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The basic question

A Diophantine equation is a polynomial equa-

tion f(x1, . . . , xn) = 0 with integer coefficients,

for which one seeks rational or integer solu-

tions.

Question. Given a diophantine equation, how

hard is it to find a solution?

Matijasevich. This problem of determining

the existence of a solution is undecidable in

general.

It is natural to try to develop theories for more

restricted classes.
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The size of a Diophantine
equation

If a/b ∈ Q, Height(a/b) := h(a/b) = log(ab).

h((x1, . . . , xn)) = h(x1) + · · ·+ h(xn).

If f =
∑

J aJxJ is a diophantine equation,

h(f) =
∑
J

h(aJ).

The height of an equation is, roughly speaking,

the amount of paper required to write it down.
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Complexity

Definition A class C of equations is said to

be strictly polynomial if there is an n ≥ 1 and

an algorithm which for each equation E ∈ C
produces a solution to E in at most h(E)n op-

erations.

Less formally: the time required to find a

solution for E is roughly equivalent to the time

it takes to write E down.
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Some examples

The following (not very interesting!) classes of

Diophantine equations are strictly polynomial:

C = {Equations in one variable}

C = { systems of linear equations}

Question. Are there any other naturally oc-

curing classes of non-linear Diophantine equa-

tions in more than one variable which are strictly

polynomial?
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Factorisation

Consider

FACT := {xy = n, x, y 6= ±1; as n ∈ Z}.

Conjecture The class FACT is not strictly

polynomial.

Much of modern cryptography rides on this

conjecture, although it seems difficult to prove.
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Conics

Consider

CONICS = {ax2 + by2 + cz2 = 0, as a, b, c ∈ Z}

Theorem (Hasse-Minkowski) Suppose given

an oracle for extracting the square root of m

modulo n in time which is polynomial in log(n).

Then CONICS is strictly polynomial.
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Sketch of proof

1. Find λa, λb, λc ∈ Z such that

λ2
a = −b/c (mod a), λ2

b = −a/c (mod b),

λ2
c = −a/b (mod c).

2. Let Λ = set of (x, y, z) ∈ Z3 with

z = λay (mod a), z = λbx (mod b),

y = λcx (mod c), plus parity conditions.

(x, y, z) ∈ Λ ⇒ ax2+by2+cz2 = 0 (mod 4abc).
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Sketch of proof (cont’d)

3. Find a short vector (x0, y0, z0) ∈ Λ.

This is similar to a gcd calculation, and can be

done very fast (in polynomial time).

4. Geometry of numbers:

4abc divides |ax2
0 + by2

0 + cz2
0| < 4abc

hence ax2
0 + by2

0 + cz2
0 = 0.

This algorithm for finding (x0, y0, z0) works in

time which is polynomial in log(abc).
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Applications

Theorem The classes

•CONICSa,b := {ax2+by2+pz2 = 0, p prime}

•2SQUARES := {x2 + y2 = p, p prime};

are strictly polynomial.

Question. Are there classes of Diophantine

equations which can be proved to not be strictly

polynomial?
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Pell’s Equation

Fermat’s “favorite” Diophantine equation:

PELL := {x2 − dy2 = 1, as d ∈ Z}.

Group law:

(x1, y1)?(x2, y2) := (x1x2+dy1y2, x1y2+y1x2).

Fundamental solution: (±x,±y) = (x∗, y∗)?k.

Theorem. The class PELL is not strictly poly-

nomial.
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“Proof”

Here are some fundamental solutions.

d = 2. x = 3, y = 2.

d = 61.
x = 1766319049,
y = 226153980.

d = 109.
x = 158070671985249,
y = 15140424455100.

d = 991.
x = 379516400906811930638014896080,
y = 12055735790331359447442538767.

Induction (à la Fermat): h(x0, y0) can be as
large as

√
d.

Hence merely writing down the fundamental
solution can take as many as

√
d >> log(d)n

operations.
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Polynomial complexity

Problem P(E,h). Given E ∈ C and h >> h(E),
(more precisely: h > exp(h(E))) find a solution
x of E with h(x) < h, if it exists, or terminate
with an appropriate message, otherwise.

Obvious algorithm: run over all solutions with
height ≤ h until a solution is found (or not).

This requires a number of operations which is
exponential in h.

Definition. A class C of Diophantine equations
is said to be solvable in polynomial time if there
is n ∈ N and an algorithm that solves P (E, h)
in at most hn operations.

Less formally: the time required to find a
large solution for E is roughly equivalent to
the time it takes to write the solution down.

Caveat: FACT is trivially solvable in polyno-
mial time according to this definition.

12



Pell’s equation

Theorem The class PELL is solvable in poly-

nomial time.

Algorithm for computing (x∗, y∗): the contin-

ued fraction method.

√
d = a0 + 1

a1+
1

a2+···

xn
yn

= a0 + 1
a1+

1

a2+···+ 1
an

.

For n >> 0, (xn, yn) = (x∗, y∗).

This approach requires O(log(x∗)) operations.
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Elliptic curves

The class

ELL := {y2 = x3 + ax + b, a, b ∈ Q}.

The addition law on an elliptic curve
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The Mordell-Weil theorem

Theorem. The set E(Q) is a finitely gener-

ated abelian group.

E(Q) = T ⊕ Zr, r ≥ 0.

Question. Is there an algorithm to compute

E(Q) given E?

The answer is not known! (It is related to

the Shafarevich-Tate conejcture, and the Birch

and Swinnerton-Dyer conjecture.)

Related Question Is ELL solvable in polyno-

mial time?

This question might seem more approachable

to the uninitiated.
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A conjecture/provocation

Conjecture The class ELL of elliptic curve

equations is solvable in polynomial time.

This conjecture asserts that it should be pos-

sible to “zero in” on solutions to elliptic curve

equations much more rapidly than by perform-

ing an exhaustive search.

It appears to be intimately connected to the

Birch and Swinnerton-Dyer conjecture.
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An example of Bremner and
Cassels

The elliptic curve

E : y2 = x3 + 877x

has rank one and generator given by:

x =
6127760831879473681012

788415358606839002102

y =

25625626798892680938877
68340455130896486691
53204356603464786949

788415358606839002103
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Another example

Consider the equation

101y2 = x3 − x2 − 10x− 19/4.

The smallest solution has

x =
1081624136644692539667084685116849

246846541822770321447579971520100

This solution was found on a computer in a

few seconds.
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The Hasse-Weil L-series

Let N :=Conductor(E), and define

ap :=

{
p + 1−#E(Z/pZ) if p 6 |N ;
0,1, or − 1 if p|N.

apn = apapn−1 − papn−2,

ars := aras, (r, s) = 1.

Hasse-Weil L-function attached to E:

L(E, s) =
∑
n

ann−s =
∏
p
(1− app

−s + p1−2s)−1

L(E,1)“ = ”
∏
p

p

#E(Z/pZ)
.

The Hasse-Weil L-series is expected to en-

code arithmetic information about E, notably

its rank.
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The Birch and Swinnerton-Dyer
conjecture

Conjecture. The L-function L(E, s) extends

to an analytic function of s ∈ C, and

rank(E(Q)) = ords=1 L(E, s).

The leading term of L(E, s) is also expected

to be expressible in terms of the heights of the

generators of E(Q), and of the conjecturally

finite Shafarevich-Tate group.

Tate (1974) “... this remarkable conjecture

relates the behaviour of a function L at a point

where it is at present not known to be defined

to the order of a group LLI which is not known

to be finite.”
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Modularity

Problem: Give a “closed formula” for the an?

Consider the generating series:

fE(q) :=
∞∑

n=1

anqn, q := e2πiτ .

Hecke’s congruence group:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) s.t. N |c

}
.

Definition. A modular form of weight k and
level N is a function

f(z) =
∞∑

n=0

bne2πinz

such that

f

(
az + b

cz + d

)
= (cz + d)kf(z),

for all

(
a b
c d

)
∈ Γ0(N).
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Wiles’ Theorem

Theorem (Wiles) The generating function fE(z)

is a modular form of weight 2 and level N .

First consequence:

The Hasse-WeilL-series

L(E, s) = (2π)sΓ(s)−1
∫ ∞
0

f(it)ts
dt

t

extends to an analytic function of s ∈ C. Hence

the left-hand side of the BSD conjecture makes

sense!
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Modular parametrisations

Second consequence:

Let

expE : C −→ E(C)

be the Lie exponential. There exists λ ∈ C×

such that

Φ(τ) := expE

(
λ
∫ τ

i∞
f(z)dz

)
descends to a well-defined analytic map

Φ : H/Γ0(N) −→ E(C),

called the modular parametrisation.

H := {z ∈ C s.t. =(z) > 0} (the Poincaré up-
per half-plane.)

Key remark. The map Φ can be calculated in
polynomial time, in the sense that d digits of
accuracy can be obtained in O(dn) operations.
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The Heegner point construction

Let H′ be a the set of τ ∈ H which generate a
quadratic imaginary field K: τ = a+ b

√
d, with

a, b, d ∈ Q.

Theorem. If τ belongs to H ∩ K, then Φ(τ)
belongs to E(Kab).

Kab = maximal abelian extension of K.

In fact, the smallest abelian extension Hτ over
which Φ(τ) is defined can be specified explic-
itly.

For τ ∈ H′, define

Pτ := traceHτ/Q(Φ(τ))

The point Pτ is called the Heegner point at-
tached to τ .

Theorem. If h(Pτ) < h, then Pτ can be com-
puted in poly(log(h)) operations.
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Main Properties

Theorem (Kolyvagin)

If r = rank(E(Q)) 6= 1, then Pτ is torsion for

all τ .

Theorem (Gross-Zagier).

If ords=1 L(E, s) = 1, then Pτ is of infinite or-

der for infinitely many τ .

Corollary Let

ELL1 := {E ∈ ELL s.t. ords=1 L(E, s) ≤ 1}.

The class ELL1 is solvable in polynomial time.
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The number field case

In contrast with ELL1, the complexity of ELL
seems very hard to study, and we find ourselves
with little of interest to say about it.

We seek refuge in the number field case.

Let F=finite extension of Q.

•ELL(F ) := {Elliptic curves over F};

•E ∈ ELL1(F ) ⇔ ords=1 L(E/F, s) ≤ 1.

Hard conjecture The class ELL(F ) is solvable
in polynomial time.

Easier conjecture The class ELL1(F ) is solv-
able in polynomial time.

Thesis. This last conjecture, while seemingly
not out of reach, is worthwhile and presents
many interesting challenges.
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Real quadratic fields

Let F=real quadratic field.

Assume all elliptic curves over F are modular.

ELL′1(F ) = set of elliptic curves E ∈ ELL1(F )

such that there is a prime p of OF which divides

N(E) exactly.

Theorem (Matt Greenberg, 2005) The class

ELL′1(F ) is solvable in polynomial time.

The proof uses ideas arising from the theory

of p-adic integration and the theory of over-

convergent p-adic modular forms (attached to

definite quaternion algebras).

What about ELL1(F )?
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The class ELL1(F )

There is a conjectural algorithm for solving any

equation in ELL1(F ) in polynomial time, which

works reasonably well in practice.

Darmon, Logan. Periods of Hilbert modular

forms and rational points on elliptic curves.

IMRN (2003) no. 40, 2153-2180.

Useful theoretical insights about elliptic curves

are to be gained by carefully considering ELL1(F )

for other fields F , such as the imaginary quadratic

fields.
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