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Abstract. We describe the action of Hecke operators on generalised eigenspaces attached
to certain mod p cuspidal eigenforms of weight two in terms of certain extension classes of
Galois representations constructed by Matthias Flach. This description can be viewed as a
partial generalisation to cusp forms of a formula of Barry Mazur for the Eisenstein series of
weight two and prime level.
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1. Introduction

Given an integer N ≥ 1, let M2(N) denote the space of modular forms of weight two on
Γ0(N) with integer Fourier coefficients, and let T(N) be the Hecke algebra generated over Z
by the prime-to-N Hecke operators in the endomorphism ring of M2(N).

When N is prime, the space M2(N) contains a unique holomorphic Eisenstein series E2,N ,
with q-expansion given by

(1) E2,N (q) = N−1
12 +

∞∑
n=1

σ1,N (n)qn, σ1,N (n) =
∑
d|n,

(d,N)=1

d.

In his celebrated work on the Eisenstein ideal [Maz77], Mazur determines the possible
structure of the torsion subgroup of an elliptic curve over Q by studying congruences between
the systems of Hecke eigenvalues of E2,N and cusp forms modulo a prime p (which we assume
for simplicity to be strictly greater than 3). Mazur shows that such congruences occur precisely

1



2 HENRI DARMON AND ALICE POZZI

when p divides (N − 1). At such primes, let T(N)p,eis be the localisation of T(N)⊗Zp at the
maximal ideal generated by (T`− (`+ 1)) for primes ` - N and p. The kernel of the morphism

ϕeis : T(N)p,eis−→Zp
sending T` to (`+1) for primes ` - N is the Eisenstein ideal, denoted by Ieis,(N). An important
result towards arithmetic applications is the principality of this ideal, which is deduced from
the construction of a canonical isomorphism

(2) λeis : Ieis,(N)/I
2
eis,(N)

∼−→ (Z/NZ)× ⊗ Zp
satisfying

(3) λeis(T` − (`+ 1)) = [`]⊗ (`− 1), for all primes ` - Np.
In other words, after fixing an m ≥ 1 for which pm divides N − 1, and a mod pm discrete
logarithm

logN,p : (Z/NZ)×−→Z/pmZ,
the mod pm reduction of ϕeis lifts to a surjective homomorphism

ϕ̃eis : T(N)−→ (Z/pmZ) [ε]/(ε2)

satisfying

(4) ϕ̃eis(T`) = a` + a′` · ε, with

{
a` = (`+ 1)
a′` = (`− 1) logN,p(`),

for all primes ` 6= N.

The collection {a′`}` of generalised Hecke eigenvalues is independent of the choice of discrete
logarithm up to simultaneous rescaling. This intriguing arithmetic invariant arises precisely
when the action of the Hecke operators on the generalised eigenspace attached to E2,N mod
p is non-semisimple. (Cf. Remark 13.2.) The formulation (4) suggests that the generalised
eigenvalues a′` are governed by the images of global elements in (Z/NZ)×, their dependence on
the primes N and p | (N − 1) arising only through the choice of a discrete mod pm logarithm
on (Z/NZ)×.

The study of generalised eigenvalues was taken up subsequently by Merel [Mer96] and
then by Lecouturier [Lec21], where it constitutes the starting point for his theory of higher
Eisenstein elements. Among several applications, the notion of higher Eisenstein element
plays an important role in formulating a conjecture of Harris and Venkatesh [HV19] on derived
Hecke operators acting on the coherent cohomology of modular curves attached to spaces of
weight one forms, and in the proof of this conjecture for dihedral forms [DHRV22].

It is natural to seek analogous formulae for the quantities a′` when the underlying eigenform
is not an Eisenstein series. That such generalised eigenvalues might encode rich arithmetic
information is suggested by a number of results already in the literature. For instance, when
E2,N is replaced by a classical eigenform of weight one, and Fp by Q̄p, the generalised eigen-
values can be expressed in terms of p-adic logarithms of algebraic numbers in the field cut
out by the adjoint of the associated two-dimensional Artin representation [DLR15], [DLR17],
a circumstance that provides a key to a better understanding of explicit class field theory for
real quadratic fields [DPV23], [DV].

The present work considers the setting where the weight two Eisenstein series is replaced
by a cuspidal newform f of weight two on Γ0(M). It is convenient (but entirely inessential, of
course) to assume that f has integer Fourier coefficients, i.e., that it corresponds to an elliptic
curve E over Q by the construction of Eichler and Shimura.

Given a prime p, the circumstances under which f is congruent to a modular form of level
M occur somewhat sporadically: one needs to assume, essentially, that p divides the degree
of the optimal modular parametrisation φE : X0(M)−→E. The present work has nothing
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interesting to say about the generalised eigenvalues that arise from such homomorphisms.
Rather, a prime p - 6M is fixed at the outset for which the Galois action on the p-division
points E[p] ⊂ E has full image Aut(E[p]), and which does not divide the degree of φE . As
recalled in §10, it then follows that the generalised eigenspace attached to f in M2(M)⊗ Fp
is spanned by f .

The mechanism whereby generalised Hecke eigenvalues can nonetheless be conjured from
this setting involves level-raising. Namely, choose a prime N -Mp for which

(5) p divides (N − 1) · (N + 1− aN (f)) · (N + 1 + aN (f)),

and replace T(M) by the larger Hecke algebra T(MN2) of level MN2, which is endowed
with a natural surjective map T(MN2)−→T(M). Let T(MN2)p,f denote the localisation of
T(MN2)⊗ Zp at the maximal ideals attached to f (mod p). The morphism

ϕf,(N) : T(MN2)p,f−→Zp

sends a Hecke operator T` to the coefficient a`(f) for ` -MNp. Its kernel, denoted by If,(N),
can be viewed as the analogue of the Eisenstein ideal in the elliptic setting.

The desired extension of Mazur’s formula to cusp forms can be better explained by reinter-
preting the latter in the language of Galois cohomology (see §5). Let TpE be the Tate module
of the elliptic curve E, and let

Tf := Sym2(TpE)

denote its symmetric square, viewed as a GQ-module. A fundamental construction of M. Flach
[Fla92] associates to each rational prime ` - pMN a global class

cf [`] ∈ H1(Q, Tf )

which is “singular only at `”, i.e., is crystalline at p and minimally ramified at all primes
different from ` and p. In particular, its restriction resN (cf [`]) to the decomposition group at
N belongs to the finite part H1

fin(QN , Tf ) of the local cohomology at N . (Cf. §2.) The class
cf [`] is the p-adic étale regulator of a global element in a higher Chow group of X0(M)2, as

described in §11 below. It plays the same role as the class [`(`−1)] in Mazur’s identity (3), as
the following theorem illustrates.

Theorem 1.1. There is a unique isomorphism

λf : If,(N)/I
2
f,(N)−→H

1
fin(QN , Tf )

characterised by

λf (T` − a`) = resN (cf [`]), for all primes ` -MNp.

Let us assume for simplicity that p - (N ± 1). As explained in §6, the assumption that N
is a level-raising prime for f implies that the local cohomology group H1

fin(QN , Tf ) is cyclic
of order pm for some m > 0. In §7, an identification of H1

fin(QN , Tf ) with Z/pmZ is given,
depending quadratically on the choice of a mod pm discrete elliptic logarithm on E(FN2),
which is therefore denoted

log⊗2
E,N,p : H1

fin(QN , Tf )
∼−→ Z/pmZ.

Under these assumptions, there is a surjective homomorphism

(6) ϕ̃f : T(MN2) −→ (Z/pmZ) [ε]/(ε2)

lifting the mod pm-reduction of ϕf , and for which

ϕ̃f (T`) = a`(f) + a′`(f) · ε.
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Corollary 1.2. After eventually rescaling the collection {a′`(f)}` by a common factor, the
generalised eigenvalues satisfy

a′`(f) = log⊗2
E,N,p(resN (cf [`])), for all ` -MNp.

Corollary 1.2 reveals that a′`(f) is accounted for by a global class in a higher Chow group
which depends neither on N nor on p, suggesting that the generalised eigenvalues attached to
f have a motivic incarnation. In the opposite direction, the relation between Flach’s classes
and generalised Hecke eigenvalues gives some insights into the local behaviours of the global
classes cf [`] as the prime ` varies but N and p are fixed.

2. Selmer groups

Let V be a finite dimensional Qp-vector space with a continuous action of GQ, equipped
with a GQ-stable Zp-lattice T , and write

A = V/T = T ⊗Qp/Zp and An = p−nT/T ↪→ A

for n ∈ Z>0. For W ∈ {V, T,A,An}, let H1(Q,W ) denote the continuous Galois cohomology
with coefficients in W . It is equipped, for each rational prime q, with a localisation map

resq : H1(Q,W )−→H1(Qq,W )

obtained by restricting a one-cocycle to a decomposition group Gq = Gal(Q̄q/Qq) at q.
Let Iq denote the inertia subgroup of Gq. The quotient Gq/Iq is topologically pro-cyclic

with a canonical generator: the arithmetic Frobenius element at q, denoted σq, which acts as
x 7→ xq on the residue field of any unramified extension of Qq. For W as above, the inflation-
restriction exact sequence identifies the subgroup of H1(Qq,W ) of unramified cohomology
classes

H1
ur(Qq,W ) = ker

(
H1(Qq,W )→ H1(Iq,W )

)
with

(7) H1(Qur
q /Qq,W

Iq) = W Iq/(σq − 1)W Iq

where Qur
q is the maximal unramified extension of Qq and the superscript Iq denotes inertia

invariants.
The local cohomology group H1(Qq,W ) contains a distinguished subgroup H1

fin(Qq,W ).
When W = V is a Qp-vector space, this is defined as

H1
fin(Qq, V ) :=

{
H1

ur(Qq, V ) if q 6= p,
H1

cris(Qp, V ) if q = p,

where H1
cris(Qp, V ) = ker

(
H1(Qp, V )→ H1(Qp, V ⊗Bcris

)
and Bcris is the period ring defined

by Fontaine [BK90]. (The assumption that p 6= 2 obviates the need to treat the case q =∞.)
When W = T (resp. W = A), the subgroup H1

fin(Q,W ) is defined as the natural preimage
(resp. the image) of H1

fin(Q, V ) in H1(Q,W ). Similarly, for n ∈ Z>0, the subgroup H1
fin(Q, An)

is the preimage of H1
fin(Q, A) in H1(Q, An). Note that if T is unramified at q 6= p, the

subgroups H1
fin(Qq,W ) and H1

ur(Qq,W )) agree for all choices of W as above (see [Rub00,
Lemma 3.5, 3.8]).

Let

H1
sing(Qq,W ) :=

H1(Qq,W )

H1
fin(Qq,W )

,

denote the singular quotient of the local cohomology at q and write ∂q for the natural map
obtained by composing resq with the projection to this quotient.
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When q 6= p and W is unramified at q, the map ∂q corresponds to the restriction to Iq.
Because the maximal pro p-quotient of Iq is isomorphic to Zp(1) as a Gq-module, the image
of ∂q is identified with

H1(Iq,W )Gq = H1(Zp(1),W )Gq = W (−1)Gq ,

and it will be convenient to view ∂q as a map

∂q : H1(Q,W )−→W (−1)Gq .

Given a global class c ∈ H1(Qq,W ), its restriction resq(c) belongs to H1
fin(Qq,W ) for all

but finitely many q. A set of local conditions for H1(Q,W ) is a collection Σ = {Σq}q indexed
by the places of Q, and satisfying

Σq = H1
fin(Qq,W ), for all but finitely many q.

The Selmer group attached to W and Σ is defined to be

H1
Σ(Q,W ) = {κ ∈ H1(Q,W ) for which resq(κ) ∈ Σq, for all q}.

When Σq = H1
fin(Qq,W ) for all q, then H1

Σ(Q,W ) is just called the Selmer group attached to
W , and is denoted H1

∅ (Q,W ). More generally, the relaxed Selmer group at S ∈ Z>0, denoted

H1
(S)(Q,W ), is obtained by setting

Σq =

{
H1(Qq,W ) if q|S,
H1

fin(Qq,W ) if q - S,
i.e.,

(8) H1
(S)(Q,W ) =

{
c ∈ H1(Q,W ) such that ∂q(c) = 0, for all q - S

}
.

For any set of local conditions Σ, the Selmer groups H1
Σ(Q, An) is finite, and H1

Σ(Q, T ) and is
a finitely generated Zp-module. The Pontryagin dual of H1

Σ(Q, An) is also a finitely generated
Zp-module (cf. [Rub00, Lemma 5.7]).

3. Local and global duality

For W ∈ {V, T,A,An}, let W ∗ = Hom(W,µp∞) denote the Kummer dual of W . Let
q 6= p be a rational prime. The cup product combined with the tautological pairing 〈 , 〉 :
W ×W ∗−→µp∞ gives rise to the perfect local Tate pairing

(9) 〈 , 〉q : H1(Qq,W )×H1(Qq,W
∗) // H2(Qq, µp∞)

invq Qp/Zp,

relative to which H1
fin(Qq,W ) and H1

fin(Qq,W
∗) are orthogonal complements of each other.

The Tate pairing thus induces a perfect duality

(10) [ , ]q : H1
sing(Qq,W )×H1

fin(Qq,W
∗)−→Qp/Zp.

In the special case where q 6= p and W is unramified at q, the local Tate pairing is given
by the following explicit formula:

(11) 〈c, κ〉q = 〈∂q(c), κ(σq)〉, for all c ∈ H1(Qq,W ), κ ∈ H1
fin(Qq,W

∗),

where the pairing 〈 , 〉 on the right hand side is induced from the tautological Qp/Zp-valued
pairing between W (−1) and W ∗, after restricting to the Frobenius invariants and co-invariants
respectively.

The reciprocity law of global class field asserts that∑
q

invq(b) = 0, for all b ∈ H2(Q, µp∞),
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and implies that

(12)
∑
q

〈resq(c), resq(κ)〉q = 0, for all c ∈ H1(Q,W ), κ ∈ H1(Q,W ∗),

where the sum need only be taken over the non-archimedean places in light of the running
assumption that p 6= 2.

4. The Greenberg–Wiles Formula

If Σ = {Σq}q is a set of local conditions for H1(Q,W ), then the orthogonal complements
Σ∗q ⊂ H1(Qq,W

∗) of Σq relative to the local Tate pairings form a collection of local conditions

for H1(Q,W ∗). The Selmer group H1
Σ∗(Q,W ∗) is called the dual Selmer group of H1

Σ(Q,W ).
For instance, the dual of the relaxed Selmer group H1

(S)(Q,W ) is the restricted Selmer group

at S,

(13) H1
[S](Q,W

∗) := {c ∈ H1
∅ (Q,W

∗) such that resq(c) = 0, for all q|S}.
When W is finite, while the size of a single Selmer group often represents a subtle global

invariant, the difference between the cardinalities of a Selmer group and its dual is accounted
for by a simple explicit product of local quantities:

(14)
#H1

Σ(Q,W )

#H1
Σ∗(Q,W ∗)

=
#H0(Q,W )

#H0(Q,W ∗)
∏
q

#Σq

#H0(Gq,W )
.

The proof of this identity rests on the Poitou–Tate long exact sequence in Galois cohomology
(cf. [DDT95, Thm. 2.19]). Notice that the ostensibly infinite product on the right is really a
finite one since #H1

fin(Qq,W ) = #H0(Gq,W ) for all q 6= p.

5. Cohomological reinterpretation of Mazur’s Formula

This section recasts Mazur’s formula (4) in cohomological terms. This formulation is
amenable to generalise to the elliptic setting. Recall that the Hecke eigenvalues of the Eisen-
stein series E2,N are encoded by the traces of the image of σ` of the GQ-representation

%eis := Zp ⊕ Zp(1)

for primes ` - Np.
Denote Tµ := Zp(1). For each rational prime ` 6= p, there is a distinguished global class

cµ[`] ∈ Q× ⊗ Zp ' H1(Q, Tµ)

which is unramified at all primes q - p`, is crystalline at p, and is ramified at `. This class
is simply the image of ` under the identification provided by classical Kummer theory. The
class cµ[`] is a canonical choice of generator for the Selmer group H1

(`)(Q, Tµ) ' Zp.
Let N - p` be a prime. The Kronecker-Weber Theorem provides an isomorphism

H1
(N)(Q, T

∗
µ) ' (Z/NZ)× ⊗ Zp,

so that the choice of a generator κ amounts to giving a discrete logarithm logN,p modulo pm

for pm ‖ (N − 1). Mazur’s formula can thus be rewritten in terms of local Tate duality (at
least, up to sign) as

a′` = (`− 1) · logN,p(resN (cµ[`])) = (`− 1) · 〈κ, cµ[`]〉N .

Remark 5.1. Formulae for generalised eigenvalues in the Eisenstein setting can be obtained
through the study of the deformation theory of the mod p-reduction of %eis (or more pre-
cisely, of the corresponding pseudo-representation), as carried out by Wake and Wang-Erickson
[WWE20]. The deceptively simple expression for generalised eigenvalues in the prime-level
setting follows from the fact the first-order deformations of the residual representation that are
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unramified away from {p,N}, crystalline at p and Steinberg atN are reducible (cf. op.cit. §9.1).
When studying generalised eigenvalues arising from congruences between the Eisenstein E2,N

series and cusp forms of a more general level, one should expect formulae involving Massey
products (cf. op.cit. Part 3).

6. The symmetric square and adjoint representations

We place ourselves in the setting of the introduction, namely, assume that f is a weight
two cusp form attached to an elliptic curve E over Q of conductor M , and let

%f : GQ−→Aut(TpE)

be the representation arising from the Galois action on the p-adic Tate module of E. For
every prime N -Mp, the characteristic polynomial of σN is given by

(15) x2 − aN (f)x+N = (x− αN )(X − βN )

for some αN , βN ∈ Zp. The roots αN , βN can be assumed to be different from ±1 and ±N .
It is assumed that the mod p reduction of %f : GQ → Aut(E[p]) is surjective and that p

does not divide the minimal degree of a modular parametrisation X0(M)−→E. Let

Sym2 %f : GQ → Aut(Sym2(TpE))

be the symmetric square representation of %f . The action of GQ by conjugation on the module

Ad0(TpE) of trace zero endomorphisms of TpE gives rise to the adjoint representation

Ad0 %f : GQ → Aut(Ad0(TpE)).

The perfect GQ-equivariant pairing

〈 , 〉f : Ad0(TpE)×Ad0(TpE)−→Zp, 〈A,B〉f = Trace(AB),

identifies Ad0(TpE) with its Zp-linear dual as a GQ-module. The classical Weil pairing 〈 , 〉Weil

on TpE yields a pairing

(16) 〈 , 〉f : Sym2(TpE)×Ad0(TpE)−→Zp(1), 〈P ⊗Q,λ〉f = 〈λ(P ), Q〉Weil.

Following the introduction, we shall denote Tf := Sym2 TpE. The above discussion implies
that its Kummer dual is

T ∗f = Ad0(TpE)⊗Qp/Zp = Tf (−1)⊗Qp/Zp.

Similarly, for n ∈ Z>0, the GQ-modules

Af,n = Sym2(E[pn]) and A∗f,n = Ad0(E[pn]) = Sym2(E[pn])(−1),

are canonically Kummer duals of each other.

Remark 6.1. The representation Tf plays a similar role to that of Tµ in Mazur’s Eisenstein
ideal setting. The crucial shared feature is the self-duality of their twists by Zp(−1).

7. Local cohomology groups for the symmetric square representation

This section describes the singular and finite part of the local cohomology of the represen-
tations Tf and T ∗f for all primes N - pM .

Lemma 7.1. Let N - pM be a prime. Then H1
fin(QN , Tf ) is the torsion subgroup of H1(QN , Tf ),

and there are isomorphisms

H1
sing(QN , Tf ) ' Zp, H1

fin(QN , T
∗
f ) ' Qp/Zp.
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Proof. Let Vf = Tf ⊗ Qp. It follows from (15) that the eigenvalues of σN on Vf are α2
N , β

2
N

and N , with

α2
N , β

2
N /∈ {1, N}.

Since no eigenvalue is equal to 1, the group H1
fin(QN , Vf ) is trivial. Thus, H1

fin(QN , Tf ) is
the torsion subgroup of H1(QN , Tf ). Since the representation Tf is unramified at N , the
morphism ∂N identifies

H1
sing(QN , Tf )

∼−→ Tf (−1)GN

and the latter is isomorphic to Zp. The description of H1
fin(QN , T

∗
f ) is then obtained via local

Tate duality (10). �

We now turn to describing the finite part of the local cohomology H1
fin(QN , Tf ), which is

the target of the isomorphism of Theorem 1.1. For a prime N - pM , denote

r+
f = aN (f)− (N + 1) and r−f = aN (f) + (N + 1).

Definition 7.2. A prime N - pM that is called a level-raising prime for (f, p) if

p divides r+
f r
−
f (N − 1).

The terminology level-raising prime will be justified in light of Corollary 10.3. Note that,
since p is assumed to be odd, it can divide at most two of the factors r+

f , r−f and (N − 1).

Lemma 7.3. The cohomology groups H1
fin(QN , Tf ) and H1

sing(QN , T
∗
f ) are isomorphic finite

abelian groups of order equal to

#Zp/(r+
f r
−
f (N − 1)).

More precisely:

(i) if p - (N ± 1), or if p | (N − 1) and p - r+
f r
−
f , the group H1

fin(QN , Tf ) is cyclic.

(ii) If p | (N + 1), there is an isomorphism

H1
fin(QN , Tf ) ' Zp/(r+

f )⊕ Zp/(r−f ).

Proof. By Lemma 7.1, the finite local cohomology group H1
fin(QN , Tf ) is a finite abelian group,

so it is isomorphic to its Pontryagin dual, which can be identified with H1
sing(QN , T

∗
f ) by (10).

Since Tf is unramified at N , Equation 7 yields an isomorphism

H1
fin(QN , Tf ) ' Tf/(σN − 1)Tf .

A direct calculation shows that the characteristic polynomial of σN acting on Vf = Tf ⊗ Qp

is given by

(17) x3 − (a2
N (f)−N)x2 +N(a2

N (f)−N)x2 −N3.

Thus, the order of H1
fin(QN , Tf ) is equal to pv, where v is the p-adic valuation of

det(Sym2%f (σN )− 1) = r+
f r
−
f (N − 1).

Let p be a prime p | r+
f r
−
f (N − 1). To describe the structure of H1

fin(QN , Tf ) as an abelian

group, we consider the following cases.

(i) If p - r+
f r
−
f , the eigenvalues α2

N , β
2
N of (17) are different from 1 modulo p. This implies

that H1
fin(QN , Tf ) is cyclic. If p - (N ± 1), the Galois representations ρf is residually

distinguished at σN , say

αN = ±1 (mod p) and βN = ±N 6= ±1 (mod p).

Hence β2
N 6= 1 modulo p, and the module is again cyclic.



FLACH CLASSES AND GENERALISED HECKE EIGENVALUES 9

(ii) Suppose p | (N + 1), and p | r+
f r
−
f . We can assume without loss of generality that

αN = 1 mod p and βN = −1 mod p.

Then σN acts semisimply on TpE and, as a consequence on Tf as well, with eigenvalues
α2
N , β

2
N , N . Hence,

H1
fin(QN , Tf ) ' Zp/(α2

N − 1)⊕ Zp/(β2
N − 1).

Denote by vp the p-adic valuation in Zp. Since

vp(α
2
N − 1) = vp(r

+
f ), and vp(β

2
N − 1) = vp(r

−
f ),

the conclusion follows.

�

8. Local cohomology via discrete elliptic logarithms

This section describes the finite part of the cohomology group H1
fin(QN , Tf ) in terms of the

finite group E(FN2) for every level-raising prime p - (N − 1). This description is immaterial
to the proof of Theorem 1.1. It is primarily motivated by the interpretation of generalised
eigenvalues in terms of suitable discrete logarithms on the group (Z/NZ)× in the Eisenstein
ideal setting given by (4).

Let τ be the generator of the group Gal(FN2/FN ). Since p is odd, every Zp-module L with
an action of Gal (FN2/FN ) decomposes as L = L+ ⊕ L−, where L± is the ±1-eigenspace for
the action of τ . In particular, for E(FN2)⊗ Zp, we obtain a decomposition

E(FN2)⊗ Zp = (E(FN2)⊗ Zp)+ ⊕ (E(FN2)⊗ Zp)−,

of cardinality #E(FN2)± = #Zp/(r±f ). There is a Gal(FN2/FN )-equivariant isomorphism

ν : E(FN2)⊗ Zp
∼−→ TpE/(σ

2
N − 1)TpE.

It is induced by the isomorphisms given by the maps

E(FN2)⊗ Z/pnZ ∼−→ E[pn]/(σ2
N − 1)E[pn], P 7→ Qσ

2
N −Q

where Q satisfies pnQ = P and n is a positive integer.

Since Gal (FN2/FN ) has order prime to p, so that invariants and coinvariants for its action on
a Zp-module are canonically isomorphic, it will be convenient to describe the finite cohomology
H1

fin(QN , Tf ) as the target of the natural isomorphism

(18) θ : (Tf/(σ
2
N − 1)Tf )+ ∼−→ H1

fin(QN , Tf ).

For any Zp[Gal (FN2/FN )]-module L, let Sym2 L denote its symmetric square as a Zp-module,
with the natural Gal (FN2/FN )-action. The projection

Sym2(TpE)−→ Sym2
(
TpE/(σ

2
N − 1)TpE

)
gives rise to a surjective homomorphism

ψ : Tf/(σ
2
N − 1)Tf−→ Sym2

(
TpE/(σ

2
N − 1)TpE

)
compatible with the action of τ . Define

j : H1
fin(QN , Tf )−→ Sym2(E(FN2)⊗ Zp)+.

be the composition j = (ν−1 ⊗ ν−1) ◦ ψ ◦ θ−1.

Proposition 8.1. If p - (N − 1), then j is an isomorphism.



10 HENRI DARMON AND ALICE POZZI

Proof. The composition j is surjective, so it suffices to compare cardinalities. The target is

Sym2(E(FN2)⊗ Zp)+ = Sym2((E(FN2)⊗ Zp)+)⊕ Sym2((E(FN2)⊗ Zp)−).

If p - (N−1), the groups (E(FN2)⊗Zp)± are cyclic of order #Zp/(r±f ). The conclusion follows

from Lemma 7.3. �

Let p - (N − 1) be a prime dividing r±f . A discrete logarithm is a surjective group homo-

morphism
logE,N,p : (E(FN2)⊗ Zp)± → Z/pnZ.

for some n ∈ Z>0. This choice is unique up to rescaling by a unit in (Z/pnZ)×. By abuse of
notation, let

(19) log⊗2
E,N,p : H1

fin(QN , Tf )→ Z/pnZ

denote the homomorphism sending a class c to log⊗2
E,N,p(j(c)).

9. Selmer groups for the symmetric square representation

Proposition 9.1. The Selmer groups H1
∅ (Q, Tf ) and H1

∅ (Q, T
∗
f ) are trivial.

Proof. The triviality of H1
∅ (Q, T

∗
f ) is the main theorem of [Fla92, Theorem 1] in light of the

running assumptions on f and on p. From the long exact sequences in cohomology induced
by multiplication by pn on T ∗f it follows that for every n ≥ 1, the Selmer group

H1
∅ (QN , A

∗
f,n) ' H1

∅ (Q, T
∗
f )[pn]

is also trivial. Formula (14) applied to W = Af,n and Σq = H1
fin(Qq, Af,n) for all q gives

#H1
∅ (Q, Af,n) = #H1

∅ (Q, A
∗
f,n) = 0,

and the proposition follows from passing to the inverse limit. �

Proposition 9.2. Let N - pM be a rational prime. Restricting to the decomposition group at
N and projecting onto the singular cohomology gives rise to isomorphisms

∂N ◦ resN : H1
(N)(Q, Tf )

∼−→ H1
sing(QN , Tf )

and
∂N ◦ resN : H1

(N)(Q, T
∗
f )
∼−→ H1

sing(QN , T
∗
f ).

In particular, H1
(N)(Q, Tf ) ' Zp for every N - pM , and H1

(N)(Q, T
∗
f ) is finite; it is non-trivial

if and only if N is a level-raising prime for (f, p).

Proof. Let n ∈ Z>0, and consider the cartesian diagram

H1
∅ (Q, Af,n)

��

// H1
(N)(Q, Af,n)

��
H1

fin(QN , Af,n) // H1(QN , Af,n)

where the vertical arrows are given by restricting to the decomposition group at N . A similar
cartesian diagram is obtained for A∗f,n. The triviality of H1

∅ (QN , Af,n) and H1
∅ (QN , A

∗
f,n)

implies that the natural maps

H1
(N)(Q, Af,n)→ H1

sing(QN , Af,n) and H1
(N)(Q, A

∗
f,n)→ H1

sing(QN , A
∗
f,n)

are injective. Proposition 9.1 implies that the restricted Selmer groups H1
[N ](Q, Af,n) and

H1
[N ](Q, A

∗
f,n) are trivial a fortiori, and it follows from (14) that

#H1
(N)(Q, Af,n) = #H1

sing(QN , Af,n), #H1
(N)(Q, A

∗
f,n) = #H1

sing(QN , A
∗
f,n).
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The conclusion is obtained by passing to inverse and direct limits and invoking Lemmas 7.1
and 7.3, respectively. �

Remark 9.3. Note how the hypothesis that N is a level-raising prime for (f, p) is essential
for the non-triviality of H1

(N)(Q, T
∗
f ), while H1

(N)(Q, Tf ) is always non-trivial for any prime

N - 6Mp, a key fact that underlies the existence of Flach classes described in §11.

10. Deformations of Galois representations

The celebrated theorem of Wiles [Wil95] and Taylor-Wiles [TW95] identifies certain locali-
sations of Hecke algebras at the maximal ideal attached to f with suitable deformation rings.
More precisely, let

T(M)p,f and T(MN2)p,f

denote the localisations of the semi-local rings T(M)⊗Zp and T(MN2)⊗Zp at the maximal
ideals attached to f (mod p). The morphisms

ϕf,∅ : T(M)p,f → Zp and ϕf,(N) : T(MN2)p,f → Zp
are determined by sending the Hecke operator T` to the coefficient a`(f) for ` - MNp. Let
If,∅ and If,(N) denote the kernels of the morphisms ϕf,∅ and ϕf,(N) respectively.

Let R%̄f ,∅ be the universal deformation ring parametrising lifts of the residual representation

%̄f : GQ → Aut(E[p]) with fixed determinant, that are minimally ramified, in the sense of
[DDT95, §2.7], at primes q 6= p and crystalline at p. Denote by R%̄f ,(N) the deformation ring
classifying the lifts as above for which the local condition at N is omitted.

The universal properties of the deformation rings R%̄f ,(N) and R%̄f ,∅ give rise to a commu-
tative diagram

R%̄f ,(N)

��

γ(N)// T(MN2)p,f

��
R%̄f ,∅

γ∅ // T(M)p,f

where the vertical arrows are surjective. The Taylor-Wiles modularity lifting theorem (proved
in full generality in [BCDT01]) implies that γ(N) and γ∅ are isomorphisms.

Definition 10.1. Given a cocycle κ representing a class in H1
(N)(Q, T

∗
f ), and a prime ` - NMp,

the generalised eigenvalue attached to κ at ` is

a′`(f, κ) := Tr(κ(σ`)%f (σ`)).

Note that this is independent of the choice of the representative of the cohomology class
and of the Frobenius element σ` ∈ G`. When the group H1

(N)(Q, T
∗
f ) is cyclic, a choice of

generator κ can be fixed throughout, and we will simply denote a′`(f) := a′`(f, κ).

The term generalised eigenvalue is justified by the following immediate consequence of the
modularity lifting theorem.

Proposition 10.2. For F ∈ {∅, (N)}, there is an isomorphism

H1
F(Q, T ∗f )

∼−→ Hom(If,F/I
2
f,F,Qp/Zp)

sending a class κ ∈ H1
F(Q, T ∗f ) to the morphism Fκ : If,F/I

2
f,F → Qp/Zp characterised by

Fκ(T` − a`) = a′`(f, κ)

for every ` -MNp.
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Proof. Let JF be the kernel of φf,F ◦ γF. A standard calculation identifies H1
F(Q, T ∗f ) with

Hom(JF/J
2
F,Qp/Zp) via the map induced by

H1
F(Q, A∗f,n)

∼−→ Hom(Z/pnZ)−aug(Rρ̄f ,F,Z/p
nZ[ε]/(ε2))

for n ∈ Z>0, where the target denotes homomorphisms of Z/pnZ-augmented rings, which
sends a cohomology class κ to

%̃f = (1 + ε · κ) · %f .
Upon identifying If,F ' JF, the conclusion follows from the fact that

Trace(%̃f (σ`)) = a`(f) + a′`(f, κ) · ε.

�

Combining this result with Propositions 9.1 and 9.2, we obtain the following corollary.

Corollary 10.3. Let p - 6 deg(φE) be a prime such that %̄f is surjective. Then:

(1) The ideal If,∅ is trivial;
(2) The ideal If,(N) is non-trivial if and only if N is a level-raising prime for (f, p). If

p - (N ± 1) or if p | (N − 1) and p - r+
f r
−
f , the ideal If,(N) is cyclic.

In particular, it follows that the generalised eigenspace attached to f in M2(M) ⊗ Fp is
spanned by f , while it is strictly larger in M2(MN2)⊗Fp when N is a level-raising prime for
(f, p).

11. Flach classes

The goal of this section is to introduce the Flach classes cf [`] ∈ H1
(`)(Q,Wf ), following

[Fla92, §2]. These classes are the key ingredient in Flach’s proof of Proposition 9.1, and the
main purpose of this section and the next is somewhat different: namely, to reinterpret the
generalised eigenvalues a′`(f, κ) appearing in Proposition 10.2 as the local Tate pairing at `
between the classes κ and cf [`].

Let X be an irreducible regular Notherian scheme which is either of finite type over a field
or is smooth over a discrete valuation ring. Of importance for the constructions of [Fla92, §2]
are the cases where:

(1) X is the modular surface X0(M)2 viewed as a scheme over specQ;
(2) X = X0(M)2

Z`
is the smooth proper integral model of X0(M)2 over specZ` for ` -M .

Let K2 be the sheaf associated to the Quillen’s second K-group functor U 7→ K2(U). The
group H1(X,K2) is the first homology of the complex

(20) K2(k(X))
∂−→ ⊕x∈X(1)k(x)×

div−→ ⊕x∈X(2)Z,

where X(n) is the set of codimension n subschemes of X, and k(x) is the residue field of the
local ring of X at x. The map ∂ is a residue map and div sends an element u ∈ k(x)× to the
pushforward to X of its divisor on x.

Let ` -M be a prime, and let

π1, π2 : X0(M`)−→X0(M), π := (π1, π2) : X0(M`)−→X := X0(M)2

be the maps arising from the two standard degeneracy maps sending a pair (A1, A2) of elliptic
curves with level M structure related by a cyclic `-isogeny to the points of X0(M) attached
to A1 and A2 respectively. The image

T` := π(X0(M`)) ⊂ X
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is birational to X0(M`) and is the graph of the `-th Hecke correspondence on X0(M). The
modular unit ∆(z)/∆(`z) has divisor supported at the cusps of X0(M`), and the pushforward
of this divisor to X vanishes [Fla92, p. 317]. It follows that the element

ε(`) := (∆(z)/∆(`z)) ∈ k(T`)
×

belongs to the kernel of the map div of (20), and thus defines an element of H1(X,K2).
The special element ε(`) can be parlayed into the construction of global cohomology classes

c[`] ∈ H1(Q, H2
et(XQ̄,Zp(2))), cf [`] ∈ H1(Q, Tf )

by setting
c[`] := h · κ(ε(`)), cf [`] := Sym∗(φE × φE)∗(c[`]),

where

(1) the map

κ : H1(X,K2)−→H3
et(X,Zp(2))

is an étale regulator map. Roughly speaking, it is obtained by combining the Kummer
maps

δx : k(x)×−→H1
et(k(x),Zp(1))

of Kummer theory with the pushforward maps

ix∗ : H1
et(x,Zp(1))−→H3

et(X,Zp(2))

in étale cohomology, induced by the inclusions ix : x ↪→ X;
(2) the map

h : H3
et(X,Zp(2))−→H1(Q, H2

et(XQ̄,Zp(2)))

arises from an edge map in the Hochschild-Serre spectral sequence

Hp(Q, Hq
et(XQ̄,Zp(2)))⇒ Hp+q

et (X,Zp(2)),

in light of the triviality of H3(XQ̄,Zp(2))GQ which follows from weight considerations
([Fla92, Prop. 2.2]);

(3) the map

(φE × φE)∗ : H1(Q, H2(XQ̄,Zp(2)))−→H1(Q, H2(E2
Q̄,Zp(2)))

is the pushforward induced by the map φE × φE : X−→E2 arising from the modular
parametrisation φE ;

(4) the last map

Sym∗ : H1(Q, H2(E2
Q̄,Zp(2)))−→H1(Q,Wf )

is induced from the natural Kunneth projection fromH2(E2
Q̄,Zp(2)) toH1(EQ̄,Zp(1))⊗2

composed with the projection to the space

Tf = Sym2(H1
et(EQ̄,Zp(1)))

of symmetric tensors.

Remark 11.1. When p|(N − 1), Chris Skinner has proposed an interesting construction of
a global class in the cohomology of the adjoint representation, which is somewhat dual to
Flach’s construction. This class is obtained from the Shimura class

S ∈ H1
et(X0(MN),Z/ptZ)

arising by applying the discrete logarithm (Z/NZ)×−→Z/ptZ to the class of the étale (Z/NZ)×

covering X1(N)−→X0(N). The image of S under pushforward by the diagonal embedding
∆: X0(MN) ↪→ X0(MN)2 yields a class

κ ∈ H3
et(X0(MN)2,Z/ptZ(1))
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to which steps (2)-(3)-(4) above can be applied, leading ultimately to a class in H1(Q, Af,t(1)).
This class appears to play a role analogous to the class in H1

(N)(Q,Z/p
tZ) arising from global

class field theory (or the Kronecker-Weber theorem) which also depends linearly on the choice
of a discrete logarithm on (Z/NZ)×.

12. Local behaviour of the Flach classes

If r is a prime that does not divide M , then the curve X0(M) extends to a smooth proper
model X0(M)Zr over spec(Zr). Let X0(M)Fr denote its special fiber, and write

XZr := X0(M)2
Zr
, XQr := X0(M)2

Qr
, XFr := X0(M)2

Fr
.

There is an exact localisation sequence ([Fla92, (17)])

H1(XZr ,K2)−→H1(XQr ,K2)
∂r−→ Pic(XFr),

where ∂r sends u ∈ k(x)× to its divisor along the special fiber. It is shown (cf. [Fla92, (19)])
that

(21) ∂r(ε(`)) =

{
0 if r 6= `;

6 · (Γ` − Γ′`) if r = `,

where Γ` ∈ Pic(XF`
) is the class of the graph of the Frobenius morphism X0(M)F`

−→X0(M)F`
,

and Γ′` is the class of its transpose.

The elliptic curve E extends to a smooth proper model E over Z`, with special fiber EF`
.

Let

Γ`,E ∈ Pic((E × E )F`
)

be the class of the graph of the Frobenius endomorphism on EF`
, and let Γ′`,E be the class of

its transpose. They are related to Γ` and Γ′` by the formulae

(22) (φE × φE)∗(Γ`) = deg(φE) · Γ`,E , (φE × φE)∗(Γ
′
`) = deg(φE) · Γ′`,E .

Proposition 12.1. Let ` -Mp be a rational prime.

(1) The global class c[`] belongs to H1
(`)(Q, H

2
et(XQ̄,Zp(2))), and

∂`(c[`]) = 6 · cl(Γ` − Γ′`),

where

cl : Pic(XF`
)−→H2

et(XF̄`
,Zp(2))GF`

is the étale cycle class map.
(2) The global class cf [`] belongs to H1

(`)(Q, Tf ), and

∂`(cf [`]) = 6 · deg(φE) · Sym∗(cl(Γ`,E − Γ′`,E)).
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Proof. These two assertions follow from chasing through the top and bottom parts of the
commutative diagram

H1(XZr ,K2) //

h·κ

��

H1(XQr ,K2)
∂r //

h·κ

��

Pic(XFr)

cl
��

H2
et(XFr ,Zp(1))

H1
fin(Qr, H

2
et(X,Zp(2))) //

Sym(φE×φE)∗
��

H1(Qr, H
2
et(X,Zp(2)))

∂r //

Sym(φE×φE)∗
��

H2
et(X,Zp(1))GQr

Sym(φE×φE)∗
��

H1
fin(Qr, Tf ) // H1(Qr, Tf )

∂r // Tf (−1)GQr ,

and invoking (21) for the first, and (22) for the second. �

This determination of ∂`(cf [`]) can be used to compute the local Tate pairing between cf [`]
and a global class κ ∈ H1

(N)(Q, T
∗
f ).

Proposition 12.2. For all primes ` -MNp, and κ ∈ H1
(N)(Q, T

∗
f )

〈cf [`], κ〉` = 12 · deg(φE) · a′`(f, κ).

Proof. By setting c = cf [`] in (11), we obtain

(23) 〈cf [`], κ〉` = 〈∂`(cf [`]), κ(σ`)〉,
where the pairing on the right is induced from the natural Qp/Zp-valued trace pairing between
Tf (−1) and T ∗f ' Tf (−1)⊗Qp/Zp.

On the other hand, Proposition 12.1 gives

∂`(cf [`]) = 6 · deg(φE) · Sym∗cl(Γ`,E − Γ′`,E) = 6 · deg(φE) · (%f (σ`)− %f (σ`)
′),

where %f (σ`) is viewed as an element of End(TpE) ⊃ Aut(TpE), and %f (σ`)
′ is the adjoint of

%f (σ`) relative to the Weil pairing on TpE, i.e., its adjugate

%f (σ`)
′ = a`(f)− %f (σ`).

It follows that

(24) ∂`(cf [`]) = 6 · deg(φE) · (2 · %f (σ`)− a`(f)).

Combining (23) with (24) gives

〈cf [`], κ〉` = 12 · deg(φE) · 〈%f (σ`), κ(σ`)〉
= 12 · deg(φE) · Trace(%f (σ`) · κ(σ`))

and the formula follows. �

13. An application of global reciprocity

Proposition 13.1. For all primes ` -MNp, and κ ∈ H1
(N)(Q, T

∗
f ),

〈cf [`], κ〉N = −12 · deg(φE) · a′`(f, κ).

Proof. Since cf [`] belongs to H1
(`)(Q, Tf ), and κ belongs to H1

(N)(Q, T
∗
f ), it follows that

〈cf [`], κ〉q = 0 for all q 6= `,N.

Therefore, (12) implies that
〈cf [`], κ〉` + 〈cf [`], κ〉N = 0,
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and the result follows from Proposition 12.2. �

Proof of Theorem 1.1. The isomorphism defined in Proposition 10.2 sends a global class κ in
H1

(N)(Q, T
∗
f ) to the map Fκ : If,(N)/I

2
f,(N) → Qp/Zp characterised by the property

Fκ(T` − a`) = Trace(κ(σ`)%f [`]) = (12 · deg(φE))−1〈cf [`], κ〉`
for every prime ` -MNp by Lemma 12.2. On the other hand, by Proposition 9.2, the restric-
tion to the decomposition group at N , combined with local Tate duality gives an isomorphism

H1
(N)(Q, T

∗
f )
∼−→ Hom(H1

fin(QN , Tf ),Qp/Zp)

sending κ to the homomorphism κ 7→ 〈c, κ〉N for c ∈ H1
fin(QN , Tf ). The result now follows

from Proposition 13.1 by passing to Pontryagin duals. �

Proof of Corollary 1.2. This follows immediately from Theorem 1.1, and the fact that if p -
(N ± 1), the ideal If,(N) is cyclic by Corollary 10.3. �

Remark 13.2. The generalised eigenvalues attached to a cusp form f can be easily computed
numerically. For simplicity, assume that p ‖ r+

f r
−
f (N − 1). Then If,(N)/I

2
f,(N) = Z/pZ · T ,

for some Hecke operator T ∈ If,(N). This implies that the generalised eigenspace attached
to the system of eigenvalues of f in the space of mod p modular forms of weight 2 and level
Γ0(MN2) admits a basis f = f1, . . . , fr for some r > 1 such that

Tfi = fi−1 for every 1 ≤ i ≤ r.
where we set f0 = 0. The generalised eigenvalues are characterised by the property

(T` − a`(f))fi = a′`(f) fi−1 mod (f0, . . . , fi−2), for every ` - NMp.

for i > 1, up to rescaling by a common constant in (Z/pZ)× (cf. [Lec21, §2]).

Remark 13.3. For any prime ` - Mp, the Flach class cf [`] is obtained from the image of a
canonical element in motivic cohomology H1(XFN

,K2) under the composition of the maps
described in §11. An independent description of the image of the resulting local class under the
morphism log⊗2

E,N,p, suitable for machine calculations for instance, appears somewhat elusive.

The connection between cf [`] and the generalised eigenvalues a′`, which are more readily
calculated numerically, supplies non-trivial information about the behaviour of Flach’s classes
as the prime ` varies.
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