SCHOLAR: Conference in honor of Ram Murty’s 60th birthday

From p-adic to Artin representations: a story in three vignettes

Henri Darmon

Montréal, October 15, 2013
Artin representations

Definition

An Artin representation is a continuous representation

\[\varrho : G_\mathbb{Q} \rightarrow \text{GL}_n(\mathbb{C}), \quad G_\mathbb{Q} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}). \]

Artin L-function:

\[L(\varrho, s) = \prod_\ell \det((1 - \sigma_\ell \ell^{-s})|_{V_\varrho \ell})^{-1}. \]

$\sigma_\ell =$ Frobenius element at ℓ;

$V_\varrho =$ complex vector space realising ϱ;

$I_\ell =$ inertia group at ℓ.
The Artin conjecture

Conjecture

The L-function $L(\varrho, s)$ extends to a holomorphic function of $s \in \mathbb{C}$ (except for a possible pole at $s = 1$).

- One-dimensional representations factor through abelian quotients, and their study amounts to class field theory for \mathbb{Q}:

\[L(\varrho, s) = L(\chi, s), \]

where $\chi : (\mathbb{Z}/n\mathbb{Z})^\times \longrightarrow \mathbb{C}^\times$ is a Dirichlet character.

- This talk will focus mainly on two-dimensional representations which are odd: $\varrho(\sigma_\infty)$ has eigenvalues 1 and -1.
The role of Dirichlet characters in the study of odd two-dimensional Artin representations is played by *cusp forms of weight one*:

Definition

A cusp form of weight one, level N, and (odd) character χ is a holomorphic function $g : \mathcal{H} \rightarrow \mathbb{C}$ satisfying

$$g \left(\frac{az + b}{cz + d} \right) = \chi(d)(cz + d)g(z).$$

Such a cusp form has a *fourier expansion*:

$$g = \sum a_n(g)q^n, \quad q = e^{2\pi i z}.$$
The strong Artin conjecture

Conjecture

If ϱ is an odd, irreducible, two-dimensional representation of $G_{\mathbb{Q}}$, there is a cusp form g of weight one, level $N = \text{cond}(\varrho)$, and character $\chi = \text{det}(\varrho)$, satisfying

$$L(\varrho, s) = L(g, s).$$

$L(g, s) = \sum_n a_n(g) n^{-s}$

is the *Hecke L-function* attached to g.
Theorem (Deligne-Serre)

Let \(g \) be a weight one eigenform. There is an odd two-dimensional Artin representation

\[\varrho_g : G_{\mathbb{Q}} \longrightarrow \text{GL}_2(\mathbb{C}) \]

satisfying

\[L(\varrho_g, s) = L(g, s). \]
The first step of the proof relies crucially on congruences between modular forms:

Proposition: For each prime ℓ, there exists an eigenform $g_\ell \in S_\ell(N, \chi)$ of weight ℓ satisfying

$$g \equiv g_\ell \pmod{\ell}.$$

Idea:

- Multiply g by the Eisenstein series $E_{\ell-1}$ of weight $\ell - 1$, to obtain a mod ℓ eigenform with the right fourier coefficients;

- lift this mod ℓ eigenform to an eigenform with coefficients in $\bar{\mathbb{Q}}$.
First vignette, cont’d: étale cohomology

It was already known, thanks to Deligne, how to associate Galois representations to eigenforms of weight $\ell \geq 2$: they occur in the étale cohomology of certain Kuga-Sato varieties.

$E :=$ universal elliptic curve over $X_1(N)$;

$W_\ell(N) = E \times X_1(N) \cdots \times X_1(N) E$ (\(\ell - 2\) times);

$V_{g_\ell} := H^{\ell-1}_{et}(W_\ell(N)\bar{\mathbb{Q}}, \mathbb{Q}_\ell)[g_\ell].$

Conclusion: For each ℓ there exists a mod ℓ representation

$\varrho_\ell : G_\mathbb{Q} \longrightarrow \text{GL}_2(\bar{\mathbb{F}}_\ell)$

satisfying

$\text{trace}(\varrho_\ell(\sigma_p)) = a_p(g) \pmod{\ell}, \quad \text{for all } p \nmid N\ell.$
Using \textit{a priori} estimates on the size of \(a_p(g) \), and some group theory, the size of the image of \(\varrho_\ell \) is \textit{bounded independently of} \(\ell \).

Hence the \(\varrho_\ell \)'s can be pieced together into a \(\varrho \) with finite image and values in \(\text{GL}_2(\mathbb{C}) \).
Note the key role played in this proof by:

- Congruences between weight one forms and modular forms of higher weights;

- Geometric structures — Kuga-Sato varieties, and their associated étale cohomology groups — which allow the construction of associated ℓ-adic Galois representations.
Second vignette: the Strong Artin Conjecture

Theorem

Let \(\varrho \) be an odd, irreducible, two-dimensional Artin representation. There exists an eigen-cuspform \(g \) of weight one satisfying

\[
L(g, s) = L(\varrho, s).
\]

- This theorem is now completely proved, over \(\mathbb{Q} \), thanks to the proof of the Serre conjectures by Khare and Wintenberger.

- Prior to that, significant progress on the conjecture was achieved based on a program of Taylor building on the fundamental modularity lifting theorems of Wiles.

- The “second vignette” is concerned with the broad outline of Taylor’s approach.
Scond vignette: Classification of Artin representations

By projective image, in order of increasing arithmetic complexity:

A. Reducible representations (sums of Dirichlet characters).

B. Dihedral, induced from an imaginary quadratic field.

C. Dihedral, induced from a real quadratic field.

D. Tetrahedral case: projective image A_4.

E. Octahedral case: projective image S_4.

F. Icosahedral case: projective image A_5.
Second vignette: the status of the Artin conjecture

Cases A-C date back to Hecke, while D and E can be handled via techniques based on *solvable base change*.

The interesting case is the icosahedral case, where \(\varrho \) has projective image \(A_5 \).

Technical hypotheses: Assume \(\varrho \) is unramified at 2, 3 and 5, and that \(\varrho(\sigma_2) \) has distinct eigenvalues.
Theorem

There exists a principally polarised abelian surface A with $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] \hookrightarrow \text{End}(A)$ such that

- $A[2] \simeq \overline{V}_q$ as $G_{\mathbb{Q}}$-modules;
Second vignette: the propagation of modularity

Langlands-Tunnel: $E[3]$ is modular.

Wiles’ modularity lifting, at 3: $T_3(E) := \lim_{\leftarrow, n} E[3^n]$ is modular.

Hence E is modular, hence $E[5] = A[\sqrt{5}]$ is as well.

Modularity lifting, at $\sqrt{5}$: $T_{\sqrt{5}}(A)$ is modular.

Hence A is modular, hence so is $A[2] = \overline{V_\rho}$.

Modularity lifting, at 2: The representation ρ is 2-adically modular, i.e., it corresponds to a 2-adic overconvergent modular form of weight one.
The theory of companion forms produces two distinct overconvergent 2-adic modular forms attached to ϱ. (Using the distinctness of the eigenvalues of $\varrho(\sigma_2)$.)

Buzzard-Taylor. A suitable linear combination of these forms can be extended to a classical form of weight one. (A key hypothesis on ϱ that is exploited is the triviality of $\varrho(I_2)$.)

This beautiful strategy has recently been extended to totally real fields by Kassaei, Sasaki, Tian, ...
A dominant theme in both vignettes is the rich interplay between Artin representations and ℓ-adic and mod ℓ representations, via congruences between the associated modular forms, (of weight one, and weight ≥ 2, where the geometric arsenal of étale cohomology becomes available.)
Third vignette: the Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over \mathbb{Q}. Hasse-Weil-Artin L-series

$$L(E, \varrho, s) = L(V_p(E) \otimes V_\varrho, s).$$

Conjecture (BSD)

The L-series $L(E, \varrho, s)$ extends to an entire function of s and

$$\text{ord}_{s=1} L(E, \varrho, s) = r(E, \varrho) := \dim_\mathbb{C} E(\overline{\mathbb{Q}})^{\varrho},$$

where

$$E(\overline{\mathbb{Q}})^{\varrho} = \text{hom}_{G_{\mathbb{Q}}}(V_{\varrho}, E(\overline{\mathbb{Q}}) \otimes \mathbb{C}).$$

Remark: $r(E, \varrho)$ is the multiplicity with which the Artin representation V_ϱ appears in the Mordell-Weil group of E over the field cut out by ϱ.
A special case of the equivariant BSD conjecture is

Conjecture

\[\text{If } L(E, \varrho, 1) \neq 0, \text{ then } r(E, \varrho) = 0. \]

- If \(\varrho \) is a quadratic character, it follows from the work of Gross-Zagier-Kolyvagin, combined with a non-vanishing result on \(L \)-series due to Bump-Friedberg Hoffstein and Murty-Murty.

- If \(\varrho \) is one-dimensional, it follows from the work of Kato.

- If \(\varrho \) is induced from a non-quadratic ring class character of an imaginary quadratic field, it follows from work of Bertolini, D., Longo, Nekovar, Rotger, Seveso, Vigni, Zhang,... building on the fundamental breakthroughs of Gross-Zagier and Kolyvagin.
Assume that

- $\varrho = \varrho_1 \otimes \varrho_2$, where ϱ_1 and ϱ_2 are odd irreducible Artin representations of dimension two.

- The conductors of E and ϱ are relatively prime.

- $\det(\varrho_1) = \det(\varrho_2)^{-1}$, and hence in particular ϱ is self-dual.

Theorem (D, Victor Rotger)

*If $L(E, \varrho, 1) \neq 0$, then $r(E, \varrho) = 0$.***
The Mordell-Weil group injects into a global Galois cohomology group

\[E(\overline{\mathbb{Q}})^{\rho} \longrightarrow H_f^1(\mathbb{Q}, V_p(E) \otimes V_{\rho}). \]

Local and global duality, and the Poitou-Tate sequence: In order to bound \(r(E, \varrho) \), it *suffices* to show that the natural map

\[H^1(\mathbb{Q}, V_p(E) \otimes V_{\rho}) \longrightarrow \frac{H^1(\mathbb{Q}_p, V_p(E) \otimes V_{\rho})}{H_f^1(\mathbb{Q}_p, V_p(E) \otimes V_{\rho})} \]

is *surjective*.

Thus the problem of bounding \(E(\overline{\mathbb{Q}})^{\rho} \) translates into the problem of constructing global cohomology classes with “sufficiently singular” local behaviour at \(p \).
Third vignette: modularity

Thanks to the modularity results alluded to in the first two vignettes, one can associate to \((E, \varrho_1, \varrho_2)\):

- An eigenform \(f\) of weight two, with \(L(f, s) = L(E, s)\).
- Eigenforms \(g\) and \(h\) of weight one, with \(L(g, s) = L(\varrho_1, s)\) and \(L(h, s) = L(\varrho_2, s)\).
- We then have an identification

\[
L(E, \varrho_1 \otimes \varrho_2, s) = L(f \otimes g \otimes h, s)
\]

of the Hasse-Weil-Artin \(L\)-function with the Garret-Rankin triple product \(L\)-function attached to \((f, g, h)\).
Third vignette: the theme of p-adic variation

Theorem (Hida)

There exist Hida families

$$g = \sum_n a_n(g, k)q^n, \quad h = \sum_n a_n(h, k)q^n,$$

of modular forms, specialising to g and h in weight one.

The Fourier coefficients $a_n(g, k)$ and $a_n(h, k)$ are rigid analytic functions on weight space $\mathcal{W} := \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p$.

For each integer $k \geq 2$, we obtain a pair (g_k, h_k) of classical forms of higher weight k. These converge to (g, h) p-adically as $k \to 1$ in \mathcal{W}.
Third vignette: generalised diagonal cycles

When \(k \geq 2 \), we can construct classes

\[
\kappa(f, g_k, h_k) \in H^1(\mathbb{Q}, V_p(E) \otimes V_p(g_k) \otimes V_p(h_k)(k - 1))
\]

from the images of \textit{generalised Gross-Kudla-Schoen cycles} in

\[
\text{CH}^k(X_0(N) \times W_k(N) \times W_k(N))_0.
\]

\textit{p-adic étale Abel-Jacobi map:}

\[
\text{CH}^k(X_0(N) \times W_k(N) \times W_k(N))_0
\]
\[
\rightarrow H^1(\mathbb{Q}, H^{2k-1}_{et}(X_0(N) \times W_k(N) \times W_k(N))_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)(k))
\]
\[
\rightarrow H^1(\mathbb{Q}, H^1_{et}(X_0(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)(1) \otimes H^{k-1}_{et}(W_k(N)_{\overline{\mathbb{Q}}}, \mathbb{Q}_p) \otimes^2 (k - 1))
\]
\[
\rightarrow H^1(\mathbb{Q}, V_p(E) \otimes V_p(g_k) \otimes V_p(h_k)(k - 1)).
\]
The technical heart of the proof has two parts:

- The classes $\kappa(f, g_k, h_k)$ interpolate to a p-adic analytic family of cohomology classes, as k varies over W. In particular, we can consider the p-adic limit

$$\kappa(f, g, h) := \lim_{k \to 1} \kappa(f, g_k, h_k).$$

Theorem (Reciprocity law)

The class $\kappa (f, g, h)$ is non-cristalline, i.e., has non-zero image in

$$\frac{H^1(Q_p, V_p(E) \otimes V_\varphi)}{H^1_f(Q_p, V_p(E) \otimes V_\varphi)}$$

if and only if $L(E, \varphi, 1) \neq 0$.
Application to ring class fields of real quadratic fields

Of special interest is the case where \(V_{\varrho_1} \) and \(V_{\varrho_2} \) are induced from finite order characters \(\chi_1 \) and \(\chi_2 \) (of mixed signature) of the same real quadratic field \(K \):

\[
V_{\varrho_1} \otimes V_{\varrho_2} = \text{Ind}_K^Q(\psi) \oplus \text{Ind}_K^Q(\tilde{\psi}), \quad \psi = \chi_1\chi_2, \quad \tilde{\psi} = \chi_1\chi'_2.
\]

The characters \(\psi \) and \(\tilde{\psi} \) are ring class characters of \(K \).

Theorem

Assume that \((E, K)\) satisfies the analytic non-vanishing condition of the next slide. Then, for all ring class characters \(\psi : \text{Gal}(H/K) \to \mathbb{C}^\times \) of \(K \) of conductor prime to \(N_E \),

\[
L(E/K, \psi, 1) \neq 0 \Rightarrow (E(H) \otimes \mathbb{C})\psi = 0.
\]
Given an elliptic curve E/\mathbb{Q} and a (real) quadratic field K, the non-vanishing condition is:

Non-vanishing condition: There exist even and odd quadratic twists E' of E such that

$$L(E'/K, 1) \neq 0.$$

Question: When is this condition satisfied for (E, K)?

Theorem (Bump-Friedberg-Hoffstein, Murty, Murty). There exist infinitely many quadratic twists E' of E for which $L(E'/\mathbb{Q}, 1) \neq 0$ and also infinitely many for which $L'(E'/\mathbb{Q}, 1) \neq 0$.
Non-vanishing of L-series

M. Ram Murty
V. Kumar Murty

Non-vanishing of L-Functions and Applications
Tetrahedral and Octahedral forms

Assume throughout that \(N_E \) is coprime to the discriminant of \(P(x) \).

Theorem

Let \(P \) be a polynomial of degree 4 with Galois group \(A_4 \) and no real roots, and let \(K \) be any subfield of its splitting field. Then \(L(E/K, 1) \neq 0 \Rightarrow E(K) \) is finite.

Theorem

Let \(P \) be a polynomial of degree 4 with Galois group \(S_4 \) and at least two non-real roots, and assume that \(L(E, \epsilon, 1) \neq 0 \), where \(\epsilon \) is the quadratic character attached to the discriminant of \(P \). Then, for any subfield \(K \) of the splitting field of \(P \), \(L(E/K, 1) \neq 0 \Rightarrow E(K) \) is finite.
An icosahedral application

Theorem

Let P be a polynomial of degree 5 with Galois group A_5 and a single real root, and let K be the quintic field generated by a root of P. Then

$$\text{ord}_{s=1} L(E, s) = \text{ord}_{s=1} L(E/K, s) \Rightarrow \text{rank}(E(\mathbb{Q})) = \text{rank}(E(K)).$$

Explanation: $\text{Ind}_K^{\mathbb{Q}} 1 = 1 \oplus V_1 \otimes V_2$, where V_1 and V_2 are odd two-dimensional representations of the binary icosahedral group.

The method says nothing (as far as we can tell!) about the arithmetic of E over the field generated by a root of Lagrange’s sextic resolvent of $P(x)$.
Happy 60th Birthday, Ram!