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The Birch and Swinnerton-Dyer conjecture

One of the major outstanding issues in the Birch and
Swinnerton-Dyer conjecture is the (explicit) construction of
rational points on elliptic curves.

There are very few strategies for producing such rational points:

1 Heegner points (CM points on modular elliptic curves). Birch,
Gross-Zagier-Zhang, Kolyvagin...

2 Higher-dimensional algebraic cycles can sometimes be used to
construct “interesting” rational points on elliptic curves, as
described in Victor’s lecture.



Summary of Victor’s Lecture

Cycle classes in the triple product of modular curves lead to
rational points on elliptic curves.

These points make it possible to relate:

1 Certain extension classes (of mixed motives) arising in the
pro-unipotent fundamental groups of modular curves;

2 Special values of L-functions of modular forms.

This fits into a general philosophy (Deligne, Wojtkowiak, ...)
relating πunip

1 (X ) to values of L-functions.



What about BSD?

Question: Do these constructions yield anything “genuinely new”
about the Birch and Swinnerton-Dyer conjecture for elliptic curves
over Q?

BSD Conjecture: ran(E/Q) = r(E/Q), where

ran(E/Q) := ords=1 L(E/Q, s), r(E/Q) = rank(E (Q)).

ran(E/Q) ≤ 1: everything is known.

ran(E/Q) > 1: we haven’t the slightest idea.



A “equivariant” BSD conjecture

L-functions carry a lot of information about the structure of E (Q̄).

Consider a continuous Artin representation

ρ : Gal(Kρ/Q) −→ GLn(C).

ran(E , ρ) := ords=1 L(E , ρ, s),

r(E , ρ) := dimC hom(Vρ,E (Kρ)⊗ C).

Conjecture (“Equivariant” BSD)

For all Artin representations ρ, ran(E , ρ) = r(E , ρ).



What is known?

The following cases of the conjecture have been established:

1 ρ is one-dimensional (i.e., corresponds to a Dirichlet
character), and ran(E , ρ) = 0. (Kato, 1991).

2 ρ = IndQ
K χ, where χ=dihedral, K =quadratic imaginary field,

ran(E , ρ) = 1. (Kolyvagin, Gross-Zagier, Zhang, ...., 1989).

3 Similar setting, ran(E , ρ) = 0. (Bertolini-D, Rotger, Vigni,
Nekovar,... ,1996).



Artin Representations

We will be primarily interested in odd Artin representations

ρ : Gal(Kρ/Q) −→ GL2(C).

The cases that can arise are:

1 ρ = IndQ
K χ, where K = imaginary quadratic field;

2 ρ = IndQ
F χ, where F = real quadratic field, and χ has

signature (+,−).

3 The projective image of ρ is A4, S4 or A5.



The BSD theorem

E = elliptic curve over Q;

ρ1, ρ2 = odd 2-dimensional representations of GQ,

det(ρ1) det(ρ2) = 1.

The following theorem is the the primary goal of the current
project with V. Rotger.

Theorem (Rotger, D: still in progress, and far from complete!)

Assume that there exists σ ∈ GQ for which ρ1 ⊗ ρ2(σ) has distinct
eigenvalues. If L(E ⊗ ρ1 ⊗ ρ2, 1) 6= 0, then

hom(Vρ1 ⊗ Vρ2 ,E (Kρ1Kρ2)⊗ C) = 0.



Modularity

The objects E , ρ1, and ρ2 are all known to be modular!

As usual, this plays a key role.

Theorem (Hecke, Langlands-Tunnell, Wiles, Taylor, Khare,. . . )

There exist modular forms f of weight two, and g and h of weight
one, such that

L(f , s) = L(E , s), L(g , s) = L(ρ1, s), L(h, s) = L(ρ2, s).



Strategy of the proof

The strategy for the proof of our sought-for Theorem rests on the
following key ingredients.

1 Galois cohomology classes

κ(f , g ′, h′) ∈ H1(Q,Vf ⊗ Vg ′ ⊗ Vh′)

attached to a triple (f , g ′, h′) of modular forms of weights
≥ 2. They are obtained from the image of diagonal cycles on
triple products of Kuga-Sato varieties under p-adic étale
Abel-Jacobi maps.

2 p-adic deformations of these classes, attached to Hida families
f , g and h interpolating f , g and h.

3 Various relations between these classes and L-functions (both
complex and p-adic) attached to f ⊗ g ⊗ h.



Triples of eigenforms

Definition

A triple of eigenforms

f ∈ Sk(Γ0(Nf ), εf ), g ∈ S`(Γ0(Ng ), εg ), h ∈ Sm(Γ0(Nh), εh)

is said to be critical if

1 Their weights are balanced:

k < `+ m, ` < k + m, m < k + `.

2 εf εgεh = 1; in particular, k + `+ m is even.



Diagonal cycles on triple products of Kuga-Sato varieties.

k = r1 + 2, ` = r2 + 2, m = r3 + 2, r =
r1 + r2 + r3

2
.

E r (N) = r -fold Kuga-Sato variety over X1(N); dim = r + 1.

V = E r1(Nf )× E r2(Ng )× E r3(Nh), dim V = 2r + 3.

Generalised Gross-Kudla-Schoen cycle: there is an essentially
unique interesting way of embedding E r (Nf Ng Nh) as a
null-homologous cycle in V .

Cf. Rotger, D. Notes for the AWS, Chapter 7.

∆ = E r ⊂ V , ∆ ∈ CH r+2(V ).



Diagonal cycles and L-series

The height of the (f , g , h)-isotypic component ∆f ,g ,h of the
Gross-Kudla-Schoen cycle ∆ should be related to the central
critical derivative

L′(f ⊗ g ⊗ h, r + 2).

Work of Yuan-Zhang-Zhang represents substantial progress in this
direction, when r1 = r2 = r3 = 0.

Our goal will be instead: to describe other relationships between
∆f ,g ,h and p-adic L-series attached to (f , g , h), in view of
obtaining the arithmetic applications described above.



Complex Abel-Jacobi maps

The cycle ∆ is null-homologous:

cl(∆) = 0 in H2r+4(V (C),Q).

Our formula of “Gross-Kudla-Zhang type” will not involve heights,
but rather p-adic analogues of the complex Abel-Jacobi map of
Griffiths and Weil:

AJ : CHr+2(V )0 −→
H2r+3

dR (V /C)

Filr+2 H2r+3
dR (V /C) + H2r+3

B (V (C),Z)

=
Filr+2 H2r+3

dR (V /C)∨

H2r+3(V (C),Z)
.

AJ(∆)(ω) =

∫
∂−1∆

ω.



p-adic étale Abel-Jacobi maps

CHr+2(V /Q)0
AJet //

��

''

H1
f (Q,H2r+3

et (V̄ ,Qp)(r + 2))

��

CHr+2(V /Qp)0 AJet

// H1
f (Qp,H

2r+3
et (V̄ ,Qp)(r + 2))

Filr+2 H2r+3
dR (V /Qp)∨

The dotted arrow is called the p-adic Abel-Jacobi map and
denoted AJp.

Goal: Relate AJp(∆) to certain Rankin triple product p-adic
L-functions, à la Gross-Kudla-Zhang.



Hida families

Let p be any prime, and replace f , g and h by their
p-stabilisations, which are both ordinary (eigenvectors for Up with
eigenvalue a p-adic unit).

Theorem (Hida)

There exist p-adic families

f (k) =
∑

an(k)qn, g(`) =
∑

bn(`)qn, h(m) =
∑

cn(m)qn,

(k, `,m ∈ Z/(p − 1)Z× Zp) of modular forms satisfying f (2) = f ,
g(1) = g and h(1) = h.

For k, `,m ∈ Z≥2, the specialisations

fk := f (k), g` := g(`), hm := h(m)

are classical eigenforms of weights k, ` and m.



Triple product p-adic Rankin L-functions

They interpolate the central critical values

L(f (k)⊗ g(`)⊗ h(m), k+`+m−2
2 )

Ω(k, `,m)
∈ Q̄.

Four distinct regions of interpolation:

1 Σf = {(k , `,m) : k ≥ `+ m}. Ω(k , `,m) = ∗〈fk , fk〉2.

2 Σg = {(k, `,m) : ` ≥ k + m}. Ω(k , `,m) = ∗〈g`, g`〉2.

3 Σh = {(k , `,m) : m ≥ k + `}. Ω(k , `,m) = ∗〈hm, hm〉2.

4 Σbal = (Z≥2)3 − Σf − Σg − Σh.
Ω(k , `,m) = ∗〈fk , fk〉2〈g`, g`〉2〈hm, hm〉2.

Resulting p-adic L-functions: Lf
p(f ⊗ g ⊗ h, k , `,m),

Lg
p(f ⊗ g ⊗ h, k , `,m), and Lh

p(f ⊗ g ⊗ h, k , `,m) respectively.



More notations

ωf = (2πi)r1+1f (τ)dw1 · · · dwr1dτ ∈ Filr1+1 H r1+1
dR (E r1).

ηf ∈ H r1+1
dR (E r1/Q̄p) = representative of the f -isotypic part on

which Frobenius acts via αp(f ), normalised so that

〈ωf , ηf 〉 = 1.

Lemma

If (k , `,m) is balanced, then the (fk , g`, hm)-isotypic part of the Q̄p

vector space Filr+2 H2r+3
dR (V /Q̄p) is generated by the classes of

ωfk⊗ωg`
⊗ωhm , ηfk⊗ωg`

⊗ωhm , ωfk⊗ηg`
⊗ωhm , ωfk⊗ωg`

⊗ηhm .



A p-adic Gross-Kudla formula

Assume that sign(L(fk ⊗ g` ⊗ hm, s)) = −1 for all (k , `,m) ∈ Σbal.
(For example, f , g and h are of the same level.)

Theorem (Rotger-Sols-D; in progress)

For all (k , `,m) ∈ Σbal,

Lf
p(f ⊗ g ⊗ h, k , `,m) = ∗ × AJp(∆)(ηf ∧ ωg ∧ ωh),

and likewise for Lg
p and Lh

p.

Conclusion: The Abel-Jacobi image of ∆ encodes the special
values of the three distinct p-adic L-functions.



From cycles to cohomology classes

We can use the cycles ∆k,`,m to construct global classes

AJet(∆k,`,m) ∈ H1(Q,H2r+3
et (VQ̄,Qp)(r + 2)).

Künneth:

H2r+3
et (VQ̄,Qp)(r + 2) →

3⊗
j=1

H
rj +1
et (E rj

Q̄,Qp)(r + 2)

→ Vfk ⊗ Vg`
⊗ Vhm(r + 2).

By projecting AJet(∆) we obtain a cohomology class

κ(fk , g`, hm) ∈ H1(Q,Vfk ⊗ Vg`
⊗ Vhm(r + 2)),

for each (k, `,m) ∈ Σbal.



The Birch-Swinnerton-Dyer class

We really want to construct a class in

H1(Q,Vf ⊗ Vg ⊗ Vh(1))

attached (formally) to the triple

(k, `,m) = (2, 1, 1) ∈ Σf .

Natural approach: interpolate the classes κ(fk , g`, hm) p-adically to
extend their definition from Σbal to Σf .



The theme of p-adic variation

Slogan: The natural p-adic invariants attached to (classical)
modular forms varying in p-adic families should also vary in p-adic
families.

Example: The Serre-Deligne representation Vg`
of GQ attached to

the classical eigenforms g(`) with ` ≥ 2.

Theorem

There exist Λ-adic representations V g of GQ satisfying

V g ⊗ev`
Q̄p = Vg`

(
`− 1

2

)
, for almost all ` ∈ Z≥2 ∩ Ug .



p-adic interpolation of diagonal cycle classes

For each ` ∈ Z>1, the triple (2, `, `) is balanced, so we can
consider the cohomology classes

κ(f , g`, h`) ∈ H1(Q,Vf ⊗ Vg`
⊗ Vh`

(`)).

ev`,` : V g ⊗ V h −→ Vg`
⊗ Vh`

(`− 1).

Conjecture

There exists a “big” cohomology class

κ ∈ H1(Q,V f ⊗ V g ⊗ V h(1))

such that
κ(2, `, `) := ev2,`,`(κ) = κ(f , g`, h`)

for almost all ` ∈ Z≥2 ∩ Ug ∩ Uh (note: (2, `, `) ∈ Σbal).



p-adic interpolation of cohomology classes

Similar interpolation results have been obtained and exploited in
other contexts:

1 Kato: p-adic interpolation of classes arising from Beilinson
elements in H1(Q,Vp(f )(2)). Their weight k specialisations
encode higher weight Beilinson elements (A. Scholl,
unpublished.)

2 Ben Howard: p-adic interpolation of classes arising from
Heegner points. Their higher weight specialisations encode
the images of higher weight Heegner cycles under p-adic
Abel-Jacobi maps (Francesc Castella, in progress).



The BSD class

Assuming the construction of κ, consider the specialisation

κ(2, 1, 1) ∈ H1(Q,Vf ⊗ Vg ⊗ Vh(1))

= H1(Q,Vp(E )⊗ ρ1 ⊗ ρ2).

The triple (2, 1, 1) /∈ Σbal, and therefore κ(2, 1, 1) lies outside the
range of “geometric interpolation” defining the family κ.

In particular, the restriction

κ(2, 1, 1)p ∈ H1(Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

need not be cristalline.



The dual exponential map

p-adic exponential map:

exp : Ω1(E/Qp)∨ −→ E (Qp)⊗Qp.

The dual map (exploiting Tate local duality):

exp∗ :
H1(Qp,Vp(E ))

H1
f (Qp,Vp(E ))

−→ Ω1(E/Qp).

Analogous map for Vp(E )⊗ ρ1 ⊗ ρ2:

exp∗ :
H1(Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

H1
f (Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

−→ Ω1(E/Qp)⊗ ρ1 ⊗ ρ2.

Question: Relate exp∗(κ(2, 1, 1)) ∈ Ω1(E/Qp)⊗ ρ1 ⊗ ρ2 to
L-functions.



A reciprocity law

Conjecture (Rotger, D)

The image of the class κ(2, 1, 1) under exp∗ has the following
properties:

1 It belongs to Ω1(E/Qp)⊗ (ρ1 ⊗ ρ2)frob=αp(g)αp(h);

2 It is non-zero if and only if L(E ⊗ ρ1 ⊗ ρ2, 1) 6= 0.

Heuristic, hand-waving argument for 2:

〈exp∗(κ(2, 1, 1)), ηf ωgωh〉 ; lim
(`,m)→(1,1)

AJ(∆)(ηf ⊗ ωg`
⊗ ωhm)

; lim
(`,m)−→(1,1)

Lf
p(f ⊗ g ⊗ h, 2, `,m)

= Lf
p(f ⊗ g ⊗ h, 2, 1, 1)

; L(f ⊗ g ⊗ h, 1) (2, 1, 1) ∈ Σf ...



Proof of the main theorem

Injection

hom(ρ1 ⊗ ρ2,E (Q̄)⊗ L) −→ hom(ρ1 ⊗ ρ2,E (Q̄p)⊗ L)

= H1
f (Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

Exact sequence arising from local and global duality:

0 −→ hom(ρ1 ⊗ ρ2,E (Q̄)⊗ L) −→ H1
f (Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

−→
(

H1(Q,Vp(E )⊗ ρ1 ⊗ ρ2)

H1
f (Q,Vp(E )⊗ ρ1 ⊗ ρ2)

)∨
.



The parallel with Kato’s method

This strategy is merely an adaptation of a method of Kato, in
which families of Eisenstein series are replaced by families of cusp
forms.

Kato Rotger-D

(f ,E`,Fm) (f , g`, hm)

Beilinson elements Diagonal cycles

L(f , j), j ≥ 2 L(f ⊗ g` ⊗ h`, `)

⇓ ⇓

L(f , 1) L(f ⊗ ρ1 ⊗ ρ2, 1)



Application to elliptic curves and real quadratic fields

Corollary

Let χ be a ring class character of a real quadratic field F . Then

L(E/F , χ, 1) 6= 0 =⇒ (E (H)⊗ C)χ = 0.

Proof.

Find a character α of signature (+,−) for which
L(E/F , χα/α′, 1) 6= 0.

χ1 = χα, χ2 = α−1, ρ1 = IndQ
F χ1, ρ2 = IndQ

F χ2.

L(E ⊗ ρ1 ⊗ ρ2, s) = L(E/F , χ, s)L(E/F , χα/α′, s).

Hence L(E ⊗ ρ1 ⊗ ρ2, 1) 6= 0.
Previous theorem ⇒ (E (H)⊗ C)χ = 0.



Remark on Heegner points

When the real quadratic field F is replaced by an imaginary
quadratic field K , the above corollary can be proved much more
directly, using Heegner points.

Theorem (Gross-Zagier, Kolyvagin, Zhang, Bertolini-D, Longo,
Nekovar, . . . )

Let L(E/K , χ, s) denote the Hasse-Weil L-series of E/K , twisted
by χ. Then

1 If L(E/K , χ, 1) 6= 0, then (E (H)⊗ C)χ = 0.

2 If ords=1 L(E/K , χ, s) = 1, then dimC(E (H)⊗ C)χ = 1.



Stark-Heegner points attached to real quadratic fields

Motivating question: Are there structures analogous to Heegner
points, when K is replaced by a real quadratic field?

It was this question that motivated the article

Integration on Hp ×H and arithmetic applications, Ann. of Math.
(2) 154 (2001)

in which a collection of Stark-Heegner points, conjecturally defined
over ring class fields of real quadratic fields, were constructed.



A conditional result

Theorem (Bertolini-Dasgupta-D and Longo-Rotger-Vigni)

Assume the conjectures on Stark-Heegner points attached to the
real quadratic field F (in a stronger, more precise form given in
Samit Dasgupta’s PhD thesis). Then

L(E/F , χ, 1) 6= 0 =⇒ (E (H)⊗ C)χ = 0,

for all ring class χ : Gal(H/F ) −→ C×.

The main interest of this result lies in the explicit connection that
it draws between

1 explicit class field theory for real quadratic fields;

2 certain concrete cases of the BSD conjecture.



Euler systems and Stark-Heegner points

F = real quadratic field, χ : Gal(H/F ) −→ C×.

Stark-Heegner point:

Pχ
?
∈ (E (H)⊗ C)χ.

Question: What relation is there between the Stark-Heegner point
Pχ and the class κ(2, 1, 1) attached to ρ := IndQ

F χ?



A caveat

A lot still needs to be done!



Thank you for your attention.


