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Abstract

This paper defines a rational invariant JN (D1, D2) associated to singu-
lar moduli of discriminants D1 and D2 on the genus-zero Shimura curves
of discriminant N = 6, 10 or 22. An algorithm is devised to compute this
invariant p-adically using the Cerednik-Drinfeld uniformisation of Shimura
curves, following the approach described in the thesis of I. Negrini [10]. A
formula for the factorization of this invariant is proposed, similar to the
formula of Gross and Zagier for differences of classical singular moduli.
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1 Introduction
In [8], Gross and Zagier give an explicit formula for the factorisation of the
norm of differences of singular moduli. Given two negative coprime fundamental
discriminants D1 and D2 and their associated imaginary quadratic fields Ki =
Q(
√
Di) with ring of integers ODi

, let τ1 and τ2 be two points on the upper
half plane with complex multiplication by OD1

and OD2
respectively. Consider

the elliptic modular function j on the upper half plane which has a Fourier
expansion

j(τ) = 1
q + 744 + 196884q + · · · ,

where q = e2πiτ . Then the norm of j(τ1) − j(τ2) is a highly divisible integer,
and Gross and Zagier prove the following:

Theorem 1 (Gross, Zagier). Let D1 and D2 be coprime fundamental discrim-
inants and

J(D1, D2) =
∏

[τ1],[τ2]
discτi=Di

(j(τ1)− j(τ2))
4

w1w2

where wi is the order of the group of units of ODi for i = 1, 2. For Di ≤ −4
this quantity denotes the norm of the difference of two singular moduli of these
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discriminants. Let D = D1D2. For primes l with
(
D
l

)
6= −1, define

ε(l) =

{(
D1

l

)
if (l,D1) = 1,(

D2

l

)
if (l,D2) = 1.

If n =
∏
laii with

(
D
li

)
6= −1 for all i, define ε(n) =

∏
ε(li)

ai . Then

J(D1, D2)2 = ±
∏
x2<D

x2≡D(mod 4)

F
(D − x2

4

)
,

where
F (m) =

∏
nn′=m
n,n′>0

nε(n
′). (1)

Gross and Zagier observe that F (m) is either 1 or is a power of a single
prime. Indeed, write

m = l2a1+1
1 · · · l2as+1

s d2b1
1 · · · d2br

r qc11 · · · q
ct
t ,

where for all i, ε(li) = ε(di) = −1 and ε(qi) = +1. Then F (m) = 1 if s > 1,
otherwise

F (m) = l
(a1+1)(c1+1)···(ct+1)
1 .

This article defines a similar invariant, on Shimura curves of genus 0. Let
N = 6, 10 or 22. Let XN be the genus zero Shimura curve of discriminant N .
As in the case of the usual modular curve, one can develop a theory of complex
multiplication (CM) points on Shimura curves. In particular the value of a
uniformizing function jN of XN at CM points has similar properties to those of
the classical singular moduli. However computing a uniformizing function jN
for the Shimura curve XN is more subtle than in the classical case as the lack
of cusps on XN gives no natural choice of a point at infinity and prevents the
use of Fourier series expansion. For that reason we use p-adic methods instead.

This paper is inspired by the recent work of Rickards [11], and Guitart,
Masdeu and Xarles [9]. In particular the invariants computed in this article
can be seen as the complex counterpart to those involving modular geodesics
on Shimura curves defined in [3].

Let p be a prime dividing N exactly and write N = pN ′ with (p,N ′) = 1.
Let B be the definite rational quaternion algebra of discriminant N ′, so that we
may consider an embedding ι : B ↪→ M2(Qp). Let R be a maximal Z[ 1

p ] order

in B and let Γ
(p)
N = ι(R∗norm=1) ⊆ SL2(Qp) be the image of its norm 1 elements.

By Cerednik-Drinfeld’s theorem, the quotient Γ
(p)
N \Hp, where Hp denotes the

p-adic upper half plane, is isomorphic to XN (Cp). Again, one can consider com-
plex multiplication points on the p-adic uniformisation of the Shimura curve,
corresponding to optimal embeddings of imaginary quadratic orders into the
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quaternion order R.
Fix two negative discriminantsD1, D2 and consider the corresponding imaginary
quadratic orders OD1

and OD2
. For i = 1, 2 a choice of an embedding ODi

↪→ R
gives rise to two p-adic conjugate complex multiplication points {τi, τ ′i}.

Let [a, b, c, d] = c−a
c−b ·

d−b
d−a denote the cross ratio of four numbers. The p-adic

quantity we are interested in is:

J
(p)
N (τ1, τ2) :=

∏
γ∈Γ

(p)
N

[γτ1, γτ
′
1, τ2, τ

′
2]. (2)

This infinite product converges p-adically and this paper presents a simple al-
gorithm to compute it in the case when the underlying quaternion algebra is of
class number one. This is the case for N ′ = 2, 3 and 5, so we only exclude the
case in which N = 22, p = 2 and N ′ = 11.

By Cerednik-Drinfeld, for i = 1, 2 the CM points {τi, τ ′i} on the p-adic quo-
tient Γ

(p)
N \Hp correspond to some CM points on the curve XN and by abuse of

notation denote these points again by {τi, τ ′i}. If jN : XN → P1 is a generator
over Q of the function field, the invariant may then be rewritten as the cross
ratio of these singular moduli:

J
(p)
N (τ1, τ2) = [jN (τ1), jN (τ ′1), jN (τ2), jN (τ ′2)]

=
jN (τ2)− jN (τ1)

jN (τ2)− jN (τ ′1)

jN (τ ′2)− jN (τ ′1)

jN (τ ′2)− jN (τ1)
. (3)

Since the value of jN at CM points is algebraic, expression (3), and hence also
the p-adic quantity (2), is algebraic over Q.
Different methods to compute singular moduli on Shimura curves have already
been used. For example [5] uses explicit calculations of involutions on these
curves while [6] uses the theory of Borcherds forms. Our approach to compute
the quantity (3) will instead be that of using the p-adic expression (2).

The p-adic quantity J (p)
N (τ1, τ2) depends on the choice of the prime p dividing

N and on the choice of embeddings that give τ1 and τ2. However, the obtained
results suggest that the norm of this quantity, seen as an algebraic number over
Q, is independent of any choice, up to inversion in the multiplicative group.
This motivates the following definition.

Definition 2. Let N = 6, 10, 22, let D1, D2 be two imaginary discriminants and
let H1 and H2 be their associated ring class fields. For any prime p dividing N ,
let τ1 and τ2 be arbitrary complex multiplication points on Hp of discriminant
D1 and D2 respectively. Define:

JN (D1, D2) = NormH1H2/Q(J
(p)
N (τ1, τ2)).

It can be proved that this expression does not depend on the choice of point
τ1 and τ2 by Shimura’s reciprocity law.
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Results suggest that they enjoy similar factorizations as in the work of Gross
and Zagier.

There are four square roots of D mod 2N , say {a,−a, b,−b}. Define

δ(x) =

{
+1 if x ≡ ±a (mod 2N),

−1 if x ≡ ±b (mod 2N).
(4)

Conjecture 3. With the same notation as in Theorem 1,

JN (D1, D2)±
4

w1w2 = ±
∏
x2<D

x2≡D(mod 4N)

F
(D − x2

4N

)2δ(x)

,

where D = D1D2, w1, w2 and the function F are as in Theorem 1, and δ(x) is
defined above.

This conjecture is extensively supported by the data collected and reported
on in this paper, which is organised as follows. Section 2 briefly recalls the
theory of Shimura curves and their complex multiplication points. Section 3
defines and studies the p-adic J (p)

N quantity. The fourth, fifth and sixth section
present an algorithm to compute it and discuss obtained results. The final sec-
tion compares this work with what has already been computed by Errthum in
[6] in the case of N = 6.

Acknowledgements. This article is the outcome of a research project carried
out by the first author while she was an undergraduate at the the EPFL. It was
completed under the supervision of the second author, during a visit to McGill
University in the first months of 2020, and, after her stay was cut short by the
pandemic, during the ensuing lockdown. The first author is grateful for the
material support of the EPFL which made her visit possible. The research of
the second author is supported through an NSERC Discovery grant.

2 Shimura curves
Throughout the paper let N = 6, 10 or 22. Let BN be the quaternion algebra
over Q with discriminant N and denote by RN its (unique up to conjugation)
maximal Z-order. The algebra BN admits a basis {1, i, j, k} such that

i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ Q with a > 0, and it can always be embedded into M2(R), for
example by the following map:

ι : A+Bi+ Cj +Dk 7→
(
A+B

√
a b(C +D

√
a)

C −D
√
a A−B

√
a

)
. (5)

Let R∗1 be the group of elements of R∗N of norm 1. The action of ΓN :=
ι(R∗1)/〈±1〉 on the upper half plane yields a compact Riemann surface, ΓN\H,
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denoted by XN which is of genus zero. Shimura has shown that XN has a
canonical model defined over Q.

Fix a negative discriminant D < 0, and let K = Q(
√
D) be the imaginary

quadratic field of discriminant D, and OD the maximal order in K.
If all prime divisors of N are inert in K, then there exists an optimal em-
bedding φ of OD into the quaternionic order RN . In this case the image
ι(φ(OD)) ⊆ ι(RN ) ⊆ SL2(R) has a unique fixed point in H. A complex multi-
plication (CM) point of the curve XN is the ΓN orbit of such a point and the
discriminant of such a point is the field discriminant of K.
If XN is of genus zero and jN : XN → P1 denotes a generator of the function
field, just as in the case of the classical modular function, if properly normalised,
the value of jN at a CM point is algebraic over Q.

The Atkin-Lehner group is the subgroup of automorphisms of XN ,

W = NormalizerB∗N (R∗1)/Q∗R∗1 = { wm : m|N } ∼=
∏
p|N

Z/2Z.

and let Pic(OD) be the class group of OD. Then it is well known that these
involutions and Pic(OD) act on the set of CM points of a given discriminant D
(see Section 5 of chapter III of [12]). Furthermore we have the following result.

Proposition 4 ([2], Lemma 2.5). Let hD denote the class number of OD and
let ω(·) be the number of prime divisors function. Then there are hD · 2ω(N)

complex multiplication points of discriminant D on the Shimura curve XN .

2.1 The p-adic uniformisation of Shimura curves

Let p denote a prime dividing N so that N = pN ′. Denote by Cp the completion
with respect to the p-adic norm of the algebraic closure of Qp and let

Hp = P1(Cp)− P1(Qp)

be Drinfeld’s p-adic upper half plane.
Let B be the definite quaternion algebra over Q ramified at N ′ and at∞. Again
it has a basis {1, i, j, k} such that

i2 = a, j2 = b, ij = −ji = k,

for some a, b ∈ Q now with a, b < 0. SinceB is split at p, there exists Z1, Z2 ∈ Qp
such that Z2

1 − aZ2
2 = b and we may fix an embedding ι : B ↪−→M2(Qp):

ι : A+Bi+ Cj +Dk 7→
(
A+ Z1C − aZ2D aB + aZ2C − aZ1D
B − Z2C + Z1D A− Z1C + aZ2D

)
. (6)

Let R[ 1
p ] be the maximal Z[ 1

p ] order of B, and consider (R[ 1
p ])∗1, the subgroup

of its units of norm 1. The group Γ
(p)
N := ι((R[ 1

p ])∗1) ⊆ SL2(Qp) is a discrete
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subgroup acting on Hp whose quotient Γ
(p)
N \Hp is compact and its points again

correspond to the Cp points of an algebraic curve over Q, the Shimura curve
XN .

Theorem 5 (Cerednik-Drinfeld). The quotient Γ
(p)
N \Hp is isomorphic as a p-

adic rigid analytic space to XN (Cp), where XN is the algebraic curve over Q
whose complex points are identified with the Riemann surface ΓN\H.

The identification ϕ : Γ
(p)
N \Hp → XN (Cp) is defined over the quadratic

extension Qp2 of Qp so that for any τ ∈ Γ
(p)
N \Hp(Qp) and any δ ∈ Gal(Qp/Qp),

ϕ(τ δ) =

{
ϕ(τ)δ if δ ∈ Gal(Qp/Qp2),

wp · ϕ(τ)δ if δ /∈ Gal(Qp/Qp2),

where wp it the Atkin-Lehner involution in p.

Again, let K = Q(
√
D) with maximal order OD and let H denote its ring

class field, if p and N ′ are inert in K, then there exists an optimal embed-
ding ϕ of OD into the quaternionic order RN [ 1

p ]. In this setting, there are two
conjugate fixed points for the action of ι(φ(OD)) in Hp, hence two p-adic con-
jugate CM points. Cerednik-Drinfeld’s theorem implies that these two points
τ, τ ′ ∈ Hp correspond to two CM points of discriminant D on the Shimura curve
XN = ΓN\H. If we let P denote the point of XN (H) corresponding to τ via
the choice of an embedding H ↪→ Qp, then by the above, τ ′ corresponds to the
point wp(P ′) where P ′ denotes the image of P by the Frobenius automorphism
arising from such embedding.

3 A p-adic cross ratio
Fix once and for all N = pq for primes p, q. We use the same notation as above,
only for simplicity denote Γ := Γ

(p)
N . Fix two points w1, w2 ∈ Hp. The theta

function (see [7]) associated to Γ is defined as

Θ(w1, w2; z) =
∏
γ∈Γ

(z − γw1)

(z − γw2)
.

It is known (again see [7]) that Θ(w1, w2; z) converges for all z in Hp and is a
rigid analytic meromorphic function so that

Θ(w1, w2; γz) = c(γ) ·Θ(w1, w2; z) for any γ ∈ Γ
(p)
N .

The automorphy factor from Γ
(p)
N to C∗p given by γ 7→ c(γ) measures the ob-

struction to the divisor (w1)− (w2) being principal. If the curve is of genus zero
this obstruction is trivial and Θ defines, up to a constant, a rational function
on XN . Hence if w1 and w2 correspond to algebraic points on XN , the ratio
Θ(w1, w2; τ1)/Θ(w1, w2; τ2), for some other algebraic points τ1 and τ2, is also
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algebraic. In particular, this is the case for CM points.

Let D1 and D2 be two negative different discriminants such that p and N ′

are inert in both Q(
√
Di), for i = 1, 2. Fix embeddings φ1 : OD1

↪−→ R and
φ2 : OD2

↪−→ R. For i = 1, 2, let {τi, τ ′i} ∈ Hp be the two fixed CM points of
ι(φi(ODi)) respectively.

Definition 6.

J
(p)
N (τ1, τ2) :=

Θ(τ1, τ
′
1; τ2)

Θ(τ1, τ ′1; τ ′2)
=

∏
γ∈Γ

(p)
N

[γτ1, γτ
′
1, τ2, τ

′
2],

where [τ1, τ
′
1, τ2, τ

′
2] denotes the cross-ratio of the four numbers..

Since for i = 1, 2 the points τi, τ ′i on XN have coefficients in Hi, the ring
class field associated to Q(

√
Di), it follows that as an algebraic number this

quantity belongs to H := H1H2.

Since the curve XN is of genus 0, there exists a generator jN of the function
field. Considering XN as the complex quotient ΓN\H, again denote by τ1, τ ′1 ∈
H the corresponding points. Θ(τ1, τ

′
1, z) is a scalar multiple of a rational function

defined over Q and hence may be written as

Θ(τ1, τ
′
1; z) = λ

jN (z)− jN (τ1)

jN (z)− jN (τ ′1)
.

for some constant λ ∈ Cp. We then the following simple expression:

J
(p)
N (τ1, τ2) = [jN (τ1), jN (τ ′1), jN (τ2), jN (τ ′2)].

The superscript (p) is now only indicating how τi and τ ′i relate for i = 1, 2.

Suppose that D1 and D2 are both of class number one. This implies there
are only ω(N) = 4 CM points for each discriminant on the genus-zero Shimura
curve, given by the Atkin-Lehner orbit of one such point Pi ∈ XN (H), for
i = 1, 2, so that we may denote by {Pi, wp(Pi), wq(Pi), wN (Pi)} the points of
discriminant Di. Let (τi) ∈ Γ

(p)
N \Hp be the point corresponding to Pi. As men-

tioned in section 2.1, τ ′i is then identified to wp(P ′i ), where P ′i is the image of
Pi by the Frobenius arising from a chosen embedding H ↪→ Qp, so that we may
rewrite the above expression as

J
(p)
N (τ1, τ2) = [jN (P1), jN (wp(P

′
1)), jN (P2), jN (wp(P

′
2))].

This implies that in this case, the cross-ratio itself is invariant to the choice of
the embeddings of the quadratic orders into the quaternion algebra. Indeed, fix
an i = 1, 2 and suppose we change the embedding giving τi. Any such other
embedding corresponds to a point in {Pi, wp(Pi), wq(Pi), wN (Pi)}. Observe that

wq(Pi) = wp(P
′
i ), wN (Pi) = P ′i ,
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and hence up to Galois conjugation and up to inverses, the quantity J (p)
N (τ1, τ2) ∈

Qp does not depend on the choice of the embeddings τ1 and τ2. It does however
depend on the choice of p, as for the other prime q dividing N ,

J
(q)
N (τ1, τ2) = [jN (P1), jN (wq(P

′
1)), jN (P2), jN (wq(P

′
2))].

When the discriminants of τ1 and τ2 have class number different from one, the
study of the individual expressions J (q)

N (τ1, τ2) is more subtle, and they satisfy no
simple Shimura reciprocity law. Their norms to the biquadratic field Q(τ1, τ2),
however, continue to be independent of the choice of τ1 and τ2.

3.1 The norm invariant
Obtained results suggest that in all cases the norm of this quantity is indepen-
dent, up to multiplicative inverse, of these choices. It is hence natural to define
the following invariant, already mentioned in Definition 2 of the introduction.

Definition 7. Let N = 6, 10, 22 and let D1, D2 be two imaginary discriminants
and let H1 and H2 be their associated ring class fields. For any prime p dividing
N let τ1,τ2 ∈ Hp be arbitrary complex multiplication points of discriminant D1

and D2 respectively. Define:

JN (D1, D2) = NormH1H2/Q(J
(p)
N (τ1, τ2))

In Section 5 we will propose a formula for its factorisation.

4 Algorithm

In this section we present a simple recursive algorithm to compute J (p)
N as de-

fined in Definiton 6, largely inspired by [10] and [4]. Fix N and p so that we
may write J(τ1, τ2) instead.

Let Rn denote the elements in R whose denominator is divisible exactly by
pn,

Rn = {x ∈ (R[ 1
p ])norm=1 : x = a+bi+cj+dk

pn , gcd(a, b, c, d, p) = 1}.

Define Γn = ι(Rn) so that Γ =
⊔∞
n=0 Γn and

J(τ1, τ2) =
∏
γ∈Γ

[γτ1, γτ
′
1, τ2, τ

′
2] =

∏
n

∏
γ∈Γn

[γτ1, γτ
′
1, τ2, τ

′
2].

Let Mi ∈ GL2(Zp) be the matrix given by ι(φi(
√
Di)).

Lemma 8 (Remark 5.1.5 of [11]). Set t = 1
2 tr(M1M2). Then

[τ1, τ
′
1, τ2, τ

′
2] =

t−
√
D1D2

t+
√
D1D2

.
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Proof. The proof follows from direct computations.

Denoting t(φ1, φ1) := 1
2 tr(φ1(

√
D1)φ2(

√
D2)), and observing that γτ2 is a fixed

point of γφ2γ
−1, one may write:

J(τ1, τ2) =
∏
γ∈Γ

t(φ1, γφ2γ
−1)−

√
D1D2

t(φ1, γφ2γ−1) +
√
D1D2

. (7)

If γ ∈ Γn, then for t = t(φ1, γφ2γ
−1), t ∈ p−2nZ×p , see Proposition 6.5.7 of [11].

Hence for γ ∈ Γn, writing t(φ1, γφ2γ
−1) = x

p2n ,

t(φ1, γφ2γ
−1)−

√
D1D2

t(φ1, γφ2γ−1) +
√
D1D2

=
x− p2n

√
D1D2

x+ p2n
√
D1D2

. (8)

Then the expression (8) is congruent to 1 modulo p2n. This implies that
to approximate J(τ1, τ2) up to M digits of precision, it suffices to compute∏M/2
n=0

∏
γ∈Γn

[γτ1, γτ
′
1, τ2, τ

′
2]. Denote this finite approximation by

JM (τ1, τ2) :=
∏

n≤M/2

∏
γ∈Γn

[γτ1, γτ
′
1, τ2, τ

′
2].

The cardinality of Γn being exponential, enumerating all of its elements is not
a feasible option. This paper computes these finite products recursively instead,
in the case where the underlying quaternion algebra is of class number one (i.e.
every left ideal for a maximal order is principal) as this ensures that there is a
unique factorisation among quaternions. For the rest of the paper suppose that
this is the case. The rational quaternion algebras of discriminants 2, 3 and 5 are
all of class number one, so we only exclude the algebra of discriminant 11.
For a more detailed account of unique factorization in quaternion algebras and
the proofs of Theorem 10 and Lemmas 12 and 13, see [10].

Definition 9. A quaternion is said to be primitive if it cannot be written as
q = nq′ for n an integer. Otherwise the quaternion is said to be nonprimitive.

The following unique factorization theorem holds. The proof relies on the
fact that the left ideal of every maximal order is principal.

Theorem 10. If q is a primitive quaternion and nrd(q) = p1...pn is a fixed
factorization of nrd(q) as a product of prime numbers, then q can be written as
q = q1, ...qn where qi ∈ R have norm nrd(qi) = pi and these factors are unique
up to multiplication by units.

Define

Qprn = {x ∈ B : nrd(x) = pn and x is primitive },

and observe that
Γn = { ι(x)

pn : x ∈ Qpr2n}.
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Definition 11. Define an equivalence relation between (primitive) norm 1
quaternion as follows: q ∼ q′ iff q = q′ε for ε a unit. Let T = {r1, .., rk} ⊂ Qpr1
be a set of representatives of the equivalence classes, and denote by Ti := {riε :
ε a unit } the respective equivalence classes. For each i, denote by Ti∗ the
equivalence class of ri.

Lemma 12.
|T | = p+ 1.

By unique factorization we can write any q ∈ Qprn as a product q = q1q2...qn,
where each quaternion qi has norm p (in a unique way up to units). Then clearly

Qprn =
⊔
ri∈T
{q = q1..qn : q1 ∈ Tri}.

Denote by ri(Qprn ) := {q = q1..qn ∈ Qprn : q1 ∈ Tri}. The main result we will
need is the following recursive formula for the sets Qprn :

Lemma 13. For n ≥ 2,

Qprn =
⊔
ri∈T

⊔
rj /∈Ti∗

rirj(Q
pr
n−1).

Fix once and for all τ1 and its conjugate τ ′1. Define:

θn(z) :=
∏
q∈Qpr

n

z − ι(q)τ1
z − ι(q)τ ′1

.

Since Mobius transformations are equal up to multiplication by constants,

Θ(τ1, τ
′
1; z) =

∞∏
n=0

θ2n(z).

Following what is done in [4], we represent θn(z) as power series in certain
disks.

By definition τ1 = A+
√
D

C with A,C ∈ Zp, and for q ∈ Qprn , ι(q)τ1 = A′+pn
√
D

C′ ,
for some other A′, C ′ ∈ Zp. Classify the q in Qprn , for n ≥ 1 according to the
residue of ι(q)τ1 mod pOCp

. Observe that this classification is the same if in-
stead of τ1 we take its conjugate τ ′1, as the residue of ι(q)τ ′1 = A′−pn

√
D

C′ is also
A′

C′ . Define, for a = 0, 1, ..., p− 1,∞, the classes

Qan = { q ∈ Qprn : ι(q)τ1 ∈ a+ pOCp
},

and the functions
θ(a)
n (z) :=

∏
q∈Qa

n

z − ι(q)τ1
z − ι(q)τ ′1

.
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Lemma 14. For all i ∈ { 0, .., p−1,∞ } there is one index ji ∈ {0, .., p−1,∞}
such that for all j ∈ {0, .., p− 1,∞} if j 6= ji then,

ι(ri)j ≡ ari ,

where ari ∈ { 0, .., p− 1,∞ } is a constant independent of j.

Proof. Let ι(ri) =
(
R1 R2

R3 R4

)
be the embedding of ri into M2(Zp). Then:

ι(ri)j = R1j+R2

R3j+R4
.

If R3j +R4 ∈ pOCp
, then ι(ri)j ≡ ∞. This happens when j = ji ≡ −R4

R3
.

In all other cases we can compute that ι(ri)j ≡ R1

R3
.

In general for any r ∈ Qpr1 , we will denote by ar ∈ { 0, .., p − 1,∞ } the value
such that ι(r)j = ar for all j ∈ {0, .., p− 1,∞} except one.

Lemma 15. If i 6= j, then ari 6= arj .

Proof. As before, this follows from direct calculations. Let ι(ri) =
(
R1 R2

R3 R4

)
and

ι(rj) =
(
T1 T2

T3 T4

)
. By Lemma 14, ari ≡ R1

R3
and arj ≡ T1

T3
. If ari = arj , then

R1

R3
≡ T1

T3
≡ T2

T4
≡ R2

R4
(mod p). Then each entry of the matrix ι(ri)ι(rj) =(

R4 −R2

−R3 R1

)(
T1 T2

T3 T4

)
has positive p-adic valuation and hence r−1

i rj = 1
prirj = ε is

a unit. But rj = riε contradicts the fact that ri and rj are representatives of
different equivalence classes.

The previous lemmas imply that the set {ari}ri∈T is the set {0, 1, ..., p−1,∞}
and each set ri(Q

pr
1 ) = {q ∈ Qpr1 : q ∈ Tri} defined in the previous section

corresponds to the set Qari1 .

Lemma 16. The index ji such that ι(ri)j 6= ari verifies

ji = ari .

Proof. If ι(ri) =
(
R1 R2

R3 R4

)
, then ι(ri) =

(
R4 −R2

−R3 R1

)
. By Lemma 14, the j such

that ti,j 6= ai, is j ≡ −R4

R3
, and again by the same lemma, this is exactly ari .

Combining Lemmas 13, 14, 15 and 16 we obtain:

Lemma 17. For all a ∈ {0, .., p− 1,∞} and all n > 1:

Q(a)
n =

⊔
i,j : ari=a
j 6=ari

{ riq : q ∈ Q(j)
n−1 }.

11



Hence

θ(a)
n (z) =

∏
i,j : ari=a
j 6=ari

∏
q∈Qj

n−1

z − ι(ri)ι(q)τ1
z − ι(ri)ι(q)τ ′1

.

Since two rational functions with the same divisor are equal up to a constant:

θ(a)
n (z) = c

∏
i,j : ari=a
j 6=ari

∏
q∈Qj

n−1

ι(ri)
−1z − ι(q)τ1

ι(ri)−1z − ι(q)τ ′1

= c
∏

i,j : ari=a
j 6=ari

θ
(j)
n−1(ι(ri)

−1z), (9)

for some c ∈ Cp.
To compute the constant, again following [4], we approximate each θ(a)

n as
a power series in xa = 1

z−a , instead of in z, for a = 0, .., p − 1 and xa = z for
a =∞. In this way:

θ(a)
n ∈ 1 + pOCp

〈xa〉.

Hence by normalizing at each recursion the right hand side of (9) one implicitly
finds the correct constant.

Algorithm 1 below summarizes how to compute all θan(z) for n ≤ M , where
M is a given precision.

12



Algorithm 1 Algorithm to compute θ(a)
k for k ≤M for a given M .

• Compute θ0(z), for example by enumerating Γ0 (Γ0 has at most 24 ele-
ments).

• For a = 0, ..., p− 1:
Compute the power series θ(a)

1 in variable x = 1
z−a given by: θ

(a)
1 =∏

q∈Qa
1

z−ι(q)w
z−ι(q)w′ .

• Compute the power series θ
(∞)
1 in variable x = z given by:

θ
(∞)
1 =

∏
q∈Q∞1

1/z−1/ι(q)w
1/z−1/ι(q)w′ .

These two steps will again require us to enumerate Γ1.

• Compute the indexes ari , for i = 1, .., p+ 1.

• Compute the indices ari , for i = 0, 1, .., p+ 1.

• For n = 2, ...,M :
For each a = 0, ..., p − 1,∞, compute θ(a)

n recursively using (9) in the
variable x = 1

z−a (or x = z if a = ∞) and normalizing so the constant
term is one.

One can easily recover JM (φ1, φ2) from the functions θ(a)
2n (z):

JM (φ1, φ2) =

M/2∏
n=0

∏
a

θ
(a)
2n (τ2)

θ
(a)
2n (τ ′2)

.

All constants and all elements of Qp used in above algorithm are always
computed with M digits of p-adic precision.

Observe that if instead of Γp≤M , we would like to take Γp≤M/〈±1〉, it suffices
to take the square root of the result. Results reported in the following section
are for the group Γp≤M/〈±1〉.

The algorithm was implemented using Sage and the code can be found in the
appendix.

5 Results and discussion

This section discusses results for the invariant J (p)
N (τ1, τ2) for the pairs N, p such

that the quaternion algebra ramified at N ′ = N/p has class number one. The
possible pairs are: (6, 3), (6, 2), (10, 2), (10, 5), (22, 11). We only exclude the
2-adic uniformisation of the Shimura curve of discriminant 22.
The result returned by the algorithm described in the previous section is a p-adic
number. To recognize it as an algebraic integer GP/PARI’s algdep function

13



was used. For each pair (N, p), the invariant J (p)
N (τ1, τ2) is computed for all

discriminants D1 and D2 of class number one that are both inert with respect to
N , see tables 3 to 6. Discriminants of higher class numbers (D1 of class number
3 or 5) are also computed and reported in tables 8 to 10. The reason only few
discriminants of higher class number have been computed is that PARI’s algdep
function requires large precision to recognise higher degree polynomials, making
calculations extremely slow.
In table 1 we indicate for each q = 2, 3, 5 the choice of quaternion algebra
split at q,∞ and of the respective maximal order used for computations. The
embeddings into the matrix algebras used are those given by (5) or (6). Tables
of results are reported in the following section.

q B R
2

(−1,−1
Q
)

Z[i, j, k 1+i+j+k
2 ]

3
(−1,−3

Q
)

Z[1, i, 1+j
2 , i+k2 ]

5
(−2,−5

Q
)

Z[1, j, 1+j+k
2 , i+2j+k

4 ]

Table 1: Choice of quaternion algebras and their maximal orders.

Results suggest that J (p)
N (τ1, τ2) seems to satisfy many properties that are

very similar to those satisfied by differences of singular moduli found by Gross
and Zagier, [8].
To illustrate this, consider the case D1 = −43, D2 = −163. First consider
N = 6, p = 3. The following embeddings into R are used:

φ1( 1+
√
−43

2 ) = 1
2 + 3

2 i+ 3
2j −

5
2k,

φ2( 1+
√
−163
2 ) = 1

2 + 1
2 i+ 9

2j −
9
2k.

Up to 150 digits of 3-adic precision, J (3)
6 (τ1, τ2) satisfies the quadratic equation:

92948186849296000000x2−381232847456416705067x+272773235159104000000

The discriminant is a highly divisible integer that factorizes as:

34 · 132 · 196 · 234 · 372 · 43 · 672 · 1092 · 1392 · 1572 · 163,

and so is the leading term

210 · 56 · 732 · 1372 · 2412,

and the constant term
212 · 56 · 292 · 2572 · 2772.

The factors of the discriminant are smaller than max(D1, D2) and the factors
of the leading and constant terms are inert in both Q(

√
D1) and Q(

√
D2) and

14



divide to an odd power an integer of the form D−x2

4·2·3 where D = D1D2. Observe
that

43 · 163 ≡ 1 (mod 12),

and the four square roots of 1 modulo 12 are {+1,−1,+5,−5}. Following (4),
define

δ(x) =

{
+1 if x ≡ ±5 (mod 12),

−1 if x ≡ ±1 (mod 12).

Then F (D−x
2

4N ) and δ(x) for |x| odd and less than
√
D ∼ 83.719 are given by

the following table, where F is defined in (1) and m = m(x) = D−x2

4N . For any

|x| D−x2

4N F (m) δ(x) |x| D−x2

4N F (m) δ(x) |x| D−x2

4N F (m) δ(x)
1 292 73 −1 31 252 7 +1 61 137 137 −1
5 291 32 +1 35 241 241 −1 65 116 29 +1
7 290 1 +1 37 235 52 −1 67 105 1 +1
11 287 72 −1 41 222 1 +1 71 82 22 −1
13 285 1 −1 43 215 52 +1 73 70 1 −1
17 280 1 +1 47 200 22 −1 77 45 5 +1
19 277 277 +1 49 192 3 −1 79 32 23 +1
23 270 1 −1 53 175 7 +1 83 5 5 −1
25 266 1 −1 55 166 22 +1
29 257 257 +1 59 147 3 −1

Table 2: Values of F (D−x
2

4N ) and δ(x) for |x| odd and less than
√
D.

other embedding τ̃1, τ̃2, the invariant J (3)
6 (τ̃1, τ̃2) satisfies the same polynomial,

up to inverting constant and leading term, as predicted by section 3. However,
if we consider N = 6 and p = 2, the 2-adic quantity J (2)

6 (τ1, τ2), as expected,
satisfies a different polynomial. The discriminant of this polynomial is still
highly factorizable, and so are the constant and coefficient terms whose factors
are again among those in the table. Remarkably, the norm of J (2)

6 (τ1, τ2) and
of J (3)

6 (τ1, τ2) is the same:

NQ(
√
D1D2)/Q(J

(3)
6 (τ1, τ2)) = NQ(

√
D1D2)/Q(J

(2)
6 (τ1, τ2)) =

(22 · 292 · 2572 · 2772

732 · 1372 · 2412

)2

.

Using table 2, we verify that indeed∏
x2≤43·163

x2≡43·163(mod 24)

F
(43 · 163− x2

24

)δ(x)

=
22 · 292 · 2572 · 2772

732 · 1372 · 2412
.

These properties hold for all invariants computed and we list here below a series
of remarks that are supported by the computed results.
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Theorem 18. For any p dividing N , for any embeddings τ1 and τ2 of discrimi-
nant D1 and D2 respectively, the invariant J (p)

N (τ1, τ2) belongs to the compositum
of the respective ring class fields HD1HD2 and satisfies a polynomial equation
over Z of degree 2h(D1)h(D2).

Observation 19. The leading coefficient and the constant term of the integer
polynomial equation satisfied by J (p)

N (D1, D2) are highly divisible integers. For
each prime factor l of both the leading coefficient and the constant term there is
an odd integer |x| <

√
D1D2 such that F (D1D2−x2

4pq ) is a power of l.

Conjecture 20. The invariant JN (D1, D2), i.e. the norm of J (p)
N (τ1, τ2), re-

covered from the tables as the square of the quotient of the constant and leading
term of its minimal polynomial, is independent of the choice of the prime p di-
viding N and of the choice of complex multiplication points τ1, τ2 of discriminant
D1 and D2.

As mentioned in section 3 the p-adic quantity J (p)
N (τ1, τ2) is itself invariant

of the choice of embeddings in the case the discriminants are of class number
one. For discriminants of higher class numbers, we empirically obtain 2 different
invariants when D1 is of class number 3, and 3 different invariants when it is
of class number 5. Even though the data is not extensive, this might suggest
that for an element a ∈ Pic(OD) we have that J (p)

N (τσa
1 , τ2) and J (p)

N (τ−σa
1 , τ2)

satisfy the same polynomials.

Finally all data in the tables seem to suggest that JN (D1, D2) admits a factori-
sation very similar to that proved by Gross and Zagier, introduced as conjecture
3 in the introduction. There are 4 square roots of D = D1D2 modulo 2N , say
{a,−a, b,−b}. Define

δ(x) =

{
+1 if x ≡ ±a mod 2pq,

−1 if x ≡ ±b mod 2pq.

Conjecture 21. Using the same notations as Gross-Zagier’s Theorem 1, the
following formula holds:

JN (D1, D2)
± 4
w1w2 =

∏
x2<D

x2≡D(mod 4N)

F
(D − x2

4N

)2δ(x)

.

The choice of a and b in the definition of the function δ is arbitrary, as the
invariant J (p)

N (D1, D2) is considered up to multiplicative inverse.

The tables in the following section supply convincing evidence for this for-
mula.

We conclude this section with some further remarks.
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Remark 1. We have also computed J (p)
N (τ1, τ2) for N such that XN is not a

genus 0 curve. In general GP/PARI fails to recognize J (p)
N (τ1, τ2) as an algebraic

number (as expected). However this was not the case for N = 14, p = 17. For
D1 = −11 and D2 = −3 (both of class number 1), the quantity J

(p)
N (τ1, τ2)

seems to satisfy, up to 100 digits of 17-adic precision, the equation:

2x4 − 293x2 + 2.

Similarly, for D1 = −11 and D2 = −163, the invariant J (p)
N (τ1, τ2) seems to

satisfy (again up to 100 digits of 17-adic precision) the polynomial

57122x4 − 11631377x2 + 76832,

whose leading and constant term again are highly divisible and its factors behave
as those in observation 19.

Remark 2. The quantity J(τ1, τ2) is computed by considering the action of all
elements in R that have norm p2k for an even power. However, if both even
and odd powers are considered, the result seems to have remarkable properties
as well. Indeed it seems to satisfy a palindromic polynomial over Z of degree
2h(D1)h(D2) whose leading term is again highly factorisable and its factors
again follow observation 19. Table 12 illustrates an example for the pair N = 10
and p = 5, and they hold also for the other pairs (N, p) mentioned above.

6 Tables
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7 Comparison to Errthum’s work

7.1 Errthum’s work
In this section we aim to compare our results with what has already been com-
puted by Errthum. In [6], Errthum computes singular moduli on Shimura
curves using Borcherd’s lifts. With notations as in the first sections, and
denoting by NB∗(R) the normaliser in B∗ of the maximal order R, define
Γ∗ = ι(NB∗(R))/〈±1〉 ⊆ PSL2(R). Errthum then considers the Shimura curves

X∗N = Γ∗\H,

that relate to this paper’s curve XN as follows:

X∗N = XN/W,

where W is the Atkin Lehner group mentioned in section 2.
For N = 6 and 10, Errthum computes a generator tN : X∗N → P1 of the
function field of X∗N . In particular his method allows him to compute the norm
of the value of t6 at CM points of arbitrary large discriminants and the explicit
value of t6 at the rational CM points of X∗D. In particular, since CM points of
discriminant of class number 1 are rational, we may compare our results with
his tables for those points.

7.2 Case of N = 6

This section considers the caseN = 6 and follows [1]. ConsiderW = {1, w2, w3, w6}
the Atkin-Lehner group of involutions on X6.

Set for i = 2, 3 or 6, X(i) = X/〈wi〉. As mentioned, X∗6 ∼= X6/W so X6 → X∗6
is a map of degree four and we have reduction maps:

X6

X(2) = X6/〈w2〉 X(3) = X6/〈w3〉 X(6) = X6/〈w6〉.

X∗6 = X6/W

The mapsX6 → X(i) are ramified at the fixed points of wi where i ∈ {2, 3, 6},
denote these points y2, y3, y6 respectively. Errthum (page 486) calls these points
y2 = P4, y3 = P6 and y6 = P2 and one has that :

y2 ∈ CM(Z[
√
−1]), y3 ∈ CM(Z[ 1+

√
−3

2 ]), y6 ∈ CM(Z[
√
−6]).
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The function t6 : X∗6 → P1(C) constructed by Errthum satisfies:
t6(y2) = 0,

t6(y3) =∞,
t6(y6) = 1.

From this function, we first construct uniformisers j(i) : X(i) → P1(C) for
i = 2, 3, 6. Considering the degree of the maps and the ramified points, we may
set:

j(2)(z)2 = c2 · (t6(z)− 1), j(3)(z)2 = c3
t6(z)

t6(z)− 1
, j(6)(z)2 = c6 · t6(z)

for some constant c2, c3, c6. Observe that we may take j(6) = j(2) · j(3) and
hence set

c6 = c2 · c3.

The following hold:

c6j
(2)(z)2 − c2j(6)(z)2 + c2c6 = 0; (10)

j(i) ◦ wi = j(i) for i = 2, 3, 6; (11)

j(i) ◦ wk = −j(i) for i, k = 2, 3, 6 and i 6= k; (12)

j(2)(y2) = ±
√
−c2, j(2)(y3) =∞, j(2)(y6) = 0; (13)

j(3)(y2) = 0, j(3)(y3) = ±
√
c3, j

(3)(y6) =∞; (14)

j(6)(y2) = 0, j(6)(y3) =∞, j(6)(y6) = ±
√
c6. (15)

Since y2 ∈ CM(Z([
√
−1]), then j(i)(y2) ∈ H−1 = Q(

√
−1) for all i = 2, 3, 6.

Similarly, since y3 ∈ CM(Z([ 1+
√
−3

2 ]), then j(i)(y3) ∈ H−3 = Q(
√
−3) for all

i = 2, 3, 6.
This means

√
−c2 ∈ Q(

√
−1) and

√
c3 ∈ Q(

√
−3), so we may choose:

c2 = 1, c3 = −3, c6 = c2c3 = −3.

Hence
3j(2)(z)2 + j(6)(z)2 + 3 = 0

It is known that the Shimura curve X6 admits a model φ : H → P2(C), with
coordinate functions

τ 7→ (u1(τ) : u2(τ) : 1),

that satisfy
u2

1 + u2
2 + 3 = 0. (16)

Letting

u1 =
3

j(3)
, u2 =

3

j(6)
,
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we verify that equation (16) holds.

Finally, set:

j6 =
iu1 − u2√

3
= i

√
3

j(3)
−
√

3

j(6)
.

Using properties (11) and (12), we have the following:

j6 ◦ w2 = −j6,
j6 ◦ w3 = 1

j6
,

j6 ◦ w6 = − 1
j6
.

These properties allow us to rewrite the J-quantity as follows:

J
(3)
6 (τ1, τ2) =

(j6(τ2)− j6(τ1))2

(j6(τ2) + j6(τ1))2
,

J
(2)
6 (τ1, τ2) =

(j6(τ2)− j6(τ1))2

(j6(τ2) · j6(τ1)− 1)2
.

We have computed the above complex quantities for all discriminants for which
Errthum computes an explicit value of t6. For example, consider the smallest
class numbers of discriminant 1, D1 = −19, D2 = −43. Errthum computes

t6(τ1) = − 37

210
, t6(τ2) = − 3774

21056
.

For i = 1, 2 let

j(3)(τi) =
√
−3t6(τi), j(6)(τi) =

√
−3

t6(τi)

t6(τi)− 1
.

From these we compute

j6(τi) = i

√
3

j(3)(τi)
−
√

3

j(6)(τi)
.

Then again using PARI’s algdep function, up to 300 digits of real precision, the
complex number (j6(τ2)−j6(τ1))2

(j6(τ2)+j6(τ1))2 = J
(3)
6 (τ1, τ2) satisfies the quadratic polynomial

7750655x2 − 14480299x+ 1478656,

which is exactly the one found in table 3. Similarly (j6(τ2)−j6(τ1))2

(j6(τ2)j6(τ1)−1)2 = J
(2)
6 (τ1, τ2)

satisfies the quadratic polynomial

1653403x2 − 35711431x+ 3158020

of table 4. For all other pairs of discriminants of class number one the results
obtained are algebraic numbers that satisfy exactly the same polynomials as
those in the tables 3 and 4.
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A Code
##AUXILIARY FUNCTIONS:

def findT(omax,B,p,Units,Q1):
T=[]
Q1copy=deepcopy(Q1)
for i in range(0,p+1):

t=Q1copy[0];
C=[ multquat(t,u,B) for u in Units ]
for c in C:

Q1copy.remove(c)
T.append(t)

return(T)

def Subpowers(a,m):
atemp=1
L=list([atemp])
for i in range(0,m):

atemp=atemp*a
L.append(atemp)

return(L)

def fastevaluate(f,subpowers,m):
rrp=f.list()[0].parent()
F=f.list()
fi=rrp(0)
for i in range(0,min(len(F),len(subpowers))):

fi=fi+(F[i]*subpowers[i])
return(fi)

def quattomatpadic(u,B,p):
a=B[0]
b=B[1]
if (p!=2 and kronecker(a,p)==1):

f=R3(y0^2-a)
A=f.roots()[1][0]
return(matrix([[u[0]+u[1]*A , b*(u[2]+u[3]*A)],[u[2]-u[3]*A,

u[0]-u[1]*A]]))
else:

Y=Qp3(6)
f=R3(y0^2-a*Y^2-b)
X=f.roots()
while(len(X)==0):

Y=Y+1
f=R3(y0^2-a*Y^2-b)
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X=f.roots()
X=X[0][0]
return(matrix([[u[0]+X*u[2]-a*Y*u[3] , a*u[1]+a*Y*u[2]-a*X*u[3]],

[u[1]-Y*u[2]+X*u[3], u[0]-X*u[2]+a*Y*u[3]]]) )

def mobius(M,tau):
return((M[0,0]*tau+M[0,1])/(M[1,0]*tau+M[1,1]))

def invp(M):
return(matrix([[M[1,1],-M[0,1]],[-M[1,0],M[0,0]]]))

def redmodp2(q,M,p):
F3=GF(p)
a=Zp3(M[0,0])
b=Zp3(M[0,1])
c=Zp3(M[1,0])
m1=Zp3(q[0,0])
m2=Zp3(q[0,1])
m3=Zp3(q[1,0])
m4=Zp3(q[1,1])
A=m4*m1*a+m2*m4*c-m1*m3*b+m2*m3*a
B=-m1*m2*a-m2*m2*c+m1*m1*b-m1*m2*a
C=m3*m4*a+m4*m4*c-m3*m3*b+m4*m3*a
D=-A
if( val3(C)==0 ):

f=RZ3( val3.reduce(Zp3(C))*y^2 - val3.reduce(Zp3(2*A))*y
-val3.reduce(Zp3(B)))

if len(f.roots())!=1:
print("non p-discriminant !")

return(ZZ(f.roots()[0][0]))
else:

return(ZZ(p))

def multquat(a,b,B):
v1=a[0]*b[0]+B[0]*a[1]*b[1]+B[1]*a[2]*b[2]-B[0]*B[1]*a[3]*b[3]
v2=a[0]*b[1]+a[1]*b[0]-a[2]*b[3]*B[1]+a[3]*b[2]*B[1]
v3=a[0]*b[2]+a[2]*b[0]-a[3]*b[1]*B[0]+a[1]*b[3]*B[0]
v4=a[0]*b[3]+a[1]*b[2]-a[2]*b[1]+a[3]*b[0]
return(list([v1,v2,v3,v4]))

##USER GIVEN INFORMATION - TO BE MODIFIED
B=[-1,-1]
omax=matrix([[1, 0, 1/2, 0], [0, 1, 0, 1/2], [0, 0, 1/2, 0],[0, 0, 0, 1/2]])
p=2
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mprec=300

D1=43
D2=163

M1emb=[0,3,3,-5]
M2emb=[0,9,9,-1]

data=open("/Users/Sofia/Documents/MCGILL/dataHamilton.txt", "r")
units= eval(data.readline())
Q1= eval(data.readline())
data.close()

##DEFINE OBJECTS AND CONSTANTS NEEDED

Qp3=Qp(p,mprec)
R3.<y0> = PolynomialRing(Qp3,’y0’)
Zp3=Qp3.integer_ring()
RZ3.<y> = PolynomialRing(GF(p),’y’)
val3=Zp3.valuation()

M1=quattomatpadic(M1emb,B,p)
print(M1.determinant())
M2=quattomatpadic(M2emb,B,p)
print(M2.determinant())

f=R3(M1[1,0]*(y0**2)-(M1[0,0]-M1[1,1])*y0-M1[0,1])
Kp.<t>=Qp3.ext(f)
Pol.<s>=PolynomialRing(Kp,’s’)
f=Pol(M1[1,0]*(s**2)-(M1[0,0]-M1[1,1])*s-M1[0,1])
tau2=f.roots()[0][0]
tau1=f.roots()[1][0]

Rp.<x>=PowerSeriesRing(Kp,’x’,mprec)

f=Pol(M2[1,0]*(s**2)-(M2[0,0]-M2[1,1])*s-M2[0,1])
zet2=f.roots()[0][0]
zet1=f.roots()[1][0]

zetapows=[]
zetapows2=[]
for i in range(0,p):

zetapows.append(Subpowers(1/(zet1-i),mprec+1))
zetapows2.append(Subpowers(1/(zet2-i),mprec+1))

zetapows.append(Subpowers(zet1,mprec+1))
zetapows2.append(Subpowers(zet2,mprec+1))
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T= findT(omax,B,p,units,Q1)
Tmat=[ quattomatpadic(t,B,p) for t in T]
Tmatinv=[ invp(t) for t in Tmat ]
unitmat=[ quattomatpadic(u,B,p) for u in units]
Q1mat=[quattomatpadic(q,B,p) for q in Q1]

Q1js=[]
for i in range(0,p+1):

Q1js.append(list())
for q in Q1mat:

a=redmodp2(q,M1,p)
Q1js[a].append(q)

print([len(Q1js[j]) for j in range(0,p+1)])

##COMPUTE SET OF BAD INDICES GIVING NON PRIMITIVE QUATERNIONS

badij=[]
for i in range(0,p+1):

Tm=Tmat[i]
t1=Zp3(Tm[0,0])
t2=Zp3(Tm[0,1])
t3=Zp3(Tm[1,0])
t4=Zp3(Tm[1,1])
if val3(t3)==0:

badij.append(ZZ(-val3.reduce(t4)/val3.reduce(t3)))
else:

if val3(t4) == 0:
badij.append(ZZ(p))

else:
if val3(t1)==0:

badij.append( ZZ(-val3.reduce(t2)/val3.reduce(t1)))
else:

if val3(t2)==0:
badij.append(ZZ(p))

##COMPUTE INDICES Tij

Tij=[]
for i in range(0,p+1):

a=Zp3(Tmat[i][0,0])

32



b=Zp3(Tmat[i][0,1])
c=Zp3(Tmat[i][1,0])
d=Zp3(Tmat[i][1,1])
if val3(c)==0:

Tij.append(ZZ(val3.reduce(a)/val3.reduce(c)))
else:

if val3(a)==0:
Tij.append(ZZ(p))

else:
if val3(d)==0:

Tij.append(ZZ(val3.reduce(b)/val3.reduce(d)))
else:

if val3(b)==0:
Tij.append(ZZ(p))

##COMPUTE LEVEL 1 FUNCTION

##Finite part:
Fjs=list()
Fjs2=list()
for j in range(0,p):

Fj=Rp(1)
Fj2=Rp(1)
for q in Q1js[j]:

r1=mobius(q,tau1)
r2=mobius(q,tau2)
Fj=Fj*((1+x*(j-r1))/(1+x*(j-r2)))
Fj2=Fj2*((1+x*(j-r2))/(1+x*(j-r1)))

Fjs.append(Fj)
Fjs2.append(Fj2)

##Infinite part:
Fj=Rp(1)
Fj2=Rp(1)
for q in Q1js[p]:

r1=(mobius(q,tau1))
r2=(mobius(q,tau2))
Fj=Fj*((1/x-1/r1)/(1/x-1/r2))
Fj2=Fj2*((1/x-1/r2)/(1/x-1/r1))

Fjs.append(Fj)
Fjs2.append(Fj2)

##COMPUTE ALL SUBSTITUTIONS NEEDED FOR RECURSION:
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Tsubs=[]
for a in range(0,p+1):

i=Tij.index(a)
Xi=[]
t1=Tmatinv[i][0,0]
t2=Tmatinv[i][0,1]
t3=Tmatinv[i][1,0]
t4=Tmatinv[i][1,1]
for j in range(0,p+1):

if j!= badij[i]:
if (a==p):

if (j==p):
Xi.append((t1*x+t2)/(t3*x+t4))

if (j!=p):
Xi.append((t3*x+t4)/(t1*x+t2-j*(t3*x+t4) ))

if (a!=p):
if (j==p):

Xi.append((t1+x*(a*t1+t2))/(t3+x*(a*t3+t4)))
if (j!=p):

Xi.append((t3+x*(t3*a+t4))/ (t1+x*(t1*a+t2)-
j*(t3+x*(t3*a+t4))))

if j==badij[i]:
Xi.append(0)

Tsubs.append(Xi)

Tsubpowers=[]
for a in range(0,p+1):

Tsa=[]
for j in range(0,p+1):

if(Tsubs[a][j]!=0):
Tsa.append(Subpowers(Tsubs[a][j],mprec))

else:
Tsa.append(0)

Tsubpowers.append(Tsa)

Phi=[0,Fjs]
Phi2=[0,Fjs2]

Fprev=Phi[1]
Fprev2=Phi2[1]

##COMPUTE ALL LEVELS RECURSIVELY
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for n in range(2,mprec):
QN=[]
QN2=[]

##recursion :
for a in range(0,p+1):

Fa=Rp(1)
Fa2=Rp(1)
for j in range(0,p+1):

if (Tsubpowers[a][j]!=0):
Fa=Fa*(fastevaluate(Fprev[j], Tsubpowers[a][j], mprec ))
Fa2=Fa2*(fastevaluate(Fprev2[j], Tsubpowers[a][j],mprec))

Fa=Fa/(Fa.list()[0])
Fa2=Fa2/(Fa2.list()[0])
QN.append(Fa)
QN2.append(Fa2)

Fprev=QN
Fprev2=QN2
Phi.append(QN)
Phi2.append(QN2)

##compute level 0 product:
phi2=prod([(zet1-mobius(u,tau1))/(zet1-mobius(u,tau2)) for u in unitmat])
phi22=prod([(zet2-mobius(u,tau2))/(zet2-mobius(u,tau1)) for u in unitmat])
result=phi2*phi22

##multiply everything together:
for i in range(1,len(Phi)-1):

if (i%2==0):
for j in range(0,p+1):

result=result*fastevaluate(Phi[i][j],zetapows[j],mprec)*
fastevaluate(Phi2[i][j],zetapows2[j],mprec)

JD1D2=(sqrt(result))
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