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Abstract

Let f be a cusp form of weight 2 and level N. Let K be an imaginary
quadratic field of discriminant —D, and A an ideal class of K. We obtain
precise formulas for the special values of the L-functions associated to the
Rankin convolution of f and a theta series associated to the ideal class A, in
terms of the Petersson scalar product of f with the theta series associated
to an Eichler order in a positive definite quaternion algebra. Our work is an
extension of the work done by Gross [7]. The central tools used in this thesis
are Rankin’s method and a reformulation of Gross of work of Waldspurger

concerning central critical values.



Résumé

Soit f une forme parabolique de poids 2 et de niveau V. Soit K un corps
quadratique imaginaire de discriminant D, et A une classe d’idéaux de K.
On donne une formule pour les valeurs spéciales de la fonction L associée a
la convolution de Rankin de f et d’une série theta associée a la classe A, en
terme du produit scalaire de Petersson de f et d’une série theta associée a
un ordre d’Eichler dans une algébre de quaternions positive définie. Cette
thése est une extension d’un travail de Gross [7]. L'ingrédient essentiel y est
la méthode de Rankin et les travaux de Waldspurger sur les valeurs centrales

critiques de fonctions L.
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Introduction

In this thesis we study certain L-series of Rankin type. These L-series are
of great significance in the study of elliptic curves. We will obtain the special
values of these L-series in terms of theta series associated to some definite
quaternion algebras. Here we review these L-series and related topics.

An elliptic curve E over a field F is a curve (one dimensional variety) of
genus one, contained in P?(F’), the projective plane over F. In affine coordi-
nates the defining equation of the curve F, defined over QQ, is an equation of

the form
y? = 3 — Ar — B, (0.1)

where A, B € Q. For any number field F' we let E(F) be the set of solutions
to the equation (0.1) in P?(F). This set is indeed an abelian group with a
natural composition law. We have:

Mordell-Weil Theorem [14, page220] For any number field F' the group
E(F) is a finitely generated abelian group.

By the above theorem we have
E(F)2 E,(F)®Z
for some non-negative integer r, which we call the (algebraic) rank of E over
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F. The rank 7 turns out to be a mysterious number and there are quite a
number of fascinating conjectures concerning that number.

The theory of elliptic curves over QQ, and in particular the rank, is closeiy
related to the theory of modular forms through the Shimura-Tanivama-Weil
conjecture [14, page 362] and the Birch and Swinnerton-Dyer conjecture [14,
page 362]. If E is an elliptic curve over QQ, then

Lr(E,s) = Z cr(n)n™°
n>0
is an L-series which somehow records the number of elements in E(F},) for
various primes p in its coefficients [14] . The Shimura-Taniyama-Weil con-
jecture, which after [16] can be called a theorem (in most cases), says that

the inverse Mellin transform of Lg(E, s) which is defined as

fe(r) =) co(n)e™™,

is a weight 2 cusp form for the congruence subgroup ['g(V) of SLo(Z), where
N is a positive integer called the conductor of F.

The Birch and Swinnerton-Dyer conjecture predicts that the algebraic
rank r of E over F is indeed equal to the analytic rank of £ over F which
is defined to be the order of vanishing of Lg(FE,s) at 1. This conjecture also

predicts a value for the quantity

. LF(E7S)
11_1’1} (s = 1)

in terms of some subtle algebraic invariants of E. There is a great deal of

evidence for this conjecture. See for example [14] for a list of such evidences.
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In chapter 1 we have given some background materials which will be used
later on. In chapter 2 we review quaternion algebras, which are used in our
main result in chapter 4. In chapter 3 in which we will follow the methods
of [8], we define the Rankin L-series L 4(f, s) as

_ e(m) AmTm
Laf.s)= 3 m2a—1 > s

m>1 m>1i
(m,N)=1

Here
f(z) — z ane21rin:

is a cusp form in S5°¥(['((N)), A is an ideal class of the imaginary quadratic
field K of discriminant —D, r,, = r(m) is the number of integral ideals of
norm m in the class A and € is the Dirichlet character associated to K. (See
section 3.1).

The L-series L4(f, s) extends analytically to an entire function of s and

satisfies the functional equation

DN

2
L%(f,s) == (Iﬁz) C(s)2La(f,s) = —e(N)L%(f.2 — s)

(see Theorem 3.1). Our main result will give the value L(f.1) in terms of
the Petersson scalar product of f and a theta series associated to Eichler
orders in a definite quaternion algebra. See [2], [1]and (5] for some of the
applications of this result. Note that for any character x on Pic(O)

Le(fx:9)= Y x(ALa(f,s),

A€Pic(0)
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where O is the ring of integers of K. Using this fact we will be able to
calculate Lg(f,x,1). We will use Rankin method to obtain a formula for
L4(f,1) as Petersson scalar product (on [(V)) of f with a modular form
® 4 (Theorem 3.8). We will conclude chapter 3 with explicitly calculating the
coefficients of ®4 (Theorem 3.14). Our main result is proved in chapter 4
(Theorem 4.19), where we prove that the theta series ® 4 is indeed a multiple
of the theta series 8, associated to Eichler orders in a definite quaternion
algebra (Proposition 4.18). Our main result (Theorem 4.19) was first proved
by Gross in the special case where IV and D are both prime [7]. A proof for
the more general case, where D is not necessarily prime, has been suggested

in [7] without any details.
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Chapter 1

Preliminaries

1.1 Theta series of imaginary quadratic fields

Let K be an imaginary quadratic field of discriminant —D, and let O = O
be the ring of integers of K. We denote by u = u(—D) the cardinality of
O* /(£1), where O* is the group of units of @. Then u = 1 except when
D = -3 or D = —4, where u = 3 and 2 respectively. Let A = h(—D) be the
class number of K and A be a fixed ideal class of @. For any ideal class B
we define the theta series Eg(z) as
1 = :
Eg(z) = 5= "M =3 ra(m)q™, (q= ") (1.1)
A€b m=0

where b is any ideal in the class B and A is the norm function. The following

result was proved by Hecke [11].
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Theorem 1.1 Ejg is a modular form of weight 1 for ['o(D). with character

€, where € ts the character of (Z/DZ)* defined by

-D
e(p) = ( )
p
The following facts will be used later:

Proposition 1.2 -

(i) r8(0) = 5;-
(it) For any m > 1, rg(m) is the number of ideals of © of norm m in the

class B.

Proof: (i) is clear.
(ii) : From the definition of rg(m) we see that 2urs(m) is the number of
A € b with

N(A) = mNb.

For each A € b with A (A) = mN'b, the ideal (A\)b~! is an ideal of O in

the class B~! and

N((N)b™) = m.

Conversely, if ¢ € Ok is an ideal in the class B~! with A (¢) = m, then

cb is a principal ideal. i.e, ¢cb = (\) where A € b. Moreover,
N(A) = N(c)N(b) = mN(b)

13



This gives a bijection
{Aeb: N(A) =mNbB}/O* = {c: c€ B Nc=m}
Now (ii) is a consequence of the bijection
{6: 6B, Nb=m} > {b: beB ', Nb=m}

in which b +— b , where b is the complex conjugate of b.

We also define

E(z) =) _Ep(z) = ) _ R(m)q™ (1.2)
B

m=0

where the sum is over all ideal classes B of @. Then from the above propo-
sition, R(0) = £, where A is the class number of K and for m > 1, R(m) is

the number of ideals of O of norm m.

1.2 Poisson summation formula

In our calculation we will use the Poisson summation formula several times.
Recall that the Fourier transform on R is the operator on Lebesgue integrable
functions given by
o0
f = [ reemea

—00
For example if f(t) = e~™ then f(u) = e’
If f is also continuous and f is integrable , then the Fourier inversion formula

says that
£(t) = / Flu)e? ity

14



If we define the space of Schwartz functions on R as:

k
af is bounded for all £ > 0 and all polynomials P },

SR) = {f € C*R)|P(t)

then the Fourier transform is a bijection on S(R).

The Poisson summation formula in the one-dimensional case is:

Theorem 1.3 If f is in S(R) then

Y f@+n)= Y fln)etn

Proof: See for example[12, page 211].
We wish to have a similar formula in higher dimensions.

The standard n dimensional torus is defined as:

T" = {z = (z1, T2, -- -, zo)€ER*:0<z;<1,1<i<n}

A function f on T™ can be viewed as an n—periodic function on R™ :
flz+k)=f(z) forzeR*, k€ Z".
Then standard theory of Fourier series on L?(T™) says that for any f € L?>(T™),

f(z) = fk)e*mie= (1.3)
kezZn
where k - z = k'z, the inner product of &£ and = :

k-z = kixy+kozot - +knzn, I == (z(,29,...,20)" k= (ki,ka,....kn)",

and

0 = [ f@erteds
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We need to develop the Fourier series of n—periodic functions which are not
necessarily on standard torus, but on R*/A where A is an arbitrary lattice

in R*. These are the functions f on R" such that

flz+w)=f(z), zeR"',weA.

Let
A=Zw' + Zu? +--- + Zu",
where w!,w?...,w" is a basis for R* and
Py = (Wt w?...,w") € GL(Z).
We define

g(z) = f(Paz)-
Then for £k € Z™
g(.7:+k) = f(PA.’L"f-PAk) = f(PAl‘+klwl+k2w2+' . -+knwn) = f(.P,\.’L') = g(I).

Therefore g is a function on 7™, the standard torus. Hence by (1.3)

g(z) = Y _ g(k)e*™*~,

keZn

where

g(k) — / f(PA.’E)edzﬂik'IdIE — l/ f(I)e—Qﬂ'ikvP;l:rdx’
™ S Ta

where Ty = PA(T™) is a fundamental region for Ty, and S = det P, is its

volume.
But
k-Pllz=k'Pllz =2 (P}) ' k=z-(P) 'k
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Hence

alk) = = / f(z)e PO Ry
S Jr,
We define A = (P£)~'Z", and for o’ = Py 'k in A we set
£r. 1 A 1 27w -z
f@) =ik =% [ f@)e =iz
S Ta

Then
f(Pyz) = g(z) = Z §(k)er k=

kezn
implies that

f(I) = Z f((Ri)—lk)e2ﬂik-P—tI

keZn

=Y F(PY) Rt

keZn

= Z f(wl)CQTrﬁJ'~I.
wEA

So:

Theorem 1.4 Let A be a lattice in R*. Set Ty = R"/A and let S be the

volume of Ty. Also set
A={€ER*:w'-wEZ, forallwinA }.
Let f be a function in L*(T,). Then f can be expanded into a Fourier series

f@) =3 fw)ems

weAN

where for ' € A we define

f) =3 [T F(z)e2" =g,

17



Proof: Everything was proved except the fact that A defined in this the-
orem is indeed the lattice (P;)~'Z". The proof of this fact is a direct calcu-

lation.

Theorem 1.5 ( Poisson summation formula) Let f be a function in S(R™).

the space of Schwartz functions on R™, and define

Foy = | faereds

for v € R*. Then for any lattice A in R® we have
_ 1 £ / 23 l.ld”‘l'
D fla+w) =33 flw)er
weEA ' EN

where S and A are as in the previous theorem.

Proof: Define
9z) =Y fle+w).

Then g is a function on T = R®/A and by the previous theorem,
9(z) = ) §(w)e ',
' €A

where

S Ta
- l —27iw - (z~w)
=3 Z /; f(z)e dz.

weA ¥ fatw

18



Since w'.w is an integer we have

g = %Z ./T f(:r)e—ZT'i“’"Id:z:

wEA Atw

= [ f@)e ™ dr = = ().
R S

as required.

19



Chapter 2

Quaternion algebras

2.1 Introduction

In this chapter we will review some facts about quaternion algebras. The

main reference for this chapter is [15]. Let F be a field with charF" # 2.

Definition 2.1 A guaternion algebra H over F is a 4—dimensional alge-

bra over F' of the form
H=F+Fi+Fj+ Fij
where i =a, j2 =b, ij = —ji and a,b € F*.
We will write H = {a,b}r . For h = z + yi + zj + wij in H we define

h=z—yi—zj—wij.

20



We then define the reduced trace tr(h) and the reduced norm n(h) of i by
tr(h) =h+h=2z
n(h) = hh = 2% — ay® — b2® + abw®.

For any h,k € H and «, 8 € F we have
() h is invertible iff n(h) # 0

(it) n(hk) = n(h)n(k)

(¢32) tr(ah + Bk) = atr(h) + Btr(k)

(iv) h satisfies the quadratic polynomial

(z — h)(z — h) = 2% — tr(h)z + n(h).

Examples
(i) The algebra of Hamilton quaternions is the quaternion algebra over Q
defined by
H={-1,-1}p=Q+& + @ + Qi
which is a division algebra.

(ii) The algebra M (2, F') of all 2 x 2 matrices with entries in F' is a quaternion

algebra. Indeed M (2, F) = {1, 1}F by setting

_ 0 1 _ 1 0 B 0 -1
1= , ] = , 1] = .
10 0 -1 1 0

Then for h =(24) € M(2, F) we have
ho=(47)

—-Cc a

21



tr(h) =a+d
n(h) = ad — be.
A quadratic algebra over F' is an F'-algebra which is two-dimensional as

an F-vector space.

Proposition 2.2 [15, corollary 1.2.2] If L is a quadratic algebra over F

contained in H, then there erists u € H such that H = L + Lu, where
wW=0e K*, um=rmu, forall meL, and @ = —u.
Notation: With the notation above, we write
H={L,6}.

Theorem 2.3 [15, corollary 1.2.4]

(i) A quaternion algebra over F is either a division algebra or isomorphic to
M(2, F).

(ii) The quaternion algebra {L.8} is isomorphic to M (2, F} z} and only if

L~F@F, or0 is the norm of an element of L.

2.2 Orders and ideals

In this and the following sections F' will denote either a p-adic field or a

number field, and O will be the ring of integers of F.

Definition 2.4 An ideal of H is a finitely generated Og-submodule I of
H such that I ®o, FF = H.

22



Definition 2.5 An element h € H is called an integer if it satisfies the
following equivalent conditions:

(i) The ring OFf[h] is a finitely generated Op-module.

(%) The norm n(h) and the trace tr(h) of h are in OF.

Definition 2.6 A subset R of H is called an order if it satisfies the fol-
lowing equivalent conditions:

(i) R is an ideal of H which is also a subring of H.

(i) R is a subring of H containing Or, FR = H, and every element of R is

an integer of H.

See {15, Proposition 1.4.2] for the equivalence of () and (iz).
An order R of H is called a maximal order if it is not contained in any
other order of H. The intersection of two maximal orders is called an Eichler

order. Given an ideal I of H the subsets:
R(I)={he H: hI C I}

R(I)={heH:IhcCI}

are orders of H, and are called the left order and the right order of I respec-

tively. We also define the inverse of I as:
I''={he H: InI CI}.

Then
I''={he H:IhC Ri(I)} ={h€ H:hI C R(I)}.

23



Definition 2.7 Given an order R we define,

(i) RY = {z € H: t(zR) C OF}.

(i) (RV)~! is called the different ideal of R.

(iii) The reduced norm n((RV)™!) is called the reduced discriminant of R and

is denoted by disc(R).

Proposition 2.8 [15, lemma 1.4.7] If {e1,ea,e3,e4} is an Op-basis for
an order

R = Ore; + Ore; + Ores + Orey

of H, then
disc(R) = l(det(tr(eiéj)))ll/2

2.3 Quaternion algebras over local fields

Theorem 2.9 (Classification) [15, Theorem II.1.1] Over any local field
F # C there exists a unique quaternion division algebra H (up to isomor-

phism).
If F is not archimedean, then
H = {L,., 7},

where L,, is the (unique up to isomorphism) unramified quadratic extension
of F (in a separable closure F; of F), and = is a uniformizer in F. The
valuation v on F can be extended to a valuation w on H by setting w(b) =

v(n(k))
I for h € H.
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The notations are as in the previous theorem:

Theorem 2.10 .

i) [15, lemma II.1.5] The valuation ring R, is the unique mazimal order

of {Lyr.7}.

it) [15, Theorem I1.2.3] : The mazimal orders of M(2, F) are the conju-
gates of M(2,0F).

iti) [15, lemma II.2.4] Any Eichler order of M (2, F') of level =" 1s conjugate

R = Of Or -
7("0}:‘ OF

2.4 Quaternion algebras over global fields

to

Let F be a number field. We let Pr be the set of places of F'. For p in Pr

we denote the completion of F at p by F,. For any F-algebra L we denote
L,=L®F,

where the tensor product is over F. If in particular L is a quadratic field
extension of F then L, is a field if and only if p does not split in L. If H is
a quaternion algebra over F then by theorem 2.3, ( for each p € Pr), Hp is

either a division algebra or is isomorphic to M (2, Fp).

25



Definition 2.11 The quaternion algebra H over F is said to be ramified
at the place p of F (alternatively p is said to be ramified in H) if H, is a
division algebra. If H, 1is isomorphic to M (2, F,), then H is said to be split
at p.

We denote the set of places of F' which are ramified in H by Ram(H).

Theorem 2.12 [15, Theorem III.3.1]

i) The set Ram(H) is finite with even cardinality.
1) H = M(2,F) if and only if H, = M (2, F},) for all places p of F.

ii) If S is a finite set of places of F with even cardinality, then there
ezists a unique (up to isomorphism) quaternton algebra H over F with

S = Ram(H).

We define the (reduced) discriminant of H by

disccH)= [] »

pERam(H)
p finite

Theorem 2.13 [15, Theorem III.3.8] A quadratic extension L of F can
be embedded in a quaternion algebra H over F if and only if L, is a field for
all p € Ram(H). (Le., all p € Ram(H) are inert or ramified in L.)

2.5 Quaternion algebras over Q

A quaternion algebra H over Q has the form
H = {a,b}q:=Q+ Qi + Q@ +Qij,

26



where

5 2=b, i =—ji.
with a,b € Q. The algebra H ramifies at oo if and only if @ and b are both
negative. If H ramifies at oo, then H is said to be a definite quaternion

algebra. If H splits at oo, then H is said to be indefinite. We define the

Hilbert symbol (a.b), by

1 if {a,b} splits at p
(a,b)p =
—1 if {a, b} ramifies at p.

Then we have,
Theorem 2.14 [15, page37] Let p be an odd rational prime and a,b € Q.

(a,b),,:{ 1 ifptfab
(5) ifptaandp]b,

where (;) is the Legendre symbol, and p || b means that p|b but p* 1 b.

Then

Definition 2.15 For any lattice L of H and any prime p we define
L, =L ®zZ,.
L, is called the localization of L at p.

The following proposition gives us a dictionary between global and local

lattices.
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Proposition 2.16 [15, proposition II1.5.1] Let X be a lattice of H. There

5 a bijection between the set of lattices L of H and the set
{(Ly) : Ly is a lattice of H,, L, =X, for almost all finite primes p}

of sequences of lattices, in which

L — (Lp)
(Lp) =— HON, gnice Lo)
A property (%) is called a local property for lattices if for every lattice L
of H, the lattice L has the property (x), if and only if L, has the property

(%), for all primes p. We have:

Proposition 2.17 [15, page 82] The following properties for a lattice L

are all local properties:
i) L is an ideal.
i) L is an order.
1i) L is a mazimal order.

) L is an Fichler order.

Definition 2.18 The level of an Eichler order L is defined as

t= 11 &

pfinite

where I, = p® is the level of L,.
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The following criterion is a very useful one:

Proposition 2.19 /15, corollarylll.5.3] An order R of H is a mazimal

order if and only if
disc(R) = disc(H).
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Chapter 3

Special values of L-functions

3.1 Introduction

In this chapter we will study the special values of a certain L —series of
Rankin type. Our main reference in this chapter is [8], and we will follow the
methods used in [8] in our proofs.

First we recall some notations from section 1.1: K is a quadratic imag-
inary field of discriminant ~D, and O is its ring of integers. We let 4 be
a fixed ideal class of O and set u = u(—D) and h = h(—D). The Dirichlet

character associated to K is defined as:

«w) = (—pD) ’

which is an odd primitive character of conductor D [13, page 201]. The
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modular form associated to A is defined as

Ea(2) = 5 S Ju + oA (g =)
where a is any integral ideal in the class 4. By theorem 1.1, E4(2) is a
modular form of weight 1 and level D, with character e. We also define
Bz =Y Esl)= Y Es()= 5+ Rm)™ .
B BePic(O) m=1

where Pic(O) is the class group of O.

Now let f € S3°¥(I'0(V)), where NV is a positive integer with (V, D) =1
. Here S3¥(I'¢(:V)) is the space of cusp forms of weight 2 of level NV which
are orthogonal (with respect to the Petersson product) to all oldforms. We
recall that a modular form of level IV is called an old form if it it is in the
span of the forms g(dZ) with g of level Ny < N and dN, | N. We also recall

that the Petersson inner product of f with any modular form g of level N is

defined as:

(f.9) = (. 9)row) = / [ oy [Ty =z i)

The space S§*¥(I['¢(V)) is spanned by the newforms (Hecke eigenforms), but

we do not assume that f is a newform. We let

f(Z) = Z anq"

be the Fourier expansion of f, and

Gn

L(f,$)= -

nS
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be the Hecke L—series of f. Given these data, the Dirichlet series L 4(f, s)

is defined as the product of the Dirichlet L—function

(N) _ _ C(m)

LYY (2s —1,€) = E — 1
m=1
(m,N)=1

and the convolution of L(f,s) with the zeta function 3., o ra(m)m™>. ie.

€(m) = CmTm
Lafs)= Y o Ly (3.1)
m2>1 mzs 1I'n=], m
(m,N)=1

Here we have set r,, = r4(m).

Theorem 3.1 /8, page 267] With notations as above, the Dirichlet se-
ries L 4(f,s) extends analytically to an entire function of s, and satisfies the

functional equation

; 2
Lif,9)i= (o7 ) DOPLalfis) = —e(N)L5(/.2 — 3

42

The above theorem shows that if e(.V) = +1, then L 4(f, s) vanishes at s = 1.
In this case [8] gives a formula for the derivative L’ (f,1). In the case when
e(N) = —1, [8] gives a formula for L 4(f, 1). We will follow the methods used
in [8] to give the formulas for L 4(f, 1) in the case when €(V) = —1.

In section 3.2, following [8], we use Rankin’s method to obtain a formula
for L 4(f, s) as Petersson scalar product (on ['((N D)) of f with the product
of a theta series and a non-holomorphic Eisenstein series. Then we will trace
down the result to get L4(f,s) as a Petersson product (on ['4(N)) of f with

a modular form ®,. In section 3.3 we will calculate the coefficients of &,
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in the case where D is prime. For the more general case where D is not
necessarily prime, but D = 3 (mod 4), we will state the final result without

proof, referring to [8] for details.

3.2 Rankin’s method

In this section we give an integral representation for L (f, s) using Rankin’s
method.

Let oo = {£(}7) : n € Z}. Then for Re(s) large enough we have

= amT * dy > AT
I'(s m (/ e—ny_) m
()mz=1 m? o y m=1 m?
e oS
d
= E / e-y(_y_)saﬂlrm-'_y.
m=170 m Yy

e dy
= Z/ e""‘”y’amrm—i
m=170 y

= [> dt
= Z / amrme_"”"“(#r)stsT
m=1 o

Therefore

-3 - Tm * = —47Tn sd
(4m)°T(s) > a:;s :/0 (Z amTme™" y) y ;y
m=]

m=1

A direct calculation shows that the last expression is equal to

/oo (/ flz+iy)Ex(z + iy)dx)y’d—y
) i) y
- /[ r@EGEe
Coo\b Yy

- > SR

Y€l \lo(N D)
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where Fyp is a fundamental domain for the action of I'y(ND) on §. For

vy=1(:3) € [o(ND) we have

f(rz) = (ez + d)*f(2)
Ea(7z) = e(d)(cz + d) Ea(2)

Y
Im(~vz) = ———
(72) lcz + d|?

Now using these equalities and the invariance of the measure "‘—j%z under

SLy(R), we get

@m)~T(s) 3 =

mS

m=1
= Z / / f(v2)EA(v2)m(yz)**! %

velo\Fo(¥D)* ¥ Fno

—_— 1 s+1 rd
- Z //F f(2)(cz + d)2E 4(2)(cz + d)e(d) y dzdy

2s+2 .92 °
cz+d Y=
v=%(. ;)€la\lo(ND) lez + d| v

Therefore
_ = AmTm
47)~s =
(4m) ) 3
—— €(d) y* !
dzdy.
2 /[ g BB g g

v=%(: )€l \a(ND)

Definition 3.2 For given M > 1 the Eisenstein series Ezp(s, z) of weight

1, level M D, and character € s defined by

C(m) e(d) ys
(m'.nzv%)lﬂ #(:2)€l=\lo(MD)
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Now from (3.2), we get

(477)_SF(S) i e(m) = AmTm —

m=1 m23—1 m=1 m?
(m, Iif_) =1 -
(m). (d) gy
E E drd
//F\o f(2) .A(Z) m25— ] Z (cz + d) lez + d|?s-2 zay
(m.N) L (= d)Eroo\FO(‘VD) (3_3)

Hence we have proved :

Proposition 3.3

(4m)T*T(s)La(f, 5) = (f, Ea(2)EnD(3 ~ 1, 2))r vy

- / /  HEA)EwsG — 1 2)dady.

The method we just used to express the convolution of the L-series of two
modular forms as a scalar product involving an Eisenstein series was first
used by Rankin and Selberg in 1939 and is commonly referred to as “Rankin’s
method”.

We now trace down the result given in the previous proposition to write

L 4(f,s) as a Petersson scalar product over [g(N).

Definition 3.4 For any modular form g of weight 2 and level ND we
define,

TryP{ot = D_ gl (3.4)

Y€l (N D)\[a(N)

where for v = (25%),



(gl27) (2) = (det v)(cz + d)~2g (jjg) .

It is easy to see that TrN¥°{g} is a modular form of level V.

Lemma 3.5 With notation as above, we have

(f:9)ronpy = (f Tr‘R;D{g})FO(N) .
Proof:

(f, g)[’o(ND) = [/F f(z)g—(ﬁdxdy

- > /f f(z)myz%lg

~ELo(ND)\To(N) TFx

2

—_— Y dzdy
- ¥ ff P20 e
~€ECa(ND)\Fo(N) Fx < y

r=(:1)

= Z // F(yz)(cz + d)%g(vz)(cz + d)2dzdy
~YECo(ND)\Fo(N) Fn
r=(:2

= E / - f(2)(gl27)(z)dzdy

1€Co(ND\To(N)

- / / _ F@(TeRP{g}) (2)dzdy = (£, Te}P {g})-

Now we have:
Lemma 3.6

(47) °T(s)La(f. s) = (f. TINP{EA(2)Enp(5 — 1,2)}) .

Proof: This follows from proposition 3.3 and lemma 3.5.
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Lemma 3.7 For M > 1 we have:

Buoe) =3 3 S = S EE (37) Bete )

d 2s
c,deZ ¢z + [CZ + dl riM
c=0 (M D)
(d,MD)=1

where p is the Mobius function.

Proof: The first equality is a direct result of the definition. We prove the
second one. First suppose M is square-free. We prove the lemma in this case

using induction on the number of prime divisors of M. If M is prime, then

_1 ed) ¥y
Baols,2) = 2 z cz +d|cz +d|?*
c,deZ
c=0 (M D)
(d,MD)=1
_1 ed) v 1 e(Md) v
2 c,dzez cz+d|cz+d?s 2 C;Ez cz + Md jcz + Md|**
c=0 (M D) =0 (MD)
1 Z €(d) Z e(Md) ys
2 4o cMz+dcMz + dlzs 2 cMz + Md|cMz + Md[*
c=0 (D) So%E,
174
=M™ Ep(s,Mz) — 65;2150(3’“)

Now suppose that M = Kp is square-free, and suppose we have

Exo(s,2) = 30 M09 (1) po(s, Xy

riK
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Then
1 d
EMD(S,Z) = § E f( ) y

cz +d|cz + d|?s

S

c,deZ
=0 (MD)
(d,MD)=1
1 Z e(d) y® 1 Z €(pd) y°®
2 e dicz+d|*» 2 Gy =T pd [cz + pd|**
c=0 (MD) c=0 (M D)
(d.K D)=1 (d.K Dj=1

Py

! e(d) y 1 €(pd) y
2 Z cpz +d|cpz +d|s 2 z cpz + pd [cpz + pd|?s

c,deZ c,deZ
c=0 (K D) c=0 (K D)
(d.K D)=1 (d.K D)=1

=p *Ekp(s,pz) - pz(ﬂ)lEKD(s z)
r)e(r K K
=p Z uizzi(l ) (_) Ep(s, —Fz) - 2s+1 Z ILSZZi(lT (‘_) Ep(s. —2)
( )e(r) (rp)e(r M
SHLCITIPE R “(:;’ o) (rm)- (O

T \S M
Z"iﬁiiﬁr (L) Eos, 2.

r|M

In the case where M is not necessarily square-free, we have

M M
El\rID(sz)z(ll—‘Zl') EWlD(s ‘/[ )

where M, is the product of distinct prime divisors of M. Hence

Enp(s, z) = (1_"[_1) Evp(s, M2

M M,
_ (1‘/[1) Z u(r)e(r) ( r )SED( M M 2)
- r2s+l M, T \/[1
> D (1) B )
r|M

r square—free
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Since p(r) = 0 for r not square-free , we have

Enp(s,z) ;ﬂfzi(lr) M) Ep(s, M 2).
riM

Now we can prove :

Theorem 3.8 Define the Eisestein series Ep(s,z) of level D and weight

1 and character € as,

ED(S‘ —22 G(d) Yy

cz+d|cz+d|*’

S

and let
®,(z) = TtNP (Ea(2) Ep(s, N2)) .

Then, with notations as in section 1, we have
(4m)T(s)N*"'LA(f,s) = (f. Bs-1) -

Proof: Using the previous lemma we have

TeiP{Ba(2) Enp(5-1.2)} = rZw:"f,’;i(r) (£) TNPIEAR) Eo(s-1. 2 2)}.

If r|N and 7 > 1, E4(2)Ep(5 — 1,%z2) is of level £2_ Since (V,D) =1, a
complete set of coset representatives in [o(/ND)\I'((/V) is a complete set of

coset representatives in [o(#2)\[, ( ) as well. Hence

TeNP{EA(2)Ep(5 — 1, —-z)} Tey N {E (2)Ep(5 — 1, ﬁY—z)}

-
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which is of level g- . Therefore, since by our assumption f € S3¢¥(Tp(V)),

for r| N if r > 1 we have

(fs '-‘['r%o{E,A(Z)ED('§ -1, gl)}) =0.

Now using lemma 3.6 we have
(4m) T (s)N*"'L(f,s) = (f. TeNP{EA(z) Ep(5 — 1, Nz)}).

This proves the theorem.

3.3 Special values

In this section we calculate L 4(f,1) by computing the Fourier coefficients
of @, defined in theorem 3.8. This calculation has been done in [8] for the
case when D = 3 (mod4). Using the same methods as in [7] we will do the
calculation for the special case when D is a prime number. For the more
general case we will state the result from [8] without proof. Therefore except
in the last theorem, the number D will be assumed to be prime.

By theorem 3.8 we have
LA(f7 1) =dr (.fv Tr%D{EA(Z)ED(Ov IVZ)})

On the other hand by {7, page 154] we have

2T

Ep(0,z) = VD

E(z)
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where as before

E(zy= Y Es(2).
BePic(0)

Therefore we have:

Proposition 3.9 If D is prime, then

La(f,1) = %(f, G.4),

where

Ga=TiNP{EA(z)E(Nz)}.

To calculate the Fourier coefficients of GG_4, first we need some lemmas :

Lemma 3.10 .

1) Ify=(28) is in SLy(Z) and c # 0(mod D), then

(Ealim)(z) = :\(/%EA(Z +Dc'd)’

where c* is an tnverse for c(mod4).

2) If vy =(2%) is in ['y(N) and ¢ # 0(mod D), then

EWa)lr = L% (2 ).

Proof: 1) The D matrices

0 -1
;BJ= j=01"'7D_1
1
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represent all non-trivial right cosets in To(D)\I'o(1) [12. page 259]. For each

0 £ 7 < D we have

0 —1 1 o -1\ (1 ;
.B] = ] = .5 :
1 j D o 0 D
0 -1 1 J
EalB; = Eslr .
D 0 . 0 D

Using the Poisson summation formula(theorem 1.5), it can be shown that

0 -1 1
Ealy ==-FE4
D o t
Hence

~_[1 1 J 1 z+7
(Eal1B85)(z) = (?EAII (0 D)) (z) = -i\/BEA( D )

which means that 1) holds for 3;,5 =0,...,D — 1. Now

a b a f 0o -1
c d v 4 1 g

for some 0 < j < D and some (5 ) € I[y(D). Hence

a 8 0 -1
(Eali7)(2) = (EAll ( ))I ( ) (2)
Y 4 C\L

_ 0 -1 _€(9) z4+7
= €(6) Al (1 j)(z)—i LB

and hence
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But from 3.5 we see ¢ = § and —y +cj = —7 + dj = d, which means that

cj = d(mod D), since D|y. Hence j = c*d. This completes the proof for 1).
2) we have

N 0 a b
E‘(Nz)lr/=(Eh( )) ( )
0 1 . c d

Na Nb a Nb N 0
=Eh( )(Z)=(Eh( )) ( )(Z)

c d ¢/N d : 01

Now since E = )_ g Ep, from 1) and the above equality we have

e(c/N Nz + Net'd e(e/Nelc z+c*d
By = 4L _ ele/N)e(e)

E E(N(=
as required.
Lemma 3.11 The D + 1 cosets of [o(ND)\I'o(V) are represented by (}9
and matrices v = (25) € To(N) with ¢ # 0(mod D) and j = c*d running

through the D residue classes in Z/DZ.

Proof: TI'g(NV) acts transitively on P, (Z/DZ) by

a b

(u, v) = (au + cv, bu + dv)
c d

for (u,v) € Py (Z/DZ) and (2 %) € [y(NV). The group ['((.VD) is the isotropy

group of (0,1) € P,(Z/DZ). Therefore we have a bijection

To(ND)\Lo(N) — P,(Z/DZ)

(a b) (a b)
- (0,1) = (c,d).
c d c d
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But
0.1 if c = 0(mod D
(c.d) = (0.1) ( )
(1,c*d) if ¢ # 0(mod D).
This proves the lemma.

Now we can prove:

Proposition 3.12

D-1 .
Ga(e) = 0a2) = LY g, FE)

j=0

where ga(z) = Ex(z)E(NZ).

Proof: By lemma 3.10 for each coset representative

1 0 a b
Fy=
0 1 c d
given in Lemma 3.11 we have

9alzv(z) = (Eah)(2)(E(Nz)[17)

_ €(c) z+ 7, €(N)e(e) N(E +7
_ €(N) z+j
Therefore
e(N) gy
Ga(z) = > gal2y = g9a(z) - D D gal D)
YELa(ND)\Lo(N) j=0

Using this proposition, now we prove:
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Proposition 3.13 The Fourier coefficients of Ga = Y v jcmq™ are

given by:
Dm/N

u(;n) + 3 ra(Dm —nN)& (n)R(n)

n=l1
—€(N) if (n,D)=1
1—¢N) if (n,D)#1
Proof: Let ga(z) = E4(z)E(Nz) = > o _1bmg™- A direct calculation

where §'(n) = {

shows that

ZQA(Z+]) = meoq -

m=0

Hence by previous proposmon we have
Cm = b — €(N)bnmp.
By the definition of g4 we have

bm = Y _ ra(m — IN)R(1).

>0

For m > 1, we have r4(m) = r4(Dm) and hence R(m) = r(Dm). Hence

bm =Y ra(mD — IDN)R(ID) = 3 ra(mD — IN)R(l).

>0 >0
D\t

Therefore

em =3 ralmD — IN)R() — e(N) ¥ ra(mD — LN)R())

1>0 >0
bt
mD/N
= Y ra(mD - nN)§'(n)R(n)
n=0
mDIN
= ra(m)h + Z ra(mD — nN)§' (n)R(n),
u n=1
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since R(0) = & by definition.

Theorem 3.14 With our notations as in section 1, if D = 3(mod 4) and
e(N) = —1, then
8?2
L T 1 = ——= s @ *

where
QA = 2 bm,Aqma
m2>0

ts a modular form of weight 2 and level N, with

by = AR S ru(mD — nN)é(n)Ria(n).

u
0<n<mD/N

Here n is any integral ideal of O satisfying
N(n) = —-N (mod D),

[An] is the genus class of the ideal class A{n}, and Ry 4(n) is the number
of integral ideals of O of norm n in the genus class [An]. Also §(n) = 2*=,

where A, is the number of primes dividing both D and n.

Proof: First let D be prime. Then for n > 0, é(n) = 6'(n), where é'(n) is
as defined in proposition 3.13. On the other hand, since in this case there are
no elements of order 2 in Pic(Q), there is only one genus class for @. This
means that

Rianj(n) = R(n)
for all n > 0. Therefore for D prime the theorem follows from propositions

3.9and 3.13. For the proof in the general case, see [8, proposition IV.5.6].
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Chapter 4

Theta series in quaternion

algebras

4.1 Notations and basic assumptions

We recall that N = N™N7 is a positive integer, where N~ = p;ps...p; is
the product of an odd number of distinct primes and (N—, N*) = 1. Let K
be a quadratic imaginary field of discriminant —D and @ = Ok the ring of

integers of K. We set

D/4 if D=0 (mod4)
Do =
D if D=3 (mod4 ),
and
{ vV=D; if D =0 (mod4)
w =

Lv=D if D = 3 (mod4).
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Then we have

O=Z+ Zw.

Let H denote the (unique up to isomorphism) definite quaternion algebra of

discriminant —N~. We assume that,

- D1:P2,---,Ps are all inert in K. ie, forz=1,2,.. s,

(2)=-1 if p; # 2
—D =5(mod8) ifp;=2.

- All prime divisors of N* are split in K.

4.2 Description of H

Our first goal is to give a concrete description of A which will be useful in

doing calculations relative to K. For this we choose a prime g # 2 such that
g= —N7 (mod D).
We need the following

Lemma 4.1 With notations as above, we have

()=
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Proof: First suppose that D and N~ are both odd. Then D = 3 (mod 4)

and hence () = —1 and also (32) = —1. Therefore,
2)-()0-()-(2)
~-0(p ) =) (7))
=(~1) (;.1_)) =(-1)(-1) =1

Now suppose that p; = 2. Then by our assumptions D = 3 (mod8), () =

~1, and (5,) = 1. Hence
(D)) -()-()-HE
(") = () () = ()

Finally, suppose that D is even. Then D = 0(mod4). If Dy = D/4 is odd,

()= - ()3 - ()(0) - ()
ICERGIERIE

Here we have used the facts that ¢ = — N~ (mod4) which implies ("q‘) =

—(52), and that (R,D_°) = (;,?) = —1. If D = 0(mod 8) we set D" = D/8.
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Then using O«mv = —1, @ = (), an

)=()QG)-

(
=0 (N () ()
=R (HOGE) =
=52 () (0 (5) ()

since ¢ = —N~ (mod 4).
Remark: The above lemma is indeed a result of the fact that € is a character

with modulus D {3, page 237].

Proposition 4.2 The definite quaternion algebra H of discriminant — N~

can be written as

H =K + Kj,

where j2 = ~N~q, and aj = j& for all « € K. Here (7) denotes the complex

conjugatzon.
Proof: We have
K+Kj=Q+Q+Q +Qij
where 2 = —D, j2 = —N~q, ij = —ji. First we note that by section 2.5 the

algebra K + K j is a definite quaternion algebra. i.e., it is ramified at oc. By
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theorem 2.14, for any odd prime p, the algebra K + Kj is ramified at p if

and only if (=D, —N~q), = —1, where for rational numbers a and b.
1 ptab
(a, b)p = { "
() pta.pllb.

First we have by our assumptions,

3

-D
(—D,—N-Q)p":( )=_1 fOfi=1,2,...,SWithpi?é2-

For any prime divisor p # 2 of D we have ¢ = — N~ (mod p), and hence
-N~ N—)2
(-D.-vap= () = (W) -1
P p

Finally by the previous lemma,
(-D,-N7q); = (—D) = 1.
q
Therefore
{p: p| N™, pis odd}u{oc} C Ram(K+Kj) C {p: p{ N7, pis odd}u{2, oc}.

By theorem 2.12 Ram(K + Kj) has even cardinality. Hence K + Kj is
ramified at 2 if and only if 2 | N7. Therefore K + K7 is ramified exactly at

Pi:-..,Ps and oo. This completes the proof of the proposition.

4.3 Maximal orders in H

We wish now to give a concrete description of a fixed maximal order in H.
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First we let
Ri={a+pfj: 0, fcOk}=Z+Zw+Zj+ Zuwj,

where
vV—=D/2=\/—Dy if D=0(mod4)
w =
T if D = 3 (mod4).

Lemma 4.3 R; is a non-mazimal order in H with
diSC(Rl) = ;’V—-QD‘

Proof: It is easily seen that R, is closed under multiplication and hence it

is an order by definition 2.6. By proposition 2.8 the discriminant of R, is
disc(R;) = |det (Tre:€;)|"/?,

where
(61, €2, €3, 64) = (17w7j1wj)

is a Z-basis for R;.

If D = 0 (mod4),

20 0 0
0 2D' 0 0
I Tr (e:€5)| = = 16D"*N2g2 = D?°N~%¢*.
00 2Nq¢q0

00 O ON-gD'

If D = 3 (mod4),
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2 1 0 0

1 2L 9 0
1T (ei€5)] = 2 = N~*¢*D>.
00 2N~q N7¢q

00 N—q N7q D+l

2
Therefore,

disc(R;) = N~ Dq.

By proposition 2.19 every maximal order in H has disc(H) = N~ as its
discriminant. Hence R, is not maximal.

Now we define
Ryv-={a+pi: ae(V=D) ", B€(V=D)'q7" a=qf(modOx)}

where q is a prime ideal of Ok containing q.

To prove that Ry- is a maximal order we need:

Lemma 4.4 Let (e, ez, e3,e4) and (e}, €5, €5, €,) be bases for two lattices in
H, and let
4
e:=zasies fOT i=1:273141

=1

where ay; € Q for i,s =1,2,3,4. Then
disc(e}, €5, €5, €}) = (det(c)) disc(e,, ez, €3, €4)

where a = (a")1<s<4 .
1<t<4
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Proof: = We recall that by definition

det ((Tr(e,e])) )

o066 Hence

1/2

disc(e;, ez, €3, €4) =

We have ele’, =
t7] less4
1<t<4

Tr (ei€;) = Z a0 Tr(e e ).
s,t

Thus
(Tr (6253-))i,,- =o (Tr(eie-_;))i,j .

This proves the lemma.

Now we can prove:

Lemma 4.5 Let

Ry- = {a‘—%-ﬁj 1 ae(V —D) ', B8e(V-D) 'a7',a=4qB (modOK)} ;

where
(ga+w)  if D =0(mod4)
q =
(¢. %5t +w) if D =3(mod4),
with a odd and a® = —D (mod q), is one the prime ideals of Ok containing

q. Then Ry- is a marimal order of H.

Proof: First we assume D = 0 (mod 4). Then we have

(v=D)" = 2\/?07, (z+2v-D3) = 1130 (2v=Ds +2D),
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and
(\/—D) ! = — (Zq +Z(a~- \/—Do))
2qv-Do
1
= > (ZQ\/ —Dy + Z(a\/— Dy +Dg)) .
q Dy

For a + 37 € Ry- we have:

8= 2(11—Do(mq\/ =Dy + n(a\/—Dqg + Dg))

a=qB8+A=q8+m +n'\/—Dy

where A € Ok, m,n,m/,n’ € Z.

Hence

a+ 37 =A+qB+Bj

=m' + TL’ —DQ + -— (mq\/ —Do + n(a\/ —-Do + Dg))

=+ L (mq\/ —Do +n(a\/ —Dg + Do)) ]
2q Dy
=m' +n’' —Dy + —‘)Fm (Q\/—Do —+ \/‘-‘Do])
\/ —Doq + ay/ —Do] “+ Do]) .
Hence Ry- is a lattice in H with the Z-basis {e,, e2, e3,e4}, where
e, = 1
€y = —'Do
1
es = 557 (4v/=Do + v=Duj)
ey = -é—l;——- (Doq +aqg\/—Dy + Doy + a —Do])
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Thus using the previous two lemmas we have,

disc(Ry-) = |S|N7¢D,

where
1 0O 0 0
P 1 0 1 0 O _ 1 1
4D3q 0 g 0 1 4Dyq  Dq’
Doq aq Dy a
Therefore,

disc(Ry-) = N™.
To prove that Ry- is a maximal order it remains to show that Ry - is closed
under multiplication. Let £ = A+¢B8+ 87 . y = AN +¢08'+ 5'j be two elements
in Ry- where A\, X' € Ok, 8.8’ € (\/:_D_)—1 q L N =m'+n'vV—Dgy. Then
zy = AN + (gAB' + AB'j) + q(B8'] + ¢B8')
+(gN'B + NBj) + (—~N~qBfB' +qB0'7)-
We have AN € Ry-, ¢qAB + AB'j € Ry-, and
aXB+ XBj = q (X +2n'\/=Dy) B+ X5j
= (¢X'B8 + X8j) +2n'\/~Dogfs € Rx-.
Using the fact that —/N = q + cD for some ¢ € Z, we have
q(BB'5 + aBB') + (—~N~qBB' + aBB's)
=q80'j +q°BB' +¢°BB' + aBB'j + cDqBG’
=¢*B(B' + B') +4B(8' + B")j + cDqBp'
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since ' + 3’ = 2 , we have gB(8' + ') € (\/—D)-1 q~!. Hence

T q
BB + B8') +qB(8' + 8)j € Ry-.
We also have
_ -t -1
cDqgB3" € Dq ((\/—D) q- ) ((\/—D) q) C Ok.
Therefore,
zy € Ry-

Thus we have proved the lemma for the case where D = 0 (mod 4).
The proof in the case where D = 3 (mod 4) is similar. For the disc(Ry-) in

this case we have

disc(Ry-) = |S|disc(R,) = |S|N~¢D,

where,
1 0 O 0
1 0 1 0 0 1
=W —q 2qg -1 2 zq—D
=52q ag =52 a

This completes the proof of the lemma.

4.4 Matrix representations for H

Here we give some matrix representations of H and its localizations which

will be useful in our calculations. For this, we consider H as a 2-dimensional
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vector space on K with{1,j} as a basis. The algebra H acts on itself by

multiplication on the right. This action gives us an algebra monomorphism

@ : H — l‘/IQ(K),

a 8
pla + B7) = ( _ )
-N"q8 &

Let p be a rational prime which splits in K. Then

where

fora.f € K.

K, =K®Q,:=Q, +Q,V—D.

If we fix A as one of the two roots of —D in @,, then we get an algebra
isomorphism,
K, = QoQ
a+bV/—D —> (a+b)\,a — bA)

for a,b € Q, [4, theorem 9.1.1].

The conjugation on K, simply switches the components in the direct sum:

(a,b) = (b, a),
for a,b € Q,. Using this we have the Q,-algebra isomorphism
H=HeQ =(QeQ)+(Q oQ)s

In the same fashion as for definition of ¢ above, we can define the Q,-algebra

monomorphism,

H, — My(K,).
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Composing this with the homomorphism

(a,b) (c,d) a c¢
—
(d,d) (a',b) d d
we get an isomorphism:
wp : Hy — ML(Q,).

We have proved:

Theorem 4.6 Let p be a rational prime which splits in Kand A be a fized
root of —D in Q,. Then the map

wp : Hp — M>(Q,),

given by:

. ay + (12)\ b1 -+ bg/\
wpla+ B7) = ( )

-—./V_q(b[ — bg/\) ay; — ag/\
for a + 3j € Hy, (e, 8 € K,), with

a=a+aV-—D,8=b+bvV-D (a,ab, b €Q,),

is a Qy-algebra isomorphism.

4.5 Eichler orders and their ideals
Now we can give a concrete description of an Eichler order in Hof level N+.
For this we let t* be an ideal of Ok of norm N*. We set
R = RN'*,N"
= {a +Bj: ae(W=D) ', Be("D) g0, a = ¢ (mod oK)} :
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Then we have,
Lemma 4.7 R is an Eichler order of H contained in Ry- and of level N*.

Proof: By proposition 2.17, it is enough to prove that for every rational
prime p, if p { N*, then R, := R ® Z, is a maximal order in H, and if
p® || N*, then R, is an Eichler order of level p® in H,. If p { N* then it is
clear that R, = (Ry-), is 2 maximal order of Hy. If p° | N¥ , then since p

splits in K, by theorem 4.6 we have the isomorphism,

Z, Z, Z, Zp
Rp ~ = 3
—-N—qq7'N*Z, Z, P°ZL, Z,

which means that R, is an Eichler order of level p®, by theorem 2.10. There-
fore, using proposition 2.17 we get the result.

A left ideal of R is a Z-lattice [ in H such that
R([)={heH:hICI}=R
Given two left ideals I, J of R we define
Hom(I,J):={h€ H: Ih C J}.

We are interested in those left ideals of R which are generated by ideals of
@. Indeed for any ideal b of O, the product Rb is a left ideal of R. More

precisely,

Lemma 4.8 For any ideal b of @ with (b, /—D) = 1, we have,
Ro={a+fj: ae(V=D) b B¢ (V=D) 'a7!91", o = ¢ (mod Ok) } .
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Proof: Let £ = o + #j € R where a € (\/—D)_l, B e (vV=D) 'q-lot+
and a = ¢ (mod Ok). Then for b = m + nv/—D € b we have

zb = ab + (b7,
with ab € (vV—=D)7!b, gb € (V—D)'q~'9T*b and

ab — qfBb = ab — qB(b — 2nv/—-D)
= (a—qB)b+2nqBv—-D € Ok.
Conversely, let z = a+ 8, € (V—=D)7!b, 8 = —‘/-“_'_’=D € (V-D)"'g-'9t*p

with g € q~, b = m —nv/-D € b and @ = ¢3 (mod Ok). Then assuming

a =qf + A with A € Og we have,

_ . p(b— 2ny/-D) ub
T=A+qB+0j=A+gq /D +\/-__D-]

4
=A—2 '+( rK_L_FE )b.
"I\ T /=D/)"”

with ¢/ =qu € 4 € O. Now

!

7 7
+ € R,
v—D ' V=D’
and
'b b
A2y =a— 22 cOn—— =b.
# J/—D v—D
Hence z € Rb.

This proves the lemma.
Our next step is to give a description for Hom(Rb, Rba) for ideals a and

b of Og. We have
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Lemma 4.9 Let a and b be split prime ideals of Og which are prime to

(V—=D). Then
Hom(Rb, Rba) = {a +Bj: a€ (\/—D)_la, B € (\/—D)_lq'l‘ﬂ"'b‘lﬁﬁ,
a = gf (mod ), for p | D}.

Proof: Let I be the set in the right hand side of the above equality. By

lemma 4.8 we have

Ro={a+6j: ac(V=D) b, f (V=D) 'a 96, a = ¢B(mod 67" } .
and

Rba = {a +Bj: ae(V=D) ‘ba, B € (V=D) 'q7!9t6a, o = ¢ (mod b“)} .

Let a and b be rational primes such that (¢) = ad and (b) = bb in Ox. At

any prime p # a,b we have
(Rb), = (Rba)p =I,=R,

and hence

(Hom (Rb, Rba)), = I, = R,.

If a # b, then using theorem 4.6, at a we have,

Zo Zg
(Rb), =
Zoe Z,
aZ, Z,
aZ, Z,
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and hence

aZo Zg
(Hom (Rb, Rba))_ = =1,
aZe Zg

For b we will have,

bZy Zs
(Rb), =

bZy, Zg
and

bZy Z

(Rba), i

bZy Zy

Hence,
Zb %Zb
(Hom (Rb, Rba)), = = [
bZy Zy

If a = b, then

bZy Zs

(Rb), =

bZy Zy
and

b’Z, Z

(Rb?), = b &

b2Zy Zs

Thus,

bZy  1Zs
(Hom (Rb, Rb*)), = =Ny
b°Z, Z,

Now using proposition 2.16 we get the result.
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Lemma 4.10 Let D' > 0 be a divisor of D, and = (D',\/—D) be the

integral ideal of Ok of norm D'. Then

RV = {a-i-ﬂj ta€ (\/—D)_IO', B € (\/—D)_Ib’q"“ﬁ“",
a = qf{mod O,) for p | D/D’

and a = —¢f{mod pO;) for p | D'},

where for any rational prime p | D we set p = (p,V—D), and Oy is the

localization of the ring O at the prime ideal p.

Proof: Let I be the set in the right hand side of the above equality. By

proposition 2.16 it is enough to show that
(RY), =1,
for all rational primes p, where for a lattice L in H we define
L,=L®zZ,

Ifpt D, then (RY), = I, = Ry. Let p| D'. Then d}, = pO, + vV-DO, =
(V -D)OP = Pp: and

R,= {a +8i: o Be(V=D)'0O, a=qb(mod 0,,)} :
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Hence
(72), = R, ={(@+6)(V=D): o Bep". a=abmedo,]
= {@/ D)~ vDii: a sep’ a=aimedo,)
= {a-i—ﬁj 1 a, €0, a=-—qf(mod pp)}
= I,
This completes the proof of the lemma.
Definition 4.11 For any positive divisor D' of D we define
R” ={a+6i: ae(V7D), fe (VD) at,
a =ep(p)gB (mod Oy),forall p | D},

where for any prime divisor p of D, we set p = (p, vV—D),

1 p|D/D'
ep(p) =
-1 p| D,

and O, is the localization of O at the the prime ideal p.

It is readily seen that R' = R = Ry+ y- is the Eichler order defined before.

In fact, we have,

Lemma 4.12 Let D' be a positive divisor of D. With the above notations,
t) The lattice
RE_ = {a+ﬂj : a€(V-D)™', Be(V=-D)'q7},
= ep:(p)gB (mod Oy) for all p | D}
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is a mazimal order in H.
i) The lattice R is an Eichler order of level N* in RD_.
Proof: The proof is similar to the proof of lemma 4.5 using a local argument.
Lemma 4.13 With notations as in the two previous lemmas we have
Hom(R', RY') = RY'.

Proof: We prove the lemma using a local argument. Let p be a rational

prime. If pt{ D' then,
(R)=RV'®Z,=R,

and hence

(Hom(Rv', RY')), = R, = (RP'),.
Let p | D'. Then
(RY)p ={a+B8j: o, €0, a=—gf(mod p,)}
and
(R”)p ={a+Bj: ae(V-D)™', B (V=D)™', o= —q¢f (mod O,)}.
Letz =o'+ f'j € (RY)p, y=a+ Bj € (R”),. Then
zy = (&' + B'j)(a + Bj) = (ad' — NgBf') + (/B + ap')j.

from o' = —¢f'(mod p,) and a = —¢B(mod O,), we have aa’ = ¢*>46'(mod O,)
and ga'fB = gqaf'(mod O,). Hence

ac' — NgBf' = ad' + ¢’ = ad’ — ¢*86' =0 (mod O,),
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and

adB+af =a8 - af =0 (mod Op).

We also have

ad’ — NgBB' + q(o/B+af') = ad +¢BF +q(dB+af) =
o(a+qB) +qf(a+q¢8) = dla+qf)+qf(a+qB) =
(a+gf)(a' +qf') = 0 (mod pp).
Hence
zy € ('),

This means that (RP'), € (Hom(RV', RY')),. Since (R”'), is a maximal
order, we have

(Hom(R0', RY'")), = (R™),.

Now the lemma follows from proposition 2.16.

4.6 The main identity

We are now ready to state and prove our main theorem. As before, A is a
fixed ideal class of O and a is an integral ideal in A. For any ideal class B of
O we let b be an integral ideal in B. We define the theta series

a.A,B — z e21rip(:c)1"
z€Hom(Rb,Rba)

where for £ € Hom(Rb, Rba) the integer p(z) which we call the degree of z

is defined as
_ N(z)
AZ) = R Hom(Rb, Rba))’
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By [6] 6.4, is a modular form of weight 2 and level ¥ = N—N*_ and is
independent of the choices of a and b in the classes A and B. To make the
calculation easier we will choose a and b to be prime ideals which are split

in K. Now we define

Oa=) Oap=) r(me™. (4.1)
B

m2>0

Our main result (theorem 4.19) will be proved by showing that 84 = 2u3® 4,
where ® 4 is the theta series in theorem 3.14. This will be done by computing
the Fourier coefficients of § 4 and comparing with those of ® 4.
Remark:
i) Theorem 4.19 was proved by Gross in the case where .V and D are both
prime [7]. A proof for the more general case where D is not necessarily prime
has been suggested in [7]. The suggested proof needs to be modified, since
the formula on the top of page 162 is incorrect.
ii) Hatcher has given similar formulas for the special values of L (f,s) in
the case where N and D are prime, and f is of arbitrary weight [9]. Then
in {10} she has extended her result to arbitrary D, using Gross’ method. Her
argument in the last paragraph on page 341 appears to be incomplete. The
proof can be completed using an argument similar to the one we use in the
proof of proposition 4.17.

For any divisor D’ > 0 of D we let o' = (D', v/—D) and {9’} be the ideal

class of 9. We note that

Oa= Y B 5

BePic(O)
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Hence

04 = 51; E E 040y = _2% Z: Z 0.4.()5-

D'|D BEPic(0) BEPic(O) D'|D
where g is the number of prime divisors of D. This simple observation will

prove crucial in our calculations. So we record this as,

Lemma 4.14 For any divisor D’ > 0 of D we let ' = ( D', /—D) and {?'}
be the ideal class of ¥ in O. For ideal classes A and B define
Oas =) Oaps =Y ras(m)er™™ .
D'\D m>0

Then we have

1 -
ba= 355 > s
BePic(O)

Now we calculate r4 g(m) for a given m > 0 and an ideal class B.

Lemma 4.15 Let B be an ideal class of O and m > 0 an integer. We have
- n
ras(m)= Y ta(mAD — N7n)d(n)te- orvo-15a( =)
0<ng =4l q
="="N
where for any ideal I of O and any rational number s, t;(s) is the number
of elements of norm s in the ideal I, and for any integer n > 0

sm)y= J[ 2

p prime
pl(n,D)

Proof: We let a and b be integral prime ideals in the classes A and B
respectively, such that A'(a) = A and A (b) = B both split in K. Then

oA,{D’}B —_ § : eZwip(z)‘r’
zeHom(RY b, R0 ba)
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and

éA,B — z Z eZ:rip(.r)r_

D'{D zeHom(R' b, R ba)

A local argument using lemma 4.13 shows that
Hom(R0'b, R0'ba) = Hom(R?'6, R? ba) = {a +08j:a € (V=D)la,
B e (V-D) 'q7'*b'bd, a = €p(p)gf (mod O,), forall p | D},

where for each prime divisor p of D we set p = (p,vV—D). If £ = a + 37
with p(z) = m be an element in Hom(R? b, R ba), for some D' | D, we set
o = /—=Da, B' € /—Dp. This gives us a solution to the system
o €a
B €q *N*b*ba (4.2)
N(d) + N—gN(8') = mAD.
This is because AN (Hom(R?' b, R? ba)) = A and hence

o) = J\ff) _ N + iN-N(ﬁ) _

We need to see how a solution to the system (4.2) contributes to elements in
Hom(RP'6, R” ba), for various divisors D’'. We start with a solution (o', 8')

to the system (4.2), with gV (8') = n and N (o) = mAD — N~ n. We set
D1 = (D,Tl.).

From N (a') + N~g¢N(8') = mAD and the fact that g = — N~ (mod D) we
have

N() =N (F) (mod D).
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This implies that for any prime divisor p of D,
o' = 1,qf' (mod pO,), (4.3)

where 7, € {1,~1} and p = (p, V—D). If p | D; then (4.3) is valid for both
np, =1 and n, = —1. But if p | D/D,, then (4.3) is valid only for one choice

of n,. We let

D' = II D,
plD/Dy
np=-—1

0’

and z = -5 + % 7. Since for any prime divisor p of D we have

we have

z € Hom(R?'?"b, RP'P" ),

for any divisor D” of D;. The number of divisors D" > 0 of D; is d(n).
This means that every solution (o', 8') to the system (4.2) with gV (3) = n,

contributes é(n) to 74 5(m). The number of such solutions (o', 8') is

ta(mAD) if n=0

ta(MAD — N7n)toiqmep-15a(f) f 0<n< AL
tq"“ﬂ‘*‘b-lﬁa(?\l]_{?’) if n= ——";}4_0
Adding up the contributions to 74 5(m) from all n, gives the result.

We use the above lemma to prove:

Lemma 4.16 Form > 0

ras(m) = 4u? Z ra(mD — 1Vn)5(n)rA{qm+-1}B;(n),

mD
Osn< %=
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where T4 and T 4 m+-1y52 are defined in (1.1), and §(n) is as in lemma 4.15.

Proof: With notations as in the previous lemma, from the definition of
ta(—) and r4(—) and the proof of proposition 1.2 we have

mAD — N™n mAD — N™n

3 ) = 2ura( 1 )

ta(mAD — N7n) = 2ur 41

where 2u = w is the number of units in O. Similarly

n

n
q) = Q“TA{qmﬂ—-*}sz(IV—,L):

tq-ro+6-15a(

since

(g t+p'ba} ! = A{q 0T )82

Hence, from the previous lemma we have,

mAD — N—n n
ras(m) = 4u® Z Ta( )5(n)TA{q€R+"‘}B‘(W)

A
0<ngmAD
If we set [ = 3=, we get the result.
Now we can calculate the coefficients of
4= Z r(m)e?™™,
m>0

Proposition 4.17 Form >0,

r(m) = 2ur 4(m)h + 2u? Z ra(mD — nN)é(n)r ()

n>1
where h is the class number of O, §(n) is as defined in lemma 4.15, the ideal

n is any integral ideal of O with
Nhn)=-N (mod D),
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An] is the genus class of the ideal class A{n} and rj4y(n) is the number of
[An]

tntegral ideals of O in this genus class.

Remark: Since any two ideals with the same norm (mod D) are in the same
genus, the genus class [An] in this proposition is independent of the choice
of n, and rp4n)(n) is equal to R(n) or 0 depending on whether or not there is
an ideal of norm n in [An].
We now prove the proposition.
Proof: By lemmad.14,
1
r(m) = % Bégc:(o) rap(m).

By lemma 4.16

ras(m) = 2ura(mD)2° +4u® Y " ra(mD — nN)S(n)T 4 (gms -} 5:(1)-

n>1
Hence
4u?
r(m) = 2ur A(mD)h + - Y ra(mD —nN)(n) Y T yeme-yse(n).
n>1 BePic(O)
But

BePic(O)

Therefore, using the fact that r (mD) = r 4(m), we have

r(m) = 2ur(m)h + 2u® Z ra(mD — nN)d(n)rigeme-(n).
n>1

Now we note that

[ag9T" "] = [aq9T*] = [An].
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This is because, clearly [t*7'] = [9t*], and [¢9t"] = [n], since
N@MY)=N(n) = —-N (mod D).

This complete the proof of the proposition.

Comparing proposition 4.17 and theorem 3.14 we have

Proposition 4.18 With notations as in (4.1) and theorem 3.1 we have,
7/ A= 211.2(1) A-
Finally we have our main result:

Theorem 4.19 Let K be a quadratic imaginary field of discriminant
—D =1 (mod4), and let A be an ideal class of K. Let f be a modular form
of weight 2 and level N = NTN~, where N satisfies the conditions stated in

section 4.1, and let Lo(f,s) be as defined in (3.1). Then we have

2
La(f,1) = u:%(f, 0.0,

where u is half the number of units in the ring of integers of K, and 0 4 is the
theta series associated to K and an Eichler order of level N* in the (unique)

quaternion algebra of discriminant N~ as defined in ({.1).
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