Automorphic forms and Number Theory

International Center, Goa

August 2010
Apology

I will not talk about

p-adic weak harmonic Maass forms,

as I had advertised...
The Birch and Swinnerton-Dyer conjecture for \mathbb{Q}-curves
and Oda’s period relations

...

Joint work in progress with
Victor Rotger (Barcelona),
Yu Zhao (Montreal)

Henri Darmon
The Birch and Swinnerton-Dyer conjecture

\[E = \text{an elliptic curve over a number field } F. \]

\[L(E/F, s) = \text{its Hasse-Weil } L\text{-series.} \]

Conjecture (Birch and Swinnerton-Dyer)

\[L(E/F, s) \text{ has analytic continuation to all } s \in \mathbb{C} \text{ and} \]

\[\text{ord}_{s=1} L(E/F, s) = \text{rank}(E(F)) \]
The BSD conjecture for analytic rank ≤ 1

Assume $F = \mathbb{Q}$.

Then $L(E, s)$ is known to have analytic continuation thanks to modularity.

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\mathcal{H}(E/\mathbb{Q})$ is finite, and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Three key ingredients:

1. Modularity (in a strong geometric form);
2. Heegner points on modular curves and the Gross-Zagier theorem;
The BSD conjecture for analytic rank ≤ 1

Assume $F = \mathbb{Q}$.

Then $L(E, s)$ is known to have analytic continuation thanks to modularity.

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\Sha(E/\mathbb{Q})$ is finite, and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Three key ingredients:

1. Modularity (in a *strong geometric form*);
2. Heegner points on modular curves and the Gross-Zagier theorem;
The BSD conjecture for analytic rank ≤ 1

Assume $F = \mathbb{Q}$.

Then $L(E, s)$ is known to have analytic continuation thanks to modularity.

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\mathcal{W}(E/\mathbb{Q})$ is finite, and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Three key ingredients:

1. Modularity (in a strong geometric form);
2. Heegner points on modular curves and the Gross-Zagier theorem;
Modularity

Theorem (Geometric modularity)

There is a non-constant morphism

\[\pi_E : J_0(N) \rightarrow E, \]

were \(J_0(N) \) is the Jacobian of \(X_0(N) \).

The proof uses:

1. The modularity theorem (Wiles, Taylor-Wiles, Breuil-Conrad-Diamond-Taylor);
2. The Tate conjecture for curves and abelian varieties over number fields (Serre, Faltings).
There is a non-constant morphism

\[\pi_E : J_0(N) \rightarrow E, \]

were \(J_0(N) \) is the Jacobian of \(X_0(N) \).

The proof uses:

1. The modularity theorem (Wiles, Taylor-Wiles, Breuil-Conrad-Diamond-Taylor);
2. The Tate conjecture for curves and abelian varieties over number fields (Serre, Faltings).
Heegner points

\(K = \) imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \(\mathfrak{N} \) of \(\mathcal{O}_K \) of norm \(N \), with \(\mathcal{O}_K/\mathfrak{N} \cong \mathbb{Z}/N\mathbb{Z} \).

Definition

The Heegner points on \(X_0(N) \) of level \(c \) attached to \(K \) are the points given by pairs \((A, A[\mathfrak{N}]) \) with \(\text{End}(A) = \mathbb{Z} + c\mathcal{O}_K \).

They are defined over the ring class field of \(K \) of conductor \(c \).

\[
P_K := \pi_E((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in E(K).
\]
Heegner points

\(K = \) imaginary quadratic field satisfying the Heegner hypothesis (HH): There exists an ideal \(\mathfrak{N} \) of \(\mathcal{O}_K \) of norm \(N \), with \(\mathcal{O}_K / \mathfrak{N} \cong \mathbb{Z} / N\mathbb{Z} \).

Definition

The Heegner points on \(X_0(N) \) of level \(c \) attached to \(K \) are the points given by pairs \((A, A[\mathfrak{N}]) \) with \(\text{End}(A) = \mathbb{Z} + c\mathcal{O}_K \).

They are defined over the ring class field of \(K \) of conductor \(c \).

\[P_K := \pi_E((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in E(K). \]
Heegner points

\(K = \) imaginary quadratic field satisfying the

Heegner hypothesis (HH): There exists an ideal \(\mathfrak{N} \) of \(\mathcal{O}_K \) of norm \(N \), with \(\mathcal{O}_K / \mathfrak{N} \cong \mathbb{Z} / N\mathbb{Z} \).

Definition

The Heegner points on \(X_0(\mathfrak{N}) \) of level \(c \) attached to \(K \) are the points given by pairs \((A, A[\mathfrak{N}]) \) with \(\text{End}(A) = \mathbb{Z} + c \mathcal{O}_K \).

They are defined over the ring class field of \(K \) of conductor \(c \).

\[
P_K := \pi_E((A_1, A_1[\mathfrak{N}]) + \cdots + (A_h, A_h[\mathfrak{N}]) - h(\infty)) \in E(K).
\]
The Gross-Zagier Theorem

Theorem (Gross-Zagier)

For all K satisfying (HH), the L-series $L(E/K, s)$ vanishes to odd order at $s = 1$, and

$$L'(E/K, 1) = \langle P_K, P_K \rangle \langle f, f \rangle \pmod{\mathbb{Q}^\times}.$$

In particular, P_K is of infinite order iff $L'(E/K, 1) \neq 0$.
Kolyvagin’s Theorem

Theorem (Kolyvagin)

*If P_K is of infinite order, then $\text{rank}(E(K)) = 1$, and $\mathfrak{W}(E/K) < \infty$.***

- The Heegner point P_K is part of a norm-coherent system of algebraic points on E;
- This collection of points satisfies the axioms of an *Euler system* (a *Kolyvagin system* in the sense of Mazur-Rubin) which can be used to bound the p-Selmer group of E/K.
Kolyvagin’s Theorem

Theorem (Kolyvagin)
If P_K is of infinite order, then $\text{rank}(E(K)) = 1$, and $\mathfrak{W}(E/K) < \infty$.

- The Heegner point P_K is part of a norm-coherent system of algebraic points on E;
- This collection of points satisfies the axioms of an Euler system (a Kolyvagin system in the sense of Mazur-Rubin) which can be used to bound the p-Selmer group of E/K.
Proof of BSD in analytic rank ≤ 1

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\mathcal{L}(E/\mathbb{Q})$ is finite and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\text{ord}_{s=1} L(E/K, s) = 1$.
2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.
3. Koyvagin \Rightarrow $E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathcal{L}(E/K) < \infty$.
4. Explicit calculation \Rightarrow

the point P_K belongs to

$$\begin{cases}
E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\
E(K) & \text{if } L(E, 1) \neq 0.
\end{cases}$$
Proof of BSD in analytic rank ≤ 1

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\mathcal{W}(E/\mathbb{Q})$ is finite and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\text{ord}_{s=1} L(E/K, s) = 1$.
2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.
3. Koyvagin \Rightarrow $E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathcal{W}(E/K) < \infty$.
4. Explicit calculation \Rightarrow

 the point P_K belongs to $\begin{cases} E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\ E(K)^- & \text{if } L(E, 1) \neq 0. \end{cases}$
Proof of BSD in analytic rank ≤ 1

Theorem (Gross-Zagier, Kolyvagin)

If \(\text{ord}_{s=1} L(E, s) \leq 1 \), then \(\mathcal{W}(E/\mathbb{Q}) \) is finite and

\[
\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).
\]

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \(\Rightarrow \) there exists a \(K \) satisfying (HH), with \(\text{ord}_{s=1} L(E/K, s) = 1 \).
2. Gross-Zagier \(\Rightarrow \) the Heegner point \(P_K \) is of infinite order.
3. Koyvagin \(\Rightarrow \) \(E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K \), and \(\mathcal{W}(E/K) < \infty \).
4. Explicit calculation \(\Rightarrow \)
 \[
 \text{the point } P_K \text{ belongs to } \begin{cases}
 E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\
 E(K)^- & \text{if } L(E, 1) \neq 0.
 \end{cases}
 \]
Proof of BSD in analytic rank \(\leq 1 \)

Theorem (Gross-Zagier, Kolyvagin)

If \(\text{ord}_{s=1} L(E, s) \leq 1 \), then \(\mathcal{W}(E/Q) \) is finite and

\[
\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).
\]

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \(\Rightarrow \) there exists a \(K \) satisfying (HH), with \(\text{ord}_{s=1} L(E/K, s) = 1 \).
2. Gross-Zagier \(\Rightarrow \) the Heegner point \(P_K \) is of infinite order.
3. Kolyvagin \(\Rightarrow \) \(E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K \), and \(\mathcal{W}(E/K) < \infty \).
4. Explicit calculation \(\Rightarrow \)

\[P_K \text{ belongs to } \begin{cases} E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\ E(K)^{-} & \text{if } L(E, 1) \neq 0. \end{cases} \]
Proof of BSD in analytic rank ≤ 1

Theorem (Gross-Zagier, Kolyvagin)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\mathcal{W}(E/\mathbb{Q})$ is finite and

$$\text{rank}(E(\mathbb{Q})) = \text{ord}_{s=1} L(E, s).$$

Proof.

1. Bump-Friedberg-Hoffstein, Murty-Murty \Rightarrow there exists a K satisfying (HH), with $\text{ord}_{s=1} L(E/K, s) = 1$.
2. Gross-Zagier \Rightarrow the Heegner point P_K is of infinite order.
3. Kolyvagin \Rightarrow $E(K) \otimes \mathbb{Q} = \mathbb{Q} \cdot P_K$, and $\mathcal{W}(E/K) < \infty$.
4. Explicit calculation \Rightarrow

 - the point P_K belongs to

 $$\begin{cases}
 E(\mathbb{Q}) & \text{if } L(E, 1) = 0, \\
 E(K) & \text{if } L(E, 1) \neq 0.
 \end{cases}$$
Totally real fields

The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \(\mathbb{Q} \) is replaced by a *totally real field* \(F \) of degree \(n > 1 \).

Definition

An elliptic curve \(E/F \) is *modular* if there is an automorphic representation \(\pi(E) \) of \(\text{GL}_2(\mathbb{A}_F) \) attached to \(E \), or, equivalently, a Hilbert modular form \(G \in S_2(N) \) over \(F \) such that

\[
L(E/F, s) = L(G, s).
\]

Modularity is often known, and will be assumed from now on.
The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \mathbb{Q} is replaced by a totally real field F of degree $n > 1$.

Definition

An elliptic curve E/F is *modular* if there is an automorphic representation $\pi(E)$ of $\text{GL}_2(\mathbb{A}_F)$ attached to E, or, equivalently, a Hilbert modular form $G \in S_2(N)$ over F such that

$$L(E/F, s) = L(G, s).$$

Modularity is often known, and will be assumed from now on.
The mathematical objects exploited by Gross-Zagier and Kolyvagin continue to be available when \mathbb{Q} is replaced by a totally real field F of degree $n > 1$.

Definition

An elliptic curve E/F is *modular* if there is an automorphic representation $\pi(E)$ of $\text{GL}_2(\mathbb{A}_F)$ attached to E, or, equivalently, a Hilbert modular form $G \in S_2(N)$ over F such that

$$L(E/F, s) = L(G, s).$$

Modularity is often known, and will be assumed from now on.
Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$-dimensional$)$ subspace

$$\Omega_G \subset \Omega_{\text{har}}^n(V(\mathbb{C}))^G,$$

where V is a suitable Hilbert modular variety of dimension n.

Definition
The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F : \mathbb{Q}]$ is odd, or there is at least one prime $\nu|N$ at which $\pi_\nu(E)$ is not in the principal series.

Theorem (Geometric modularity)
Suppose that E/F is modular and satisfies (JL). There there exists a Shimura curve X/F and a non-constant morphism

$$\pi_E : \text{Jac}(X) \longrightarrow E.$$
Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$-dimensional) subspace

$$\Omega_G \subset \Omega_{\text{har}}^n(V(\mathbb{C}))^G,$$

where V is a suitable Hilbert modular variety of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F: \mathbb{Q}]$ is odd, or there is at least one prime $v|N$ at which $\pi_v(E)$ is not in the principal series.

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). Then there exists a Shimura curve X/F and a non-constant morphism

$$\pi_E : \text{Jac}(X) \longrightarrow E.$$
Geometric modularity

Geometrically, the Hilbert modular form G corresponds to a $(2^n$-dimensional) subspace

$$\Omega_G \subset \Omega_{\text{har}}^n(V(\mathbb{C}))^G,$$

where V is a suitable Hilbert modular variety of dimension n.

Definition

The elliptic curve E/F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either $[F : \mathbb{Q}]$ is odd, or there is at least one prime $v | N$ at which $\pi_v(E)$ is not in the principal series.

Theorem (Geometric modularity)

Suppose that E/F is modular and satisfies (JL). There exists a Shimura curve X/F and a non-constant morphism

$$\pi_E : \text{Jac}(X) \longrightarrow E.$$
Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\operatorname{ord}_{s=1} L(E/F, s) \leq 1$, then $\mathcal{W}(E/F)$ is finite and

$$\operatorname{rank}(E(F)) = \operatorname{ord}_{s=1} L(E/F, s).$$

Zhang’s Theorem

Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\text{ord}_{s=1} L(E/F, s) \leq 1$, then $\mathcal{W}(E/F)$ is finite and

$$\text{rank}(E(F)) = \text{ord}_{s=1} L(E/F, s).$$

Shimura curves, like modular curves, are equipped with a plentiful supply of CM points.

Theorem (Zhang)

Let E/F be a modular elliptic curve satisfying hypothesis (JL). If $\text{ord}_{s=1} L(E/F, s) \leq 1$, then $\mathcal{M}(E/F)$ is finite and

$$\text{rank}(E(F)) = \text{ord}_{s=1} L(E/F, s).$$

In analytic rank zero one can dispense with (JL).

Theorem (Matteo Longo)

Let E/F be a modular elliptic curve. If $L(E/F,1) \neq 0$, then $E(F)$ is finite and $\mathbb{W}(E/F)[p^\infty]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n-Selmer group of E.

In analytic rank zero one can dispense with (JL).

Theorem (Matteo Longo)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then $E(F)$ is finite and $\mathcal{W}(E/F)[p^\infty]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n-Selmer group of E.

BSD in analytic rank zero

In analytic rank zero one can dispense with (JL).

Theorem (Matteo Longo)

Let E/F be a modular elliptic curve. If $L(E/F, 1) \neq 0$, then $E(F)$ is finite and $\mathfrak{W}(E/F)[p^\infty]$ is finite for almost all p.

Proof.

Congruences between modular forms \Rightarrow the Galois representation $E[p^n]$ occurs in $J_n[p^n]$, where $J_n = \text{Jac}(X_n)$ and X_n is a Shimura curve X_n whose level may (and does) depend on n. Use CM points on X_n to bound the p^n-Selmer group of E.

\[\square \]
The Challenge that remains

When \(\text{ord}_{s=1} L(E/F, s) = 1 \) but hypothesis (JL) is not satisfied, produce the point in \(E(F) \) whose existence is predicted by BSD.

Remark: If \(E/F \) does not satisfy (JL), then its conductor is a square.

Prototypical case where (JL) fails to hold:

\[F = \mathbb{Q}(\sqrt{N}), \text{ a real quadratic field,} \]

\[\text{cond}(E/F) = 1. \]

I will focus on this case for simplicity.

Fact: \(E(F) \) has even analytic rank, so Longo's theorem applies.
The Challenge that remains

When \(\text{ord}_{s=1} L(E/F, s) = 1 \) but hypothesis (JL) is not satisfied, produce the point in \(E(F) \) whose existence is predicted by BSD.

Remark: If \(E/F \) does not satisfy (JL), then its conductor is a square.

Prototypical case where (JL) fails to hold:

\[F = \mathbb{Q}(\sqrt{N}), \text{ a real quadratic field,} \]

\[\text{cond}(E/F) = 1. \]

I will focus on this case for simplicity.

Fact: \(E(F) \) has even analytic rank, so Longo’s theorem applies.
The Challenge that remains

When $\text{ord}_{s=1} L(E/F, s) = 1$ but hypothesis (JL) is not satisfied, produce the point in $E(F)$ whose existence is predicted by BSD.

Remark: If E/F does not satisfy (JL), then its conductor is a square.

Prototypical case where (JL) fails to hold:

$$F = \mathbb{Q}(\sqrt{N}),$$ a real quadratic field,

$$\text{cond}(E/F) = 1.$$

I will focus on this case for simplicity.

Fact: $E(F)$ has even analytic rank, so Longo’s theorem applies.
The Challenge that remains

When \(\text{ord}_{s=1} L(E/F, s) = 1 \) but hypothesis (JL) is not satisfied, produce the point in \(E(F) \) whose existence is predicted by BSD.

Remark: If \(E/F \) does not satisfy (JL), then its conductor is a square.

Prototypical case where (JL) fails to hold:

\[
F = \mathbb{Q}(\sqrt{N}), \text{ a real quadratic field,}
\]

\[
\text{cond}(E/F) = 1.
\]

I will focus on this case for simplicity.

Fact: \(E(F) \) has even analytic rank, so Longo’s theorem applies.
Consider the twist E_M of E by a quadratic extension M/F.

Proposition

1. If M is totally real or CM, then E_M has even analytic rank.
2. If M is an ATR (Almost Totally Real) extension, then E_M has odd analytic rank.

Conjecture (on ATR twists)

Let M be an ATR extension of F and let E_M be the associated twist of E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\mathfrak{w}(E_M/F) < \infty$.

Although BSD is much better understood in analytic rank one, the conjecture on ATR twists presents a genuine mystery!
ATR twists

Consider the twist E_M of E by a quadratic extension M/F.

Proposition

1. If M is totally real or CM, then E_M has even analytic rank.
2. If M is an ATR (Almost Totally Real) extension, then E_M has odd analytic rank.

Conjecture (on ATR twists)

Let M be an ATR extension of F and let E_M be the associated twist of E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\mathfrak{w}(E_M/F) < \infty$.

Although BSD is much better understood in analytic rank one, the conjecture on ATR twists presents a genuine mystery!
Consider the twist E_M of E by a quadratic extension M/F.

Proposition

1. If M is totally real or CM, then E_M has even analytic rank.
2. If M is an ATR (Almost Totally Real) extension, then E_M has odd analytic rank.

Conjecture (on ATR twists)

Let M be an ATR extension of F and let E_M be the associated twist of E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\lambda(E_M/F) < \infty$.

Although BSD is much better understood in analytic rank one, the conjecture on ATR twists presents a genuine mystery!
Consider the twist E_M of E by a quadratic extension M/F.

Proposition

1. *If* M *is totally real or CM, then* E_M *has even analytic rank.*
2. *If* M *is an ATR (Almost Totally Real) extension, then* E_M *has odd analytic rank.*

Conjecture (on ATR twists)

Let M be an ATR extension of F and let E_M be the associated twist of E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\mathfrak{m}(E_M/F) < \infty$.

Although BSD is much better understood in analytic rank one, the conjecture on ATR twists presents a genuine mystery!
Some years ago, Adam Logan and I proposed a strategy for calculating a global point on $E_M(F)$, based on Abel-Jacobi images of ATR cycles.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \text{SL}_2(\mathcal{O}_F) \backslash (\mathcal{H}_1 \times \mathcal{H}_2).$$

To any \mathcal{O}_F-algebra embedding

$$\Psi : \mathcal{O}_M \to M_2(\mathcal{O}_F),$$

one can attach cycles $\Delta_\psi \subset Y(\mathbb{C})$ of real dimension one which “behave like Heegner points”.
ATR cycles

Some years ago, Adam Logan and I proposed a strategy for calculating a global point on $E_M(F)$, based on Abel-Jacobi images of ATR cycles.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \text{SL}_2(O_F) \backslash (\mathcal{H}_1 \times \mathcal{H}_2).$$

To any O_F-algebra embedding

$$\Psi : O_M \rightarrow M_2(O_F),$$

one can attach cycles $\Delta_\psi \subset Y(\mathbb{C})$ of real dimension one which “behave like Heegner points”.
Some years ago, Adam Logan and I proposed a strategy for calculating a global point on $E_M(F)$, based on Abel-Jacobi images of ATR cycles.

Let Y be the (open) Hilbert modular surface attached to E/F:

$$Y(\mathbb{C}) = \text{SL}_2(\mathcal{O}_F) \backslash (\mathcal{H}_1 \times \mathcal{H}_2).$$

To any \mathcal{O}_F-algebra embedding

$$\Phi : \mathcal{O}_M \longrightarrow M_2(\mathcal{O}_F),$$

one can attach cycles $\Delta_\Phi \subset Y(\mathbb{C})$ of real dimension one which “behave like Heegner points”.
ATR cycles

\(\tau^{(1)}_\Psi := \text{fixed point of } \Psi(\mathcal{M}^\times) \cap \mathcal{H}_1; \)

\(\tau^{(2)}_\Psi, \tau^{(2)'}_\Psi := \text{fixed points of } \Psi(\mathcal{M}^\times) \cap (\mathcal{H}_2 \cup \mathbb{R}); \)

\(\tau_\Psi = \{\tau^{(1)}_\Psi\} \times \text{geodesic}(\tau^{(2)}_\Psi \to \tau^{(2)'}_\Psi). \)

\[\Delta_\Psi = \tau_\Psi / \langle \Psi(\mathcal{O}^\times_\mathcal{M}) \rangle \subset \mathcal{Y}(\mathbb{C}). \]

Key fact: The cycles \(\Delta_\Psi \) are null-homologous.
ATR cycles

\[\tau_{\psi}^{(1)} := \text{fixed point of } \psi(\mathcal{M}^\times) \cap \mathcal{H}_1; \]

\[\tau_{\psi}^{(2)}, \tau_{\psi}^{(2)'} := \text{fixed points of } \psi(\mathcal{M}^\times) \cap (\mathcal{H}_2 \cup \mathbb{R}); \]

\[\mathcal{Y}_\psi = \{ \tau_{\psi}^{(1)} \} \times \text{geodesic}(\tau_{\psi}^{(2)} \rightarrow \tau_{\psi}^{(2)'}). \]

\[\Delta_\psi = \mathcal{Y}_\psi/\langle \psi(\mathcal{O}_M^\times) \rangle \subset \mathcal{Y}(\mathbb{C}). \]

Key fact: The cycles \(\Delta_\psi \) are null-homologous.
ATR cycles

\[\tau_\Psi^{(1)} := \text{fixed point of } \Psi(M^\times) \cap \mathcal{H}_1; \]

\[\tau_\Psi^{(2)}, \tau_\Psi^{(2)'} := \text{fixed points of } \Psi(M^\times) \cap (\mathcal{H}_2 \cup \mathbb{R}); \]

\[\Upsilon_\Psi = \{\tau_\Psi^{(1)}\} \times \text{geodesic}(\tau_\Psi^{(2)} \to \tau_\Psi^{(2)'}). \]

\[\Delta_\Psi = \Upsilon_\Psi / \langle \Psi(\mathcal{O}_M^\times) \rangle \subset Y(\mathbb{C}). \]

Key fact: The cycles \(\Delta_\Psi \) are null-homologous.
ATR cycles

\[\tau^{(1)}_\psi := \text{fixed point of } \Psi(M^\times) \cap \mathcal{H}_1; \]

\[\tau^{(2)}_\psi, \tau^{(2)'}_\psi := \text{fixed points of } \Psi(M^\times) \cap (\mathcal{H}_2 \cup \mathbb{R}); \]

\[\mathcal{Y}_\psi = \{ \tau^{(1)}_\psi \} \times \text{geodesic}(\tau^{(2)}_\psi \to \tau^{(2)'}_\psi). \]

\[\Delta_\psi = \mathcal{Y}_\psi / \langle \Psi(O_M^\times) \rangle \subset \mathcal{Y}(\mathbb{C}). \]

Key fact: The cycles \(\Delta_\psi \) are null-homologous.
ATR cycles

\[\tau_{\Psi}^{(1)} := \text{fixed point of } \Psi(M^\times) \oslash \mathcal{H}_1; \]

\[\tau_{\Psi}^{(2)}, \tau_{\Psi}^{(2)'} := \text{fixed points of } \Psi(M^\times) \oslash (\mathcal{H}_2 \cup \mathbb{R}); \]

\[\gamma_{\Psi} = \{ \tau_{\Psi}^{(1)} \} \times \text{geodesic}(\tau_{\Psi}^{(2)} \rightarrow \tau_{\Psi}^{(2)'}). \]

\[\Delta_{\Psi} = \gamma_{\Psi}/\langle \Psi(O_M^\times) \rangle \subset Y(\mathbb{C}). \]

Key fact: The cycles \(\Delta_{\Psi} \) are **null-homologous**.
Oda’s periods

ATR cycles are similar to the modular symbols on Hilbert modular varieties of Mladen Dimitrov’s lecture, whose classes in homology encode special values of L-functions.

Since ATR cycles are null-homologous, one may hope to relate them to first derivatives.

For any 2-form $\omega_G \in \Omega_G$,

$$
P^2_{\Psi}(G) := \int_{\partial^{-1}\Delta_{\Psi}} \omega_G \in \mathbb{C}/\Lambda_G
$$

Conjecture (Oda)

For a suitable choice of ω_G, we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P^2_{\Psi}(G)$ can then be viewed as a point in $E(\mathbb{C})$.
Oda’s periods

ATR cycles are similar to the modular symbols on Hilbert modular varieties of Mladen Dimitrov’s lecture, whose classes in homology encode *special values* of L-functions.

Since ATR cycles are null-homologous, one may hope to relate them to *first derivatives*.

For any 2-form $\omega_G \in \Omega_G$,

$$P_\Psi^2(G) := \int_{\partial^{-1}\Delta_\Psi} \omega_G \in \mathbb{C}/\Lambda_G$$

Conjecture (Oda)

For a suitable choice of ω_G, we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P_\Psi^2(G)$ can then be viewed as a point in $E(\mathbb{C})$.
Oda’s periods

ATR cycles are similar to the modular symbols on Hilbert modular varieties of Mladen Dimitrov’s lecture, whose classes in homology encode \textit{special values} of \textit{L}-functions.

Since ATR cycles are null-homologous, one may hope to relate them to \textit{first derivatives}.

For any 2-form $\omega_G \in \Omega_G$,

$$P^2_{\psi}(G) := \int_{\partial^{-1} \Delta_{\psi}} \omega_G \in \mathbb{C}/\Lambda_G$$

\textbf{Conjecture (Oda)}

For a suitable choice of ω_G, we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P^2_{\psi}(G)$ can then be viewed as a point in $E(\mathbb{C})$.
Oda’s periods

ATR cycles are similar to the modular symbols on Hilbert modular varieties of Mladen Dimitrov’s lecture, whose classes in homology encode special values of L-functions.

Since ATR cycles are null-homologous, one may hope to relate them to first derivatives.

For any 2-form $\omega_G \in \Omega_G$,

$$P_{\psi}^2(G) := \int_{\partial^{-1}\Delta_{\psi}} \omega_G \in \mathbb{C}/\Lambda_G$$

Conjecture (Oda)

For a suitable choice of ω_G, we have $\mathbb{C}/\Lambda_G \sim E(\mathbb{C})$. In particular $P_{\psi}^2(G)$ can then be viewed as a point in $E(\mathbb{C})$.
Conjecture (Logan, D, 2004)

The points \(P^?_{\Psi}(G) \) belong to \(E(H) \otimes \mathbb{Q} \), where \(H \) is the Hilbert class field of \(M \). The points \(P^?_{\Psi_1}(G), \ldots, P^?_{\Psi_h}(G) \) are conjugate to each other under \(\text{Gal}(H/M) \). Finally, the point

\[
P^?_M(G) := P^?_{\Psi_1}(G) + \cdots + P^?_{\Psi_h}(G)
\]

is of infinite order iff \(L'(E/M, 1) \neq 0 \).

This conjecture (in a sufficiently general and precise form) would imply the Conjecture on ATR twists. But we do not know how to tackle it.
ATR points

Conjecture (Logan, D, 2004)

The points $P_{\Psi}^? (G)$ belong to $E(H) \otimes \mathbb{Q}$, where H is the Hilbert class field of M. The points $P_{\Psi_1}^? (G), \ldots, P_{\Psi_h}^? (G)$ are conjugate to each other under $\text{Gal}(H/M)$. Finally, the point

$$P_M^? (G) := P_{\Psi_1}^? (G) + \cdots + P_{\Psi_h}^? (G)$$

is of infinite order iff $L'(E/M, 1) \neq 0$.

This conjecture (in a sufficiently general and precise form) would imply the Conjecture on ATR twists. But we do not know how to tackle it.
Conjecture (Logan, D, 2004)

The points $P_{\psi}(G)$ belong to $E(H) \otimes \mathbb{Q}$, where H is the Hilbert class field of M. The points $P_{\psi_1}(G), \ldots, P_{\psi_h}(G)$ are conjugate to each other under $\text{Gal}(H/M)$. Finally, the point

$$P_M^?(G) := P_{\psi_1}(G) + \cdots + P_{\psi_h}(G)$$

is of infinite order iff $L'(E/M, 1) \neq 0$.

This conjecture (in a sufficiently general and precise form) would imply the Conjecture on ATR twists. But we do not know how to tackle it.
ATR points

Conjecture (Logan, D, 2004)

The points $P^?_{\psi}(G)$ belong to $E(H) \otimes \mathbb{Q}$, where H is the Hilbert class field of M. The points $P^?_{\psi_1}(G), \ldots, P^?_{\psi_h}(G)$ are conjugate to each other under $\text{Gal}(H/M)$. Finally, the point

$$P^?_M(G) := P^?_{\psi_1}(G) + \cdots + P^?_{\psi_h}(G)$$

is of infinite order iff $L'(E/M, 1) \neq 0$.

This conjecture (in a sufficiently general and precise form) would imply the Conjecture on ATR twists. But we do not know how to tackle it.
The current work with Rotger and Zhao: \(\mathbb{Q} \)-curves

Definition

A \(\mathbb{Q} \)-curve over \(F \) is an elliptic curve \(E/F \) which is \(F \)-isogenous to its Galois conjugate.

Theorem (Ribet)

Let \(E \) be a \(\mathbb{Q} \)-curve of conductor 1 over \(F = \mathbb{Q}(\sqrt{N}) \). Then there is an elliptic modular form \(f \in S_2(\Gamma_1(N), \varepsilon_F) \) with fourier coefficients in a quadratic (imaginary) field such that

\[
L(E/F, s) = L(f, s)L(f^\sigma, s).
\]

The Hilbert modular form \(G \) on \(GL_2(\mathbb{A}_F) \) is the Doi-Naganuma lift of \(f \). Modular parametrisation defined over \(F \):

\[
J_1(N) \longrightarrow E.
\]
The current work with Rotger and Zhao: \(\mathbb{Q} \)-curves

Definition

A \(\mathbb{Q} \)-curve over \(F \) is an elliptic curve \(E/F \) which is \(F \)-isogenous to its Galois conjugate.

Theorem (Ribet)

Let \(E \) be a \(\mathbb{Q} \)-curve of conductor 1 over \(F = \mathbb{Q}(\sqrt{N}) \). Then there is an elliptic modular form \(f \in S_2(\Gamma_1(N), \varepsilon_F) \) with fourier coefficients in a quadratic (imaginary) field such that

\[
L(E/F, s) = L(f, s)L(f^\sigma, s).
\]

The Hilbert modular form \(G \) on \(GL_2(\mathbb{A}_F) \) is the Doi-Naganuma lift of \(f \). Modular parametrisation defined over \(F \):

\[
J_1(N) \longrightarrow E.
\]
The current work with Rotger and Zhao: \(\mathbb{Q} \)-curves

Definition

A \(\mathbb{Q} \)-curve over \(F \) is an elliptic curve \(E/F \) which is \(F \)-isogenous to its Galois conjugate.

Theorem (Ribet)

Let \(E \) be a \(\mathbb{Q} \)-curve of conductor 1 over \(F = \mathbb{Q}(\sqrt{N}) \). Then there is an elliptic modular form \(f \in S_2(\Gamma_1(N), \varepsilon_F) \) with Fourier coefficients in a quadratic (imaginary) field such that

\[
L(E/F, s) = L(f, s)L(f^\sigma, s).
\]

The Hilbert modular form \(G \) on \(GL_2(\mathbb{A}_F) \) is the Doi-Naganuma lift of \(f \). Modular parametrisation defined over \(F \):

\[
J_1(N) \longrightarrow E.
\]
The current work with Rotger and Zhao: \mathbb{Q}-curves

Definition

A \mathbb{Q}-curve over F is an elliptic curve E/F which is F-isogenous to its Galois conjugate.

Theorem (Ribet)

Let E be a \mathbb{Q}-curve of conductor 1 over $F = \mathbb{Q}(\sqrt{N})$. Then there is an elliptic modular form $f \in S_2(\Gamma_1(N), \varepsilon_F)$ with Fourier coefficients in a quadratic (imaginary) field such that

$$L(E/F, s) = L(f, s)L(f^\sigma, s).$$

The Hilbert modular form G on $GL_2(\mathbb{A}_F)$ is the Doi-Naganuma lift of f. Modular parametrisation defined over F:

$$J_1(N) \longrightarrow E.$$
Recall: If E is a \mathbb{Q}-curve, then E/F has even analytic rank; the same is true for its twists by CM or totally real quadratic characters χ of F with $\chi(\mathfrak{N}) = 1$.

Theorem (Victor Rotger, Yu Zhao, D)

Let E be a \mathbb{Q}-curve of square conductor \mathfrak{N}_E over a real quadratic field F, and let M/F be an ATR extension of discriminant prime to \mathfrak{N}_E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\mathcal{W}(E_M/F)$ is finite.
Recall: If E is a \mathbb{Q}-curve, then E/F has even analytic rank; the same is true for its twists by CM or totally real quadratic characters χ of F with $\chi(\mathfrak{N}) = 1$.

Theorem (Victor Rotger, Yu Zhao, D)

Let E be a \mathbb{Q}-curve of square conductor \mathfrak{N}_E over a real quadratic field F, and let M/F be an ATR extension of discriminant prime to \mathfrak{N}_E. If $L'(E_M/F, 1) \neq 0$, then $E_M(F)$ has rank one and $\mathcal{L}(E_M/F)$ is finite.
Elliptic curves of conductor 1

Pinch, Cremona: For $N = \text{disc}(F)$ prime and ≤ 1000, there are exactly 17 isogeny classes of elliptic curves of conductor 1 over $\mathbb{Q}(\sqrt{N})$,

$N = 29, 37, 41, 109, 157, 229, 257, 337, 349,$

$397, 461, 509, 509, 877, 733, 881, 997.$

All but two ($N = 509, 877$) are \mathbb{Q}-curves.
Some Galois theory

Let \mathcal{M} = Galois closure of M over \mathbb{Q}. Then $\text{Gal}(\mathcal{M}/\mathbb{Q}) = D_8$.

This group contains two copies of the Klein 4-group:

$$V_F = \langle \tau_M, \tau'_M \rangle, \quad V_K = \langle \tau_L, \tau'_L \rangle.$$
Some Galois theory

Suppose that \(F = \mathcal{M}^{\mathcal{V}_F} \), \(M = \mathcal{M}^{\mathcal{T}_M} \), \(M' = \mathcal{M}^{\mathcal{T}'_M} \),

and set \(K = \mathcal{M}^{\mathcal{V}_K} \), \(L = \mathcal{M}^{\mathcal{T}_L} \), \(L' = \mathcal{M}^{\mathcal{T}'_L} \).
Key facts about K and L

Let \[
\begin{align*}
\chi_M &: \mathbb{A}_F^\times \rightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\
\chi_L &: \mathbb{A}_K^\times \rightarrow \pm 1 \text{ be the quadratic character attached to } L/K.
\end{align*}
\]

1. $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies (HH);
2. The central character $\chi_L|_{\mathbb{A}_Q^\times}$ is equal to ε_F.
3. $\text{Ind}_F^Q \chi_M = \text{Ind}_K^Q \chi_L$;
Key facts about K and L

Let \[
\begin{align*}
\chi_M : \mathbb{A}_F^\times &\longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\
\chi_L : \mathbb{A}_K^\times &\longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K.
\end{align*}
\]

1. $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies (HH);
2. The central character $\chi_L|_{\mathbb{A}_Q^\times}$ is equal to ε_F.
3. $\text{Ind}_F^\mathbb{Q} \chi_M = \text{Ind}_K^\mathbb{Q} \chi_L$;
Key facts about K and L

Let
\[
\begin{cases}
\chi_M : \mathbb{A}_F^\times \rightarrow \pm 1 \text{ be the quadratic character attached to } M/F; \\
\chi_L : \mathbb{A}_K^\times \rightarrow \pm 1 \text{ be the quadratic character attached to } L/K.
\end{cases}
\]

1. $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies (HH);
2. The central character $\chi_L|_{\mathbb{A}_Q^\times}$ is equal to ε_F.
3. $\text{Ind}_{F}^{\mathbb{Q}} \chi_M = \text{Ind}_{K}^{\mathbb{Q}} \chi_L$;
Key facts about K and L

Let

\[
\left\{ \begin{array}{l}
\chi_M : \mathbb{A}^\times_F \longrightarrow \pm 1 \text{ be the quadratic character attached to } M/F;
\chi_L : \mathbb{A}^\times_K \longrightarrow \pm 1 \text{ be the quadratic character attached to } L/K.
\end{array} \right.
\]

1. $K = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies (HH);
2. The central character $\chi_L\big|_{\mathbb{A}^\times_Q}$ is equal to ε_F.
3. $\text{Ind}_F^Q \chi_M = \text{Ind}_K^Q \chi_L$.
The Artin formalism

Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

$$L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}_F^Q \chi_M, s)$$

$$= L(f \otimes \text{Ind}_K^K \chi_L, s) = L(f/K, \chi_L, s).$$

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.
The Artin formalism

Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

$$L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}_F^\mathbb{Q} \chi_M, s)$$

$$= L(f \otimes \text{Ind}_K^\mathbb{Q} \chi_L, s) = L(f/K, \chi_L, s).$$

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.
The Artin formalism

Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

$$L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}^Q_F \chi_M, s)$$

$$= L(f \otimes \text{Ind}^Q_K \chi_L, s) = L(f/K, \chi_L, s).$$

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.
Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

\[
L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}^Q_F \chi_M, s)
\]
\[
= L(f \otimes \text{Ind}^Q_K \chi_L, s) = L(f/K, \chi_L, s).
\]

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.

The Artin formalism

Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

$$L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}_F^\mathbb{Q} \chi_M, s)$$

$$= L(f \otimes \text{Ind}_K^\mathbb{Q} \chi_L, s) = L(f/K, \chi_L, s).$$

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.
Let E/F be a \mathbb{Q}-curve and let $f \in S_2(\Gamma_0(N), \varepsilon_F)$ be the associated elliptic cusp form.

$$L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}_F^\mathbb{Q} \chi_M, s)$$

$$= L(f \otimes \text{Ind}_K^\mathbb{Q} \chi_L, s) = L(f/K, \chi_L, s).$$

In particular, $L'(E_M/F, 1) \neq 0$ implies that $L'(f/K, \chi_L, 1) \neq 0$.
The Artin formalism

Let \(E/F \) be a \(\mathbb{Q} \)-curve and let \(f \in S_2(\Gamma_0(N), \varepsilon_F) \) be the associated elliptic cusp form.

\[
L(E_M/F, s) = L(E/F, \chi_M, s) = L(f/F, \chi_M, s) = L(f \otimes \text{Ind}_F^Q \chi_M, s) = L(f \otimes \text{Ind}_K^Q \chi_L, s) = L(f/K, \chi_L, s).
\]

In particular, \(L'(E_M/F, 1) \neq 0 \) implies that \(L'(f/K, \chi_L, 1) \neq 0 \).
A theorem of GZK-type

The following strikingly general recent generalisation of the GZK theorem applies to forms on $\Gamma_1(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If $L'(f/K, \chi_L, 1) \neq 0$, then $A_f(L^-) \otimes \mathbb{Q}$ has dimension one over T_f, and therefore

$$\text{rank}(A_f(L^-)) = 2.$$

Furthermore $\mathcal{W}(A_f/L^-)$ is finite.

$$\text{rank}(A_f(L^-)) = \text{rank}(A_f(M^-)), \quad A_f(M^-) = E(M)^- \oplus E(M)^-.$$

Corollary

If $L'(E_M/F, 1) \neq 0$, then $\text{rank}(E_M(F)) = 1$ and $\mathcal{W}(E_M/F) < \infty$.
A theorem of GZK-type

The following strikingly general recent generalisation of the GZK theorem applies to forms on $\Gamma_1(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If $L'(f/K, \chi_L, 1) \neq 0$, then $A_f(L)^- \otimes \mathbb{Q}$ has dimension one over T_f, and therefore

$$\text{rank}(A_f(L)^-) = 2.$$

Furthermore $\mathcal{H}(A_f/L)^-$ is finite.

$$\text{rank}(A_f(L)^-) = \text{rank}(A_f(M)^-), \quad A_f(M)^- = E(M)^- \oplus E(M)^-.$$
A theorem of GZK-type

The following strikingly general recent generalisation of the GZK theorem applies to forms on $\Gamma_1(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If $L'(f/K, \chi_L, 1) \neq 0$, then $A_f(L^-) \otimes \mathbb{Q}$ has dimension one over T_f, and therefore

$$\text{rank}(A_f(L^-)) = 2.$$

Furthermore $\mathcal{W}(A_f/L^-)$ is finite.

$$\text{rank}(A_f(L^-)) = \text{rank}(A_f(M^-)), \quad A_f(M^-) = E(M^-) \oplus E(M^-).$$

Corollary

If $L'(E_M/F, 1) \neq 0$, then $\text{rank}(E_M(F)) = 1$ and $\mathcal{W}(E_M/F) < \infty$.
A final question

Underlying this theorem is the construction of a “classical” Heegner point $P_M(f) \in E_M(F)$.

Question

Is there a direct formula relating the ATR point $P_M^?(G)$ and the “classical” Heegner point $P_M(f)$ arising from $J_1(N)$?

The study undertaken with Rotger and Zhao suggests a relation of the form

$$P_M^?(G) \overset{?}{=} \ell \cdot P_M(f), \quad \ell \in \mathbb{Q}^\times.$$

This statement resembles the period relations of Oda relating the periods of an elliptic cusp form with those of its Doi-Naganuma lift, and hence might be more tractable (both computationally, and theoretically) than my original conjecture with Logan.
A final question

Underlying this theorem is the construction of a “classical” Heegner point $P_M(f) \in E_M(F)$.

Question

Is there a direct formula relating the ATR point $P_M^?(G)$ and the “classical” Heegner point $P_M(f)$ arising from $J_1(N)$?

The study undertaken with Rotger and Zhao suggests a relation of the form

$$P_M^?(G) \overset{?}{=} \ell \cdot P_M(f), \quad \ell \in \mathbb{Q}^\times.$$

This statement resembles the period relations of Oda relating the periods of an elliptic cusp form with those of its Doi-Naganuma lift, and hence might be more tractable (both computationally, and theoretically) than my original conjecture with Logan.
A final question

Underlying this theorem is the construction of a “classical” Heegner point $P_M(f) \in E_M(F)$.

Question

Is there a direct formula relating the ATR point $P_M^? (G)$ and the “classical” Heegner point $P_M(f)$ arising from $J_1(N)$?

The study undertaken with Rotger and Zhao suggests a relation of the form

$$P_M^? (G) \overset{?}{=} \ell \cdot P_M(f), \quad \ell \in \mathbb{Q}^\times.$$

This statement resembles the period relations of Oda relating the periods of an elliptic cusp form with those of its Doi-Naganuma lift, and hence might be more tractable (both computationally, and theoretically) than my original conjecture with Logan.
A final question

Underlying this theorem is the construction of a “classical” Heegner point $P_M(f) \in E_M(F)$.

Question

Is there a direct formula relating the ATR point $P_M^?(G)$ and the “classical” Heegner point $P_M(f)$ arising from $J_1(N)$?

The study undertaken with Rotger and Zhao suggests a relation of the form

$$P_M^?(G) \overset{?}{=} \ell \cdot P_M(f), \quad \ell \in \mathbb{Q}^\times.$$

This statement resembles the period relations of Oda relating the periods of an elliptic cusp form with those of its Doi-Naganuma lift, and hence might be more tractable (both computationally, and theoretically) than my original conjecture with Logan.
My usual apology

Sorry for running over time!
A Big Thank You to

Pierre Colmez,

Wee Teck Gan,

Eknath Ghate,

Dipendra Prasad,

Kenneth Ribet,1

Vinayak Vatsal.1

for organising this inspiring conference in such a lovely setting!

1Even if he did not show up...