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The theorem of Gross-Zagier-Kolyvagin

I became Dick’s student in 1987, when the following was still new:

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over Q. If ords=1 L(E , s) ≤ 1,
then LLI (E/Q) is finite, and

rank(E (Q)) = ords=1 L(E , s).

In 1987, this result was tremendously exciting;

It is still the best theoretical evidence for the BSD conjecture.

Key ingredients in the proof:

1 The Gross-Zagier Theorem;
2 Kolyvagin’s descent.
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Modularity

Modularity comes in two flavours:

(General form) The elliptic curve E is modular if

L(E , s) = L(f , s),

for some normalised newform f ∈ S2(Γ0(N)) (with
N =conductor(E )).

(Stronger, geometric form): There is a non-constant
morphism

πE : J0(N) −→ E ,

were J0(N) is the Jacobian of the modular curve X0(N).
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Modular curves

Recall: X0(N) is the modular curve of level N.

X0(N)(C) = Γ0(N)\H∗;
X0(N)(F ) = the set of pairs (A,C ) where

A is a (generalised) elliptic curve over F ;
C is a cyclic subgroup scheme of A[N] over F

(up to F̄ -isomorphism.)



Heegner points

K = imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal N of OK of
norm N, with OK/N ' Z/NZ.

Definition

The Heegner points on X0(N) of level c attached to K are the
points given by pairs (A,A[N]) with End(A) = Z + cOK .

They are defined over the ring class field of K of conductor c .

PK := πE ((A1,A1[N]) + · · ·+ (Ah,Ah[N])− h(∞)) ∈ E (K ).
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The Gross-Zagier Theorem

The Gross-Zagier theorem in its most basic form:

Theorem (Gross-Zagier)

For all K satisfying (HH), the L-series L(E/K , s) vanishes to odd
order at s = 1, and

L′(E/K , 1) = 〈PK ,PK 〉〈f , f 〉 (mod Q×).

In particular, PK is of infinite order iff L′(E/K , 1) 6= 0.



Kolyvagin’s Theorem

Theorem (Kolyvagin)

If PK is of infinite order, then rank(E (K )) = 1, and LLI (E/K ) <∞.

The Heegner point PK is part of a norm-coherent system of
algebraic points on E ;

This collection of points satisfies the axioms of an Euler
system (a Kolyvagin system in the sense of Mazur-Rubin)
which can be used to bound the p-Selmer group of E/K .
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Proof of the GZK Theorem

Theorem (Gross-Zagier, Kolyvagin)

If ords=1 L(E , s) ≤ 1, then LLI (E/Q) is finite and

rank(E (Q)) = ords=1 L(E , s).

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty ⇒ there exists a K
satisfying (HH), with ords=1 L(E/K , s) = 1.
2. Gross-Zagier ⇒ the Heegner point PK is of infinite order.
3. Koyvagin ⇒ E (K )⊗Q = Q · PK , and LLI (E/K ) <∞.
4. Explicit calculation ⇒

. the point PK belongs to

 E (Q) if L(E , 1) = 0,

E (K )− if L(E , 1) 6= 0.
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Gross’s advice

In 1988, Dick gave me the following advice:

1 Ask Massimo Bertolini to explain Kolyvagin’s ideas;

2 Extend Kolyvagin’s theorem to ring class characters.

Theorem (Bertolini, D (1989))

Let H be the ring class field of K of conductor c, let P ∈ E (H) be
a Heegner point of conductor c, and let

Pχ :=
∑

σ∈Gal(H/K)

χ−1(σ)Pσ ∈ (E (H)⊗ C)χ

be its “χ-component”. If Pχ 6= 0, then (E (H)⊗ C)χ is a
one-dimensional complex vector space.
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The proof is an easy extension of Kolyvagin’s result. When
combined with (less easy) results of Zhang generalising
Gross-Zagier to ring class characters, it gives:

Theorem (GZK for characters)

If L′(E/K , χ, 1) 6= 0, then (E (H)⊗ C)χ is a one-dimensional
complex vector space.

Question

What if the imaginary quadratic field K is replaced by a real
quadratic field?

The question is still open!

Question

Are there “Heegner points attached to real quadratic fields”?
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Quadratic cycles

Let Ψ : K ↪→ M2(Q) be an embedding of a quadratic algebra.

1 If K is imaginary, τΨ := fixed point of Ψ(K×) 	 H;
∆Ψ := {τΨ}.

2 If K is real, τΨ, τ
′
Ψ := fixed points of Ψ(K×) 	 (H ∪ R);

ΥΨ = geodesic(τΨ → τ ′Ψ).

τΨ τ ′Ψ
• •

∆Ψ = ΥΨ/〈Ψ(O×K )〉 ⊂ Y (C).

These “real quadratic cycles” have been extensively studied
(Shintani, Zagier, Gross-Kohnen-Zagier, Waldspurger, Alex Popa)
and related to special values of L-series.
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Another statement of the question

Question

What objects play the role of real quadratic cycles, when K is real
quadratic and the sign in L(E/K , s) is −1?

I graduated in 1991 with

1 A thesis, containing a few (not so exciting) theorems;

2 Questions about elliptic curves and class field theory for real
quadratic fields, which have fascinated me ever since.
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Zhang’s theorems for totally real fields

The mathematical objects exploited by Gross-Zagier and Kolyvagin
continue to be available when Q is replaced by a totally real field F
of degree n > 1.

Definition

An elliptic curve E/F is modular if there is a Hilbert modular form
G ∈ S2(N) over F such that

L(E/F , s) = L(G , s).

Modularity is often known, and will be assumed from now on.
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Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a
(2n-dimensional) subspace

ΩG ⊂ Ωn
har(V (C))G ,

where V is a suitable Hilbert modular variety of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands
hypothesis (JL) if either [F : Q] is odd, or ordp(N) is odd for some
prime p|N of F .

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). There there exists
a Shimura curve X/F and a non-constant morphism

πE : Jac(X ) −→ E .
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Zhang’s Theorem

Shimura curves, like modular curves, are equipped with a plentiful
supply of CM points.

Theorem (Zhang, 2001)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If
ords=1 L(E/F , s) ≤ 1, then LLI (E/F ) is finite and

rank(E (F )) = ords=1 L(E/F , s).

Zhang, Shouwu. Heights of Heegner points on Shimura curves.
Ann. of Math. (2) 153 (2001).
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BSD in analytic rank zero

Theorem (Matteo Longo, 2004)

Let E/F be a modular elliptic curve. If L(E/F , 1) 6= 0, then E (F )
is finite and LLI (E/F )[p∞] is finite for almost all p.

Proof.

Congruences between modular forms ⇒ the Galois representation
E [pn] occurs in Jn[pn], where Jn = Jac(Xn) and Xn is a Shimura
curve Xn whose level may (and does) depend on n.
Use CM points on Xn to bound the pn-Selmer group of E .

Challenge: When ords=1 L(E/F , s) = 1 but (JL) is not satisfied,
produce the point in E (F ) whose existence is predicted by BSD.
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Elliptic curves with everywhere good reduction

Simplest case where (JL) fails to hold:

F = Q(
√

N), a real quadratic field,

E/F has everywhere good reduction.

Fact: E (F ) has even analytic rank and hence Longo’s theorem
applies.

Consider the twist EK of E by a quadratic extension K/F .

Proposition

1 If K is totally real or CM, then EK has even analytic rank.

2 If K is an ATR (Almost Totally Real) extension, then EK has
odd analytic rank.
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The Conjecture on ATR twists

Conjecture (on ATR twists)

Let EK be an ATR twist of an elliptic curve E of conductor 1 over
F . If L′(EK/F , 1) 6= 0, then EK (F ) has rank one and
LLI (EK/F ) <∞.

This is a very special case of the BSD conjecture.

It appears close to existing results, but presents genuine new
difficulties.



ATR cycles

Problem: Produce a point PK ∈ EK (F ), when (JL) fails and
hence no Shimura curve is available.

Let Y be the (open) Hilbert modular surface attached to E/F :

Y (C) = SL2(OF )\(H1 ×H2).

There are h := # Pic+(OK )/Pic+(OF ) distinct OF -algebra
embeddings

Ψ1, . . . ,Ψh : OK −→ M2(OF ).

To each Ψ = Ψj , one can attach a cycle ∆Ψ ⊂ Y (C) of real
dimension one which is analogous to a real quadratic cycle, but
“behaves like a Heegner point”.
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ATR cycles

τ
(1)
Ψ := fixed point of Ψ(K×) 	 H1;

τ
(2)
Ψ , τ

(2)′
Ψ := fixed points of Ψ(K×) 	 (H2 ∪ R);

ΥΨ = {τ (1)
Ψ } × geodesic(τ

(2)
Ψ → τ

(2)′
Ψ ).

•
τ

(1)
Ψ

×
τ

(2)
Ψ τ

(2)′
Ψ

• •

∆Ψ = ΥΨ/〈Ψ(O×K )〉 ⊂ Y (C).

Key fact: The cycles ∆Ψ are null-homologous.
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Points attached to ATR cycles

For any 2-form ωG ∈ ΩG ,

P?
Ψ(G ) :=

∫
∂−1∆Ψ

ωG ∈ C/ΛG .

Conjecture (Oda (1982))

For a suitable choice of ωG , we have C/ΛG ∼ E (C). In particular
P?

Ψ(G ) can then be viewed as a point in E (C).

Conjecture (Logan, D (2003))

The points P?
Ψ(G ) belongs to E (H)⊗Q, where H is the ring class

field of K of conductor 1. The points P?
Ψ1

(G ), . . . ,P?
Ψh

(G ) are
conjugate to each other under Gal(H/K ). Finally, the point
P?

K (G ) := P?
Ψ1

(G ) + · · ·+ P?
Ψh

(G ) is of infinite order iff
L′(E/K , 1) 6= 0.
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Back to “Heegner points attached to real quadratic fields”

ATR points are defined over abelian extensions of a quadratic ATR
extension K of a real quadratic field F .

This setting is “overly complicated”, and does not capture the
more natural setting of Heegner points over ring class fields of real
quadratic fields.

Simplest case: E/Q is an elliptic curve of prime conductor p, and
K is a real quadratic field in which p is inert.

Hp = P1(Cp)− P1(Qp)
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A dictionary between the two problems

ATR cycles Real quadratic points

F real quadratic Q

∞0, ∞1 p, ∞

E/F of conductor 1 E/Q of conductor p

SL2(OF )\(H×H) SL2(Z[1/p])\(Hp ×H)

K/F ATR K/Q real quadratic, with p inert

ATR cycles Cycles in SL2(Z[1/p])\(Hp ×H).
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A dictionary between the two problems

One can develop the notions in the right-hand column to the
extent of

1 Attaching to f ∈ S2(Γ0(p)) a “Hilbert modular form” G on
SL2(Z[1/p])\(Hp ×H).

2 Making sense of the expression∫
∂−1∆Ψ

ωG ∈ K×p /qZ = E (Kp)

for any “p-adic ATR cycle” ∆Ψ.

The resulting local points are defined (conjecturally) over ring class
fields of K . They are called “Stark-Heegner points” ...
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Relation with Gross-Stark units

Gross-Stark units are p-adic analogues of Stark-units (in which
classical Artin L-functions at s = 0 are replaced by the p-adic
L-functions attached to totally real fields by Deligne-Ribet.)

p-adic L-series at s = 0, J. Fac. Sci. Univ. of Tokyo 28 (1982),
979-994.

On the values of abelian L-functions at s = 0, J. Fac. Science of
University of Tokyo, 35 (1988), 177-197.

Dasgupta, D, (2004) If one replaces the cusp form f of weight 2
(attached to an elliptic curve E/Q, say) by a weight two Eisenstein
series, one obtains p-adic logarithms of Gross-Stark units instead
of Stark-Heegner points.
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The p-adic Gross-Stark conjecture

So really, “Stark-Heegner points” should be called
”Gross-Stark-Heegner points”!

Motivated by the connection between Stark-Heegner points and
Gross-Stark units, Samit Dasgupta, Robert Pollack and I have tried
to make some progress on Gross’s p-adic analogue of the Stark
conjecture.

This will be the theme of Samit’s lecture in 30 minutes.
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Summary

The Gross-Zagier formula and the p-adic Gross-Stark conjectures
are two fundamental contributions of Dick Gross which have been,
and continue to be, tremendously influential.



Thank you, Dick,

and

Happy

60th

Birthday!!


