us a solution to the system 

This is because N ( ~ o r n ( ~ ~ ' b ,  ~ ~ ' b o ) )  = A and hence 

We need to see how a solution to the system (4.2) contributes to elernents in 

H O ~ ( R ~ '  6, R ~ '  ba), for various divisors Dr. We start with a solution (a', or )  

to the system (4.2), Nith qN($) = n and N(a') = mAD - N-n.  We set 

Dl = ( D ,  n). 

From N(ar) + N-qN(P) = mAD and the fact that q = -iV-(mod D) we 

have 

N ( d )  = q2N(fl)  (rnod D). 



This implies that for any prime divisor p of D,  

where 7)p E {l, -1) and p = @, d a ) .  If p Dl then (4.3) is valid for both 

qp = 1 and 17p = -1. But if p 1 DIDI ,  then (4.3) is valid only for one choice 

of B. We let 

Q' and x = + Aj. Since for any prime divisor p of D we have 

we have 

x E ~ o r n ( ~ ~ ' ~ " b ,  ~ * ' ~ ' ' b a ) ?  

for any divisor Dr' of Di.  The number of divisors D" > O of Dl is b(n) .  

This means that every solution (a', p') to the system (4.2) with qN(B) = n: 

contributes b(n) to raYB(m). The number of such solutions (a', 0') is 

ta (m AD) if n = O  

ta(mAD - N-n) t , -L9+, -LrE(~)  if O < n < 
m AD 

tp-~~+~-~~iï(N=;r) if n = m r t ~  N- 

-4dding up the contributions to rAeB(rn) from al1 n, gives the result. 

We use the above lemma to prove: 

Lemma 4.16 For m 2 O 



where r~ and rA{q<n+-~I~  are defined in (1-11, and b(n) is as in Zemma 4.15. 

Proof: With notations as in the previous lemma, from the definition of 

ta ( - )  and T A ( - )  and the proof of proposition 1.2 we have 

where 221 = w is the nurnber of units in O. Similarly 

Hence, from the previous Iemma we have, 

If we set 1 = +, we get the result. 

Now we can calculate the coefficients of 

Proposition 4.17 For m 2 0, 

r(m)  = 2urA(m)h + 2u2 rA(mD - nN)6(n)rynl  (n) 
n>l 

where h is the class nurnber of O, 6(n) zs as defined in lemma 4.1 5, the ideal 

n zs any  integral ideal o f 0  vlith 



[An] is the genus clam of the ideal class A{n) and r[d.l(n) is the number of 

integral ideais of O in this genus class. 

Remark: Since any two ideais with the same nom (mod D) are in the same 

genus, the genus class [An] in this proposition is independent of the choice 

of n, and rLh1(n) is equal to R(n) or O depending on whether or not there is 

of norm n in [An]. 

prove the proposition. 

4u2 
r ( m )  = PurA(mD) h + - + A ( r n ~  - nN)6(n) r A ( q w + - z  )Bz (n). 29 

nl1 BE Pic(0) 

But 

Therefore, using the fact that rA(mD) = rA(m): we have 

NOW we note that 

[aq<n+-'1 = [a<i%+] = [An]. 



This is because, clearly [!YI+-'] = [Pl, and [qW] = [n], since 

N(qin+) N(n) = -N (mod D). 

This complete the proof of the proposition. 

Comparing proposition 4.17 and t heorem 3.14 we have 

Proposition 4.18 With notations as in (4.1) and theorem 3.14 we have, 

Finally we have our main result: 

Theorem 4.19 Let IC be a quadratic imaginary field of discriminant 

-D 1 (rnod4): and let A be a n  ideal class of K. Let f be a modular form 

of  weight 2 and level N = N+N- ,  where 1V satisfies the condztions stated in 

section 4.1, and let LA( f ,  s )  be as defined in (3.1). Then  zue have 

where u is half the number of units  in the ring of integers of K ,  and OA zs the 

theta series associated to K and a n  Eichler order of level ATf in the (unique) 

quaternion algebra of discriminant 1V- as  defined in (4-1). 
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