STARK-HEEGNER POINTS AND GENERALISED KATO CLASSES

HENRI DARMON AND VICTOR ROTGER

ABSTRACT. Stark-Heegner points are conjectural substitutes for Heegner points when the
imaginary quadratic field of the theory of complex multiplication is replaced by a real qua-
dratic field K. They are constructed analytically as local points on elliptic curves with
multiplicative reduction at a prime p that remains inert in K, but are conjectured to be
rational over ring class fields of K and to satisfy a Shimura reciprocity law describing the
action of Gk on them. The main conjectures of [Dar] predict that any linear combination of
Stark-Heegner points weighted by the values of a ring class character 1 of K should belong
to the corresponding piece of the Mordell-Weil group over the associated ring class field, and
should be non-trivial when L'(E/K,,1) # 0. The main result of this article is that such
linear combinations arise from global classes in the idoneous pro-p Selmer group, and are
non-trivial when the first derivative of a weight-variable p-adic L-function .Z,(f/K, ) does
not vanish at the point associated to (E/K,). The proof rests on the construction of a
three-variable family x(f, g, h) of cohomology classes associated to a triple of Hida families
and a direct comparison between Stark-Heegner points and the generalised Kato classes aris-
ing by specialising x(f, g, h) at weights (2,1,1) for a suitable choice of Hida families. The
explicit formula that emerges from this comparison is of independent interest and supplies
theoretical evidence for the elliptic Stark Conjectures of [DLR].
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INTRODUCTION

Let E be an elliptic curve over Q of conductor NV and let K be a quadratic field of discrim-
inant D relatively prime to N, with associated Dirichlet character x .

When yxg(—N) = —1, the Birch and Swinnerton-Dyer conjecture predicts a systematic
supply of rational points on F defined over abelian extensions of K. More precisely, if H
is any ring class field of K attached to an order O of K of conductor prime to DN, the
Hasse-Weil L-function L(E/H, s) factors as a product

(1) L(E/H,s) = [ LE/K..s)
P

of twisted L-series L(E/K,1, s) indexed by the finite order characters
v:G=Gal(H/K) — L*,

taking values in some fixed finite extension L of Q. The L-series in the right-hand side
of (1) all vanish to odd order, because they arise from self-dual Galois representations and
have sign xx(—N) in their functional equation. In particular, L(E/K,¢,1) = 0 for all 4.
An equivariant refinement of the Birch and Swinnerton-Dyer conjecture predicts that the -
eigenspace F(H)¥ C E(H) ® L of the Mordell-Weil group for the action of Gal (H/K) has
dimension > 1, and hence, that F(H) ® Q contains a copy of the regular representation of G.

When K is imaginary quadratic, this prediction is largely accounted for by the theory
of Heegner points on modular or Shimura curves, which for each 1 as above produces an
explicit element Py € E(H )¥. The Gross-Zagier formula implies that Py, is non-zero when
L'(E/K,v,1) # 0. Thus it follows for instance that E(H) ® Q contains a copy of the regular
representation of G when L(E/H,s) vanishes to order [H : K| at the center.

When K is real quadratic, the construction of non-trivial algebraic points in E(H ) appears
to lie beyond the scope of available techniques. Extending the theory of Heegner points to
this setting thus represents a tantalizing challenge at the frontier of our current understanding
of the Birch and Swinnerton-Dyer conjecture.

Assume from now on that D > 0 and there is an odd prime p satisfying
(2) N=pM withpt M,  xk(p)=-1, xx(M)=1

A conjectural construction of Heegner-type points, under the further restriction that x5 (¢) =
1 for all | M, was proposed in [Dar]|, and extended to the more general setting of (2) in [Gr09],

[DG], [LRV], [KPM] and [Re]. It leads to a canonical collection of so-called Stark-Heegner
points

P, € E(H®Q,) =[] E(H,),
plp
indexed by the ideal classes a of Pic(Q), which are regarded as here as semi-local points, i.e.,
[H : K]-tuples Py = { Py }p|p of local points in E(K),). This construction, and its equivalence
with the slightly different approach of the original one, is briefly recalled in §2.1.
As a formal consequence of the definitions (cf. Lemma 2.1), the semi-local points Py satisfy
the Shimura reciprocity law

Py = Pec(o)a forall o€,

where G acts on the group E(H ® Q) in the natural way and rec : G — Pic(O) is the Artin
map of global class field theory.
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The construction of the semi-local point Py € [] op B (H,) is purely p-adic analytic, relying
on a theory of p-adic integration of 2-forms on the product H x H,,, where H denotes Poincaré’s
complex upper half plane and #,, stands for Drinfeld’s rigid analytic p-adic avatar of H, the
integration being performed, metaphorically speaking, on two-dimensional regions in H, x H
bounded by Shintani-type cycles associated to ideal classes in K. The following statement
of the Stark-Heegner conjectures of loc.cit. is equivalent to [Dar, Conj. 5.6, 5.9 and 5.15], and
the main conjectures in [Gr09], [DG], [LRV], [KPM] and [Re] in the general setting of (2):

Stark-Heegner Conjecture. The semi-local points Py belong to the natural image of E(H)
in E(H ® Qp), and the 1p-component

Py= > v Y a)P € E(H®Q,)"
a€Pic(0)

is non-trivial if and only if L'(E/K,¢,1) # 0.

The Stark-Heegner Conjecture has been proved in many cases where ¢ is a quadratic ring
class character. When 12 = 1, the induced representation

Vi = Ind%w =x1D X2

decomposes as the sum of two one-dimensional Galois representations attached to quadratic
Dirichlet characters satisfying

x1(p) = —x2(p), x1(M) = x2(M),

and the pair (1, x2) can be uniquely ordered in such a way that the L-series L(E, x1,s) and
L(E, x2,s) have sign 1 and —1 respectively in their functional equations.

Define the local sign « := a,(E), which is equal to either 1 or —1 according to whether
E has split or non-split multiplicative reduction at p. Let p be a prime of H above p, and
let 0, € Gal (H/Q) denote the associated Frobenius element. Because p is inert in K/Q, the
unique prime of K above p splits completely in H/K and o, belongs to a conjugacy class of
reflections in the generalised dihedral group Gal (H/Q). It depends in an essential way on the
choice of p, but, because 1 cuts out an abelian extension of QQ, the Stark-Heegner point

(3) Py =Py +a-o,Py
does not depend on this choice. It can in fact be shown that
po _ 2Py if x2(p) = o
v 0 ifxo(p) =~

The recent work [Mok2] of Mok and [LMY] of Longo, Martin and Yan, building on the methods
introduced in [BD2, Thm. 1], [Mokl1], and [LV], asserts:

Stark-Heegner theorem for quadratic characters. Let ¢ be a quadratic ring class
character of conductor prime to 2DN. Then the Stark-Heegner point Pg belongs to E(H)®Q
and is non-trivial if and only if

(4) L(E’le 1) 7£ 0, L/(Ev X2 1) 7& 0, and X2(p) =

The principle behind the proof of this result is to compare Pz? to suitable Heegner points
arising from Shimura curve parametrisations, exploiting the fortuitous circumstance that the
field over which P, is conjecturally defined is a biquadratic extension of Q and is thus also
contained in ring class fields of imaginary quadratic fields (in many different ways).

The present work is concerned with the less well understood generic case where ¥? # 1,
when the induced representation V, is irreducible. Note that ¢ is either totally even or totally
odd, i.e., complex conjugation acts as a scalar €, € {1, —1} on the induced representation V.
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The field which 1 cuts out cannot be embedded in any compositum of ring class fields of
imaginary quadratic fields, and the Stark-Heegner Conjecture therefore seems impervious to
the theory of Heegner points in this case.

The semi-local point P of (3), which will again play a key role in this work, now depends
crucially on the choice of p, but it is not hard to check that its image under the localisation
homomorphism

Jp : E(H ® Qp) — E(Hy) = E(K))
at p is independent of this choice, up to scaling by L* (cf. Lemma 2.4). It is the local point
Py, = jp(P}) € E(H)) ® L = E(K,) ® L

which will play a key role in Theorems A, B and C below, which are the main results of the
paper. Theorems A and B are conditional on either one of the two non-vanishing hypotheses
below, which apply to a pair (F, K) and a choice of archimedean sign ¢ € {—1,1}. The first
hypothesis is the counterpart, in analytic rank one, of the non-vanishing for simultaneous
twists of modular L-series arising as the special case of [DR2, Def. 6.8] discussed in (168) of
loc.cit., where it plays a similar role in the proof of the Birch and Swinnerton—Dyer conjecture
for L(E/K,v,s) when L(E/K,1,1) # 0. The main difference is that we are now concerned
with quadratic ring class characters for which L(E/K,1,s) vanishes to odd rather than to
even order at the center.

Analytic non-vanishing hypothesis: Given (E, K) as above, and a choice of a sign € €
{1, =1}, there exists a quadratic Dirichlet character x of conductor prime to DN satisfying

x(-1)=—¢, xxx(p)=a, L(E,x,1)#0, L'(E,xxk,1)#0.

The second non-vanishing hypothesis applies to an arbitrary ring class character £ of K.

Weak non-vanishing hypothesis for Stark-Heegner points: Given (E,K) as above,
and a sign € € {1,—1}, there exists a ring class character & of K of conductor prime to DN
with eg = —€ for which P¢, # 0.

That the former hypothesis implies the latter follows by applying the Stark-Heegner the-
orem for quadratic characters to the quadratic ring class character £ of K attached to the
pair (x1,x2) := (X, Xxx) supplied by the analytic non-vanishing hypothesis. The stronger
non-vanishing hypothesis is singled out because it has the virtue of tying in with mainstream
questions in analytic number theory on which there has been recent progress [Mun]. On the
other hand, the weak non-vanishing hypothesis is known to be true in the classical setting
of Heegner points, when K is imaginary quadratic. In fact, for a given F and K, all but
finitely many of the Heegner points P, (as a ranges over all ideal classes of all possible orders
in K) are of infinite order, and P: and B¢ are therefore non-trivial for infinitely many ring
class characters &, and for at least one character of any given conductor, with finitely many
exceptions. It seems reasonable to expect that Stark-Heegner points should exhibit a similar
behaviour, and the experimental evidence bears this out. In practice, efficient algorithms for
calculating Stark-Heegner points make it easy to produce a non-zero ng for any given (F, K),
and indeed, the extensive experiments carried out so far have failed to produce even a single
example of a vanishing Pga when ¢ has order > 3. Thus, while these non-vanishing hypotheses
are probably difficult to prove in general, they are expected to hold systematically. Moreover,
they can easily be checked in practice for any specific triple (E, K,¢) and therefore play a
somewhat ancillary role in studying the infinite collection of Stark-Heegner points attached
to a fixed £ and K.
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Let V,(E) := (w Ep"]) ® Q, denote the Galois representation attached to E and let
Sely(E/H) i= HY(H, Vy(E)

be the pro-p Selmer group of E over H. The 1)-component of this Selmer group is an Lj,-vector
space, where L, is a field containing both Q, and L, by setting

Sel,(E/H)Y = {r € HE(H,V},(E))@QP L, : such that ok =1(0) & for all 0 € Gal (H/K)}.
Since E is defined over Q, the group
Sel,(E/H) ~ ®,H (Q, Vp(E) © 0)

admits a natural decomposition indexed by the set of irreducible representations p of Gal (H/Q).
In this note we focus on the isotypic component singled out by %, namely

(5) Sel,(E, ¥) := HHQ, V,(E) ® Vi) = Sel,(E/H)" & Sel,(E/H)?

where Shapiro’s lemma combined with the inflation-restriction sequence gives the above canon-
ical identifications.

It will be convenient to assume from now on that E[p] is irreducible as a Gg-module. (This
hypothesis could certainly be relaxed at the cost of some simplicity and transparency in some
of the arguments.)

The first main result of this article is:

Theorem A. Assume that the (analytic or weak) non-vanishing hypothesis holds for (E, K, ¢).
Let ¥ be any non-quadratic ring class character of K of conductor prime to DN, for which
€y = €. Then there is a global Selmer class

Ky € Selp(E, 1)
whose natural image in the group E(Hy) ® L, of local points agrees with Pli"p.
In particular, it follows that
(6) P, #0 = dimg, Sel,(E/H)Y > 1.

As a corollary, we obtain a criterion for the infinitude of Sel,(E/H)¥ in terms of the p-adic
L-function .%,(f/ K, ) constructed in [BD2, §3], interpolating the square roots of the central
critical values L(fx/K, v, k/2), as fx ranges over the weight k > 2 classical specializations of
the Hida family passing through the weight two eigenform f associated to £. The interpolation
property implies that %,(f/K, 1)) vanishes at k = 2, and its first derivative .2, (f/K,v)(2)
is a natural p-adic analogue of the derivative at s = 1 of the classical complex L-function
L(f/K,v,s). The following result can thus be viewed as a p-adic variant of the Birch and
Swinnerton-Dyer Conjecture in this setting.

Theorem B. If %,/(f/K,)(2) # 0, then dimy,, Sel,(E/H)¥ > 1.

Theorem B is a direct corollary of (6) in light of the main result of [BD2], recalled in Theorem
2.9 below, which asserts that Py, is non-trivial when %,'(f/K,v)(2) # 0.

Remark 1. Assume the p-primary part of (the 1-isotypic component of) the Tate-Shafarevich
group of E/H is finite. Then Theorem A shows that P&p arises from a global point in
E(H)® Ly, as predicted by the Stark-Heegner conjecture. Moreover, Theorem B implies that
dimy, E(H)¥ > 1if %,/(f/K,¢)(2) # 0.

Remark 2. The irreducibility of Vi, when ) is non-quadratic shows that Py is non-trivial
if and only if the same is true for P;. The Stark-Heegner Conjecture combined with the
injectivity of the map from F(H) ® L to E(H,) ® L suggests that Py, never vanishes when
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Py, # 0, but the scenario where Pj is a non-trivial element of the kernel of j, seems hard to
rule out unconditionally, without assuming the Stark-Heegner conjecture a priori.

Remark 3. Section 2 is devoted to review the theory of Stark-Heegner points. For notational
simplicity, §2 has been written under the stronger Heegner hypothesis

xk(p) = -1, Xk (£) =1 for all £|M

of [Dar|. This section contains no new results and merely collects together the basic notations
and principal results of [Dar|, [BD2], [Mok2] and [LMY]. Exact references for the analogous
results needed to cover the more general setting of (2) are given along the way. The remaining
sections §3 and §4, which form the main body of the article, adapt without change to proving
Theorems A and B under the general assumption (2). In particular, while quaternionic
modular forms need to be invoked in the general construction of Stark-Heegner points of
[Gr09], [DG| and [LRV], the arguments in §3 and §4 only employ classical elliptic modular
forms in order to deal with the general setting. The method described in this work also
adapts, multatis mutandis, to proving the main conjecture of [Das] for abelian varieties of
G Lao-type, and the main conjecture of [RS] on “Stark-Heegner cycles” associated to higher
weight modular forms under a similar analytic or weak non-vanishing hypothesis: it suffices
for this to invoke the main theorem of [Se] in place of the Stark-Heegner theorem for quadratic
characters.

We now describe the main steps in the proof of Theorem A, which rests on a comparison
between Stark-Heegner points and the generalised Kato classes introduced in [DR2].

e Step 1. An auxiliary Stark-Heegner point. Invoking the weak non-vanishing Hypothesis for
Stark-Heegner points or its stronger analytic variant, let £ be an auxiliary ring class character
of K having parity opposite to that of v, and for which the Stark-Heegner point Pg‘p is
non-zero.

o Step 2. Theta series of weight one attached to K. A lemma of Tate on lifting projective
Galois representations from PGL2(C) to GL2(C) can be used, as in the statement of [DR2,
Lemma 6.9] and the discussion following it, to exhibit two ray class characters ¢, and 1)y, of
K of conductor prime to N satisfying

wgwh = 1% 1/’9% = ‘57

where 1)}, is the composition of ¥, with the involution in Gal (K/Q). Letting V; and V}, denote
the two-dimensional Artin representations induced from 1), and 1, respectively, it is easy to
check that
Vgh :=V:q®VhZV¢@V£.

The fact that Vi, and V; have opposite parity implies that the characters 1, and v both
have mized signature at infinity, and hence, that V, and V}, are odd two-dimensional Artin
representations of Gg. A theorem of Hecke shows that the theta series g and h associated
to ¢4 and vy, are holomorphic modular forms of weight one, having V, and V), as associated
Galois representations. The eigenvalues of the frobenius element oy, which acts on V,; and V},
as a reflection modulo the center, can be ordered so that they are of the form

(Oég7 /Bg) = (L7 _[/)7 (ahu Bh) = (O[Lilu _a[/*l)
for a suitable ¢ € L*, where we recall that a € {1, —1} is the local sign at p determined by
E. Let g, and h, be the p-stabilisations of g and h satisfying

Upga = QgQa;, Upha = aphg.

o Step 3 Generalised Kato classes. In addition to the Hida family f passing through f, a
theorem of Wiles ensures the existence of two Hida families g and h specialising to g, and h,,
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at suitable weight one points. The main object of §3 is the construction of a three-variable
Euler system x(f,g,h) of diagonal cycles associated to (f,g,h); cf. (104). This extends in
new directions (notably along f) the results obtained in [DR2], which were insufficient for the
purposes of this note, and required a different aproach. We do so by introducing a family
of cycles on the cube of the modular curve X (N) of full level structure, which may be of
independent interest and deserves to be explored in more detail. As we prove in Theorem
3.29, the class k(f, g, h) recovers the three different unbalanced triple-product p-adic Garrett-
Hida L-functions under suitable Perrin-Riou A-adic regulators.
The specialisation of x(f, g, h) in weight (2,1,1) gives rise to the generalised Kato class

K(f, 9o ha) € HY(Q, Vp(E) @ Vo) = HH(Q, Vy(E) ® Vy) @ H'(Q, V,p(E) @ V),

obtained, roughly speaking, as a p-adic limit of the p-adic Abel Jacobi images of Gross-Kudla
Schoen cycles attached to the triple (f,g.,hs;) where (g.,h;) ranges over pairs of classical
specializations of (g,h) at points of weight k& > 2. (More precisely, the class k(f, ga, ha)
is the image under a non-canonical projection of a class taking values in several copies of
Vp(E) ® Vg, arising from the cohomology of modular varieties in level N = lem(Ny, Ny, Np,).
This technical issue, which is suppressed in the introduction to lighten the exposition, is dealt
with in the main body of the article.) The generalised Kato reciprocity law proved in [DR2]
parlays the vanishing of L(f, Vyp, 1) into the conclusion that £(f, ga, ha) is cristalline at p and
hence belongs to the Selmer group H} (Q, V,(E) ® Vyp,). Let

ko (fs9asha) € HE (Q.Vp(BE) @ Vi), Ke(fs gasha) € Hi (Q, Vp(E) ® V)

denote the two components of the global cohomology class &(f, ga, ha)-
Just as in (5), there are canonical identifications at the local level

(7) Hi (Qp, Vp(B)® Vy) = H{(Hy, Vy(E))” @ Hi (Hp, Vp(E))”
=EB(H®Q,)" & E(H Q,)?,
where
Hfl(Hm Vp(E)) = 69plplr{fl(Hpa Vp(E))
Similar remarks apply equally of course when % is replaced by &.
Given a prime p of H above p, let

denote the formal group logarithm map, which is obtained by composing the inverse of the
Tate uniformization of E with the branch of the p-adic logarithm map that vanishes at the
Tate period of E. By an abuse of notation, we will identity logg , with the homomorphisms

1OgE,p : E(H ® Qp) - Kp> Hfl(Qpa V;?(E) ® Vw) - KP ® LP

that it induces via composition with the localisation map j, and the identifications in (7).
Let

Hg(f’ Ja, ha) = (1 + O‘O-P)Kw(f, Ja, hoz) € Selp(Ea d’) = Hfl(H7 V;?(E))d]@lz

denote the component of Ky (f, ga, ha) on which o, acts with eigenvalue «, and likewise with
1) replaced by the auxiliary character &.

e Step 4: Generalised Kato classes and Stark-Heegner points. Properties of generalised Kato
classes already established in [DR2] and [DR3| can be used to show that

1OgE',p(’%%(fa Ja, ha)) = logE,p(K‘?(fa Ja, ha))

Theorem A is now a consequence of the following theorem after setting

Ky 2= logE,p(Pga)_l X H%(f, Jas ha)-
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Theorem C. For all g and h as above,
logp (K4 (f, gas ha)) = log g, (Pf}) x logg,(P¢)  (mod L™).

Theorem C, which makes an explicit comparison between generalised Kato classes and
Stark-Heegner points, is the third main theorem in this paper. It is consistent with the
conjectures of [DR3] on the position of the generalised Kato class £(f,ga,ha) in the Vy,-
isotypic component of the Mordell-Weil group of F, in light of the expected algebraicity of P,
and P, and shows that the Stark-Heegner conjectures are compatible with the elliptic Stark
conjectures of [DLR] in the special case where g and h are theta series attached to characters
of a common real quadratic field.

The key ingredients in the proof of Theorem C are

e A Perrin-Riou-style “explicit reciprocity law” in the exceptional zero setting that follows
from the work of R. Venerucci [Ve]. Let f be a Hida family specializing to f in weight two,
restricted to a neighbourhood of f in the eigencurve which maps isomorphically to the appro-
priate neighbourhood U of 2 in weight space, and hence admitting at most one weight k spe-
cialisation fj, for any given weight k. Venerucci’s reciprocity law involves the Garrett-Rankin
triple product p-adic L-function fpf (f, g, h) interpolating the square roots of the central crit-
ical values L(fi, Vyn, k/2) as fx runs over the classical specializations with k € U N Z~>?2, and
asserts that

d2
@zpf (f,9,h)k=2 (mod L*).

The above p-adic L-function in fact depends on a choice of test vectors ( f 5 G, E)in level
N =lem(Ny, Ny, Np). This technical issue, which is also is suppressed in the introduction to
lighten the exposition, is dealt with in the main body of the article.

(8) logpp p (K3 (f, 9o ha)) =

e A factorisation formula of the form
9) L (£,9,h) = L(F/K, ) x Z,(f/K,§)  (mod L),

where .Z,(f /K, 1)) is defined using a formula of Waldspurger for the square roots of the central
critical values L(fi/K, 1, k/2), in the form made explicit by A. Popa in his Harvard PhD the-
sis. This factorisation is a manifestation of the Artin formalism for p-adic L-series, reflecting
the fact that V, @ V}, = Vi, @ V; together with the fact that the Garrett-Rankin and Wald-
spurger type “square root p-adic L-series” have a common domain of classical interpolation.

e A formula already established in [BD2] showing that
d
(10) loip (PS) = - 2,(8/K)ecs (mod L¥)
Theorem C follows by combining (8), (9) and (10).
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1. BACKGROUND

1.1. Basic notations. Fix an algebraic closure Q of Q. All the number fields that arise will
be viewed as embedded in this algebraic closure. For each such K, let Gx := Gal (Q/K)
denote its absolute Galois group. For each prime p, an embedding Q — @p is also assumed
to be fixed, and ord, denotes the resulting p-adic valuation on Q*, normalized in such a way
that ord,(p) = 1.

For a variety V defined over K C Q, let V denote the base change of V to Q. If F is an
étale sheaf on V, write H’, (V, F) for the ith étale cohomology group of V with values in F,
equipped with its continuous action by Gg.

Given a prime p, let Q(up=) = Ur>1Q((-) be the cyclotomic extension of QQ obtained by
adjoining to QQ a primitive p"-th root of unity (.. Let

Eeye - G — Gal (Q(up=) /Q) — Z;
denote the p-adic cyclotomic character. It can be factored as ecye = w(€cyc), where
w:Gg — fp—1 (€cye) : Gog — 1+ pZy
are obtained by composing eqyc with the projection onto the first and second factors in the
canonical decomposition Z; =~ p,—1 X (14pZy). If M is a Z,[Ggl-module and j is an integer,

write M(j) = M ® 5gyc for the j-th Tate twist of M.
Let
k=2l @2y ), K= 2,070 = lim &,

denote the group ring and completed group ring attached to the profinite group Z; . The ring
K is equipped with p — 1 distinct algebra homomorphisms w® : A — A (for 0 < i < p — 2) to
the local ring
A = Zp[[1 + pZy]| = Yim Zp[1 + pZ/p"Z] ~ Zp([T]],
where w' sends a group-like element a € Z to w'(a)(a) € A. These homomorphisms identify
K with the direct sum o
A=A
i=0

The local ring A is called the one variable Iwasawa algebra. More generally, for any integer
t>1, let
®t . . A .
A7 = K®Zp L ®ZPK7 A%t = A®Zp L ®ZPA ~ Zp[[Tl, e Tt“

The later ring is called the Iwasawa algebra in t variables, and is isomorphic to the power
series ring in ¢ variables over Z,, while

K@t _ @A®t7

the sum running over the (p — 1) distinct ZX valued characters of (Z/pZ)*".

1.2. Modular forms and Galois representations. Let

¢=q+ Y an(¢)q" € Sk(M,X)
n>2
be a cuspidal modular form of weight £ > 1, level M and character x : (Z/MZ)* — C*, and
assume that ¢ is an eigenform with respect to all good Hecke operators Ty, £ 1 M.
Fix an odd prime number p (that in this section may or may not divide M). Let Oy4 denote
the valuation ring of the finite extension of Q, generated by the fourier coefficients of ¢, and
let T denote the Hecke algebra generated over Z, by the good Hecke operators T, with ¢ { M
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and by the diamond operators acting on Si(M, x). The eigenform ¢ gives rise to an algebra
homomorphism
f¢ T — O¢
sending Ty to as(¢) and the diamond operator (¢) to x ().
A fundamental construction of Shimura, Deligne, and Serre-Deligne attaches to ¢ an irre-
ducible two-dimensional Galois representation

0¢ : Gog — Aut(Vy) ~ GL2(Oy),
which is unramified at all primes ¢ { Mp, and for which
(11) det(1 — og(Fre)z) = 1 — ag(¢)x + x(0)0 122,

where Fr, denotes the arithmetic Frobenius element at ¢. This property characterises the
semisimple representation g4 up to isomorphism.

When k := k, +2 > 2, the representation V, can be realised in the p-adic étale cohomology
of an appropriate Kuga-Sato variety. Since this realisation is important for the construction
of generalised Kato classes, we now briefly recall its salient features. Let Y = Yi(M) and
X = X (M) denote the open and closed modular curve representing the fine moduli functor
of isomorphism classes of pairs (A, P) formed by a (generalised) elliptic curve A together with
a torsion point P on A of exact order M. Let

(12) T A — Y

denote the universal elliptic curve over Y.
The k -th open Kuga-Sato variety over Y is the k -fold fiber product

(13) Af = Aoxy B) xy A,

of A, over Y. The variety .A]cf“ admits a smooth compactification A% which is fibered over X
and is called the k -th Kuga-Sato variety over X; we refer to Conrad’s appendix in [BDP1] for
more details. The geometric points in A% that lie above Y are in bijection with isomorphism
classes of tuples [(A,P),P1,..., P ], where (A, P) is associated to a point of Y as in the
previous paragraph and P, ..., P are points on A.

The representation Vy is realised (up to a suitable Tate twist) in the middle degree étale

cohomology Hfg“(ﬁko , Zyp). More precisely, let

H, = R'n, Z/p"Z(1), H = R'n, Z,(1),
and for any k, > 0, define
(14) M = TSym™ (H,),  H" := TSym®™ (H)

to be the sheaves of symmetric k -tensors of H, and H, respectively. As defined in e.g. [BDP1,
(2.1.2)], there is an idempotent € in the ring of rational correspondences of A% whose induced
projector on the étale cohomology groups of this variety satisfy:

(15) ex, (HE T (AP, 2, (k) = HY (X, 1),
Define the Oy-module

(16) V(M) == Hy (X, 1 (1)) @1, O,

and write

(17) @y« Hy (X, 1 (1)) — Vi (M)

for the canonical projection of T[Gg]-modules arising from (16). Deligne’s results and the
theory of newforms show that the module V(M) is the direct sum of several copies of a
locally free module Vi of rank 2 over O, that satisfies (11).
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Let a and B, the two roots of the p-th Hecke polynomial T2 — ap()T + x(p)p*~1, ordered
in such a way that ord,(ay) < ord,(8g). (If ag and Sy have the same p-adic valuation, simply
fix an arbitrary ordering of the two roots.) We set x(p) = 0 whenever p divides the primitive
level of ¢ and thus oy = ap(¢) and 4 = 0 in this case. The eigenform ¢ is said to be ordinary
at p when ord,(ag) = 0. In that case, there is an exact sequence of Gig,-modules

(18) 0=V — Ve — Vo =0, V=04l xiy), Vi~ O04(ty),
where 1) is the unramified character of Gg, sending Fr;, to .

1.3. Hida families and A-adic Galois representations. Fix a prime p > 3. The formal
spectrum

W := Spf(A)
of the Iwasawa algebra A = Z,[[1 + pZ,]] is called the weight space attached to A. The
A-valued points of W over a p-adic ring A are given by

W(A) = Homyig (A, A) = Homgp (1 + pZy, AX),

where the Hom’s in this definition denote continuous homomorphisms of p-adic rings and
profinite groups respectively. Weight space is equipped with a distinguished collection of
arithmetic points vy, . , indexed by integers k, > 0 and Dirichlet characters € : (14+pZ/p"Z) —
Qp(¢r—1)* of p-power conductor. The point vy, . € W(Zp[(,]) is defined by

Vg (n) = e(n)n®,

and the notational shorthand vy := vy 1 is adopted throughout. More generally, if A is any
finite flat A-algebra, a point z € W := Spf(A) is said to be arithmetic if its restriction to A
agrees with vy . for some k, and e. The integer k = k, + 2 is called the weight of x and
denoted wt(x).

Let

(19)

denote the A-adic cyclotomic character which sends a Galois element o to the group-like
element [(eqyc(0))]. This character interpolates the powers of the cyclotomic character, in the
sense that

:GQ—>A><

§CyC

(20) Vk e © Ecyc = € (Eeye)o = - -wh.

cyc

Let M > 1 be an integer not divisible by p.

Definition 1.1. A Hida family of tame level M and tame character x : (Z/MZ)* — @; is
a formal g-expansion
= an(®)q" € Ag[lq]]
n>1
with coefficients in a finite flat A-algebra Ay, such that for any arithmetic point x € Wy, :=
Spf(Ag) above vy, where k, > 0 and ¢ is a character of conductor p", the series

¢y =3 (an(9))q" € Qlla]
n>1

is the g-expansion of a classical p-ordinary eigenform in the space Si(Mp", yew %) of cusp
forms of weight k = k, + 2, level Mp" and nebentype yew .

By enlarging A4 if necessary, we shall assume throughout that Ay contains the M-th roots
of unity.

Definition 1.2. Let € Wy be an arithmetic point lying above the point v . of weight
space. The point x is said to be
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e tame if the character € is tamely ramified, i.e., factors through (Z/pZ)*.
o cristalline if ew™% =1, i.e., if the weight k specialisation of ¢ at x has trivial neben-
typus character at p.

We let W;; denote the set of cristalline arithmetic points of We.

Note that a cristalline point is necessarily tame but of course there are tame points that
are not cristalline. The justification for this terminology is that the Galois representation Vy_
is cristalline at p when «x is a cristalline.

If z is a cristalline point, then the classical form ¢, is always old at p if & > 2. In that
case there exists an eigenform ¢ of level M such that ¢,, is the ordinary p-stabiization of ¢;.
If the weight is £k = 1 or 2, ¢, may be either old or new at p; if it is new at p then we set
¢; = ¢, in order to have uniform notations.

We say ¢ is residually irreducible if the mod p Galois representation associated to the
Deligne representations associated to ¢, for any cristalline classical point is irreducible.

Finally, the Hida family ¢ is said to be primitive of tame level Mg | M if for all but finitely
many arithmetic points x € W, of weight k£ > 2, the modular form ¢, arises from a newform
of level M.

The following theorem of Hida and Wiles associates a two-dimensional Galois representation
to a Hida family ¢ (cf.e.g. [MT, Théoreme 7]).

Theorem 1.3. Assume ¢ is residually irreducible. Then there is a rank two Ag-module V4
equipped with a Galois action

(21) 0¢ : GQ — AUtAd, (V¢) ~ GLQ(A¢),

such that, for all arithmetic points x : Ay — @p,

V¢ ®$’A¢ @p ~ V¢z.
Let
@bd, : GQP — A:;)

denote the unramified character sending a Frobenius element Fr), to a,(¢). The restriction of
Vg to Gq, admits a filtration

(22) 0 — V; — Vg = Vg — 0 where V; ~ A¢(¢¢71X€C_y10§cyc) and Vi, =~ Agy(vg).

The explicit construction of the Galois representation Vg plays an important role in defining
the generalised Kato classes, and we now recall its main features.
For all 0 <r < s, let

Xy = Xl(MpT)v Xr,s = Xl(Mpr) X Xo(Mp™) XO(Mps),

where the fiber product is taken relative to the natural projection maps. In particular,

e the curve X := X := X (M) represents the functor of elliptic curves A with I'; (M)-
level structure, i.e., with a marked point of order M;

e the curve X, represents the functor classifying pairs (A, P) consisting of a generalized
elliptic curve A with I'y (M )-level structure and a point P of order p” on A;

e the curve Xo s = X1(M) X x,(ar) Xo(Mp®) classifies pairs (A4, C) consisting of a gener-
alized elliptic curve A with I'1 (M) structure and a cyclic subgroup scheme C' of order
p® on A;

e the curve X, ; classifies pairs (A, P, C') consisting of a generalized elliptic curve A with
I'y (M) structure, a point P of order r on A and and a cyclic subgroup scheme C' of
order p® on A containing P.
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The curves X, and Xy, are smooth geometrically connected curves over Q. The natural
covering map X, — Xo, is Galois with Galois group (Z/p"Z)* acting on the left via the
diamond operators defined by

(23) (a)(A,P) = (A,aP).
Let
(24) w1 Xr+1 — X,,,

denote the natural projection from level r+1 to level r which corresponds to the map (A, P) —
(A,pP), and to the map 7 — 7 on upper half planes. Let

wy: Xpp1 — Xy

denote the other projection, corresponding to the map (A, P) — (A/(p"P), P+ (p" P)), which
on the upper half plane sends 7 to pr. These maps can be factored as

(25) XrJrl XrJrl
™ I
1 7
Xr,r—‘rl TRl X, Xr,r—‘rl N X

For all » > 1, the vertical map pu is a cyclic Galois covering of degree p, with Galois group
canonically isomorphic to (1 + p"(Z/p"T'Z)), while the horizontal maps 71 and 75 are non-
Galois coverings of degree p. When r = 0, the map p is a cyclic Galois covering of degree
p — 1, with Galois groups canonically isomorphic to (Z/pZ)*, while 7; and 79 are non-Galois
coverings of degree p + 1.

The A-adic representation Vg shall be realised (up to twists) in quotients of the inverse
limit of étale cohomology groups arising from the tower

D GNP AN i PN S . O
of modular curves. Define the inverse limit
1 /v . 1/v
(26) Ho (X0 Zp) = 1£1 Ho (X, Zy)
W1x
where the transition maps arise from the pushforward induced by the morphism w;. This

inverse limit is a module over the completed group rings Z,|[[Z,]] arising from the action of the
diamond operators, and is endowed with a plethora of extra structures that we now describe.

Hecke operators. The transition maps in (26) are compatible with the action of the Hecke
operators T, for all n that are not divisible by p. Of crucial importance for us in this article
is Atkin’s operator U, which operates on HL(X,, Zyp) via the composition

U; = T1.T
arising from the maps in (25).

The operator Uy is compatible with the transition maps defining HL (X%, 7Z,),

Inverse systems of étale sheaves. The cohomology group Helt(X;*O,Zp) can be identified with
the first cohomology group of the base curve X; with values in a certain inverse systems of
étale sheaves.
For each r > 1, let
-1

be the pushforward of the constant sheaf on X, via the map

w{_l X, — X4
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The stalk of £} at a geometric point z = (A, P) on X; is given by
L5 = ZplAlP"[(P)],
where
AP |(P) := {Q € Ap"] such that p"~'Q = P}.
The multiplication by p map on the fibers gives rise to natural homomorphisms of sheaves
(28) Pl Lryr — L5,
and Shapiro’s lemma gives canonical identifications
Helt(XW Zp) = Helt(Xh ﬁ;t)7
for which the following diagram commutes:

v TW1x

Helt(XrHa Zp) - Hét(Xra Zp)

HY (X0, £00) 2 HY (X0, £2).

Let L} = @ L} denote the inverse system of étale sheaves relative to the maps [p] arising
T

in (28). By passing to the limit, we obtain an identification

(20) H3 (X2, Z) = lim HY (X0, £7) = H (X1, £5,).
r>1

Weight k specialisation maps. Recall the p-adic étale sheaves H* introduced in (14), whose
cohomology gave rise to the Deligne representations attached to modular forms of weight
k =k, + 2 via (16). The natural k -th power symmetrisation function

A —HE, Qe QR
restricted to A[p"](P) and extended to L} , by Zy-linearity, induces morphisms
(30) spiy o Ly — HpP

of sheaves over X; (which are thus compatible with the action of Gg on the fibers). These
specialisation morphisms are compatible with the transition maps [p] in the sense that the
diagram

commutes, where the bottom horizontal arrow denotes the natural reduction map. The maps
sp;, , can thus be pieced together into morphisms

(31) sph: Lr — HP.
The induced morphism
(32) spj, « Hay (X%, Zp) — Heg(X1, 1),

arising from those on H} (X1, £%) via (29) will be denoted by the same symbol by abuse of
notation, and is referred to as the weight k = k, + 2 specialisation map. The existence of such
maps having finite cokernel reveals that the A-adic Galois representation HY (X2, Z,) is rich
enough to capture the Deligne representations attached to modular forms on X; of arbitrary
weight k& > 2.
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For each a € 1 + pZj,, the diamond operator (a) acts trivially on X; and as multiplication

by a* on the stalks of the sheaves ’H]:‘”. It follows that the weight k specialisation map spj
factors through the quotient HY (X%, Z,) @Ay, Lp, 1-e., one obtains a map

Sp]: : Helt(X;o’Zp) ®A»Vk0 ZP - Helt(leHkb)'

Remark 1.4. The inverse limit £ of the sheaves £ on X; has been systematically studied
by G. Kings in [Ki, §2.3-2.4], and is referred to as a sheaf of Iwasawa modules. Jannsen
introduced in [Ja] the étale cohomology groups of such inverse systems of sheaves, and proved
the existence of a Hoschild-Serre spectral sequence, Gysin excision exact sequences and cycle
map in this context.

Ordinary projections. Let

(33) e* == lim U™

n—oo P

denote Hida’s ordinary projector. Since U; commutes with the push-forward maps 1.,
this idempotent operates on H} (X% ,7Z,). While the structure of the A-module HY (X, Z,)
seems rather complicated, a dramatic simplification occurs after passing to their ordinary part
e*H} (X% ,7Z,y), as the following classical theorem of Hida shows.

Theorem 1.5. [Hi2, Corollaries 3.3 and 3.7] The Galois representation e* HY (X%, Z,(1)) is
a free A-module. For each vy, € W with k, > 0, the weight k = k, + 2 specialisation map
induces maps with bounded cokernel (independent of k)

it HL(K i Zp(1)) By, Ty — e HY (X1, (1),
Galois representations attached to Hida families. The Galois representation V¢ of Theorem

1.3 associated by Hida and Wiles to a Hida family ¢ of tame level M and character x can be
realised as a quotient of the A-module e* H} (X% ,Z,(1)). More precisely, let

§¢:TA—>A¢

be the A-algebra homomorphism from the A-adic Hecke algebra Ty to the A-algebra Ag
generated by the fourier coefficients of ¢ sending Ty to ay(¢).
Then we have, much as in (16), a quotient map of A-adic Galois representations

(34) wg € Hoy (X350, Zp(1)) — e Hoy (X%, Zp(1)) @y g, Ap = Vo (M),

for which the following diagram of Ty [Ggl-modules is commutative:

(35) e HY (X, Zy(1)) — 2= V(M)
HY (X1, He (1) ——2 >V, (M),

for all arithmetic points = of W, of weight k = k, + 2 and trivial character.
As in (17), V4(M) is non-canonically isomorphic to a finite direct sum of copies of a
Ay [Ggl-module Vg of rank 2 over Ay, satisfying the properties stated in Theorem 1.3.
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1.4. Families of Dieudonné modules. Let Byg denote Fontaine’s field of de Rham periods,
B:{R be its ring of integers and log[(y~| denote the uniformizer of BCTR associated to a norm-
compatible system (peo = {(pn }r>0 of p"-th roots of unity. (cf.e.g.[BK93, §1]). For any finite-
dimensional de Rham Galois representation V' of Gg, with coefficients in a finite extension
L,/Q,, define the de Rham Dieudonné module

D(V) = (V @ Bag)%r.

It is an L,-vector space of the same dimension as V, equipped with a descending exhaustive
filtration Fil’ D(V) = (V ® log’ [Cpoo]B:{R)G@P by L,-vector subspaces.

Let Beis C Bgr denote Fontaine’s ring of crystalline p-adic periods. If V' is crystalline
(which is always the case if it arises as a subquotient of the étale cohomology of an algebraic
variety with good reduction at p), then there is a canonical isomorphism

D(V) ~ (V & BcriS)Gqu

which furnishes D(V') with a linear action of a Frobenius endomorphism ®.
In [BK93] Bloch and Kato introduced a collection of subspaces of the local Galois coho-
mology group H'(Q,, V), denoted respectively

Hy(Qp, V) € Hf (Q,, V) € Hy(Qp,V) C HY(Qp, V),

and constructed homomorphisms

(36) loggy : H(Qp, V) = D(V)/(FI’D(V) + D(V)*=)
and
(37) exppk : H (Qp, V)/HE(Q,, V) = Fil’D(V)

that are usually referred to as the Bloch-Kato logarithm and dual exponential map.
We illustrate the above Bloch-Kato homomorphisms with a few basic examples that shall
be used several times in the remainder of this article.

Example 1.6. As shown e.g.in [BK93], [Bel, §2.2], for any unramified character ¢ of Gg,
and all n € Z we have:

(a) If n > 2, or n. =1 and ¢ # 1, then HJ(Qp, Ly(vel.)) = H'(Qp, Ly(1el,)) is one-
dimensional over L, and the Bloch-Kato logarithm induces an isomorphism

loggk : H'(Qp, Lp(¥egye)) — D(Lp(tegyc)).
(b) If n < 0, or n. = 0 and ¢ # 1, then H}(Qy, Ly(velk,.)) = 0 and H'(Qp, Ly(vel.)) is
one-dimensional. The dual exponential gives rise to an isomorphism
expik ¢ H'(Qp, Lp(¥egye)) — FI'D(Ly(Yegye)) = D(Lp(delye))-

(c) Assume ¢ = 1. If n = 0, then H'(Q,, L,,) has dimension 2, H} (Q,, L,) = Hgl((@p, L)
has dimension 1 and HZ}(Qp, L,) has dimension 0 over L,. The Bloch-Kato dual
exponential map induces an isomorphism

expEK : Hl(@pa L/p)/Hf1 (Qp» Lp) — FﬂOD(Lp) = D(Lp) = Lp'

Class field theory identifies H'(Qp, L,) with Homeons( > Qp) ® Ly, which is spanned
by the homomorphisms ord;, and log,,.

Ifn = 1, then H(Qp, L,(1)) = Hy(Qp, Ly(1)) is 2-dimensional and H{ (Qp, Ly(1)) =
H}(Qp, Ly(1)) has dimension 1 over L,. As proved e.g.in [Bel, Prop. 2.9], Kummer
theory identifies the spaces H{ (Qp, Ly(1)) € H'(Qp, Ly(1)) with ZX®L,, sitting in-
side Q) ®L,. Under this identification, the Bloch-Kato logarithm is the usual p-adic
logarithm on Z .



STARK-HEEGNER POINTS AND GENERALISED KATO CLASSES 17

Let Zgr denote the ring of integers of the completion of the maximal unramified extension
of Qp. If V' is unramified then there is a further canonical isomorphism

(38) D(V) ~ (V@ Z3)%,

Let ¢ be an eigenform (with respect to the good Hecke operators) of weight k =k, +2 >
2, level M and character x, with fourier coefficients in a finite extension L, of Q,. The
comparison theorem [Fa] of Faltings-Tsuji combined with (16) asserts that there is a natural
isomorphism
D(Vy(M)) =~ Hqp(X1(M), H* (1))[¢]
of Dieudonné modules over L,. Note that D(Vy(M)) is the direct sum of several copies of the
two-dimensional Dieudonné module D(Vj).

Assume that p { M and ¢ is ordinary at p. Then V4(M) is crystalline and ® acts on
D(Vy(M)) as

1r7—1
(39) ® = x(p)p*t'U,

In particular the eigenvalues of ® on D(V,4(M)) are x(p)p*tla ' = 8, and x(p)p I%HB;I =
o, the two roots of the Hecke polynomial of ¢ at p.

Let ¢* = ¢ ® x € Sk(M, x) denote the twist of ¢ by the inverse of its nebentype character.
Poincaré duality induces a perfect pairing

(,) : D(Vg(M)) x D(Vip=(M)) — D(Lp) = L.
The exact sequence (18) induces in this setting an exact sequence of Dieudonné modules

™

(40) 0 — D(V,H(M)) = D(Vy(M)) = D(V, (M)) — 0.

~

V(M) ®
D(Vy(M))

Since V" (M is unramified, we have D(V, (M)) =~ ( gr)GQP. This submodule may
also be characterized as the eigenspace D(V,; (M)) = o=
action of frobenius.

The rule ¢ — w 3 that attaches to any modular form its associated differential form gives
rise to an isomorphism Sy (M, x)r,[¢] — Fil°(D(Vs(M))) C D(Vy(M)). Moreover, the map

7 of (40) induces an isomorphism

@¢ of eigenvalue o for the

(41) Sk(M,X)1,[¢] == Fil'(D(Vy(M))) — DV, (M)).
Any element w € D(V,.(M)) gives rise to a linear map
w: D(VF(M)) — Ly, ne> (n7 ().
Similarly, any 7 € D(V¢t (M)) also gives rise to a linear functional
n:D(Vy (M) — Ly, we (17 (w), m).

Let now A be a finite flat extension of the Iwasawa algebra A and let U denote a free A-
module of finite rank equipped with an unramified A-linear action of Gg,. Define the A-adic
Dieudonné module

D(U) := (UZL") .

As shown in e.g. [Och03, Lemma 3.3], D(U) is a free module over A of the same rank as U.
Examples of such A-adic Dieudonné modules arise naturally in the context of families of

modular forms thanks to Theorem 1.3. Indeed, let ¢ be a Hida family of tame level M and

character x, and let ¢* denote the A-adic modular form obtained by twisting ¢ by Y.
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Let Vg and Vg(M) denote the global A-adic Galois representations described in (34).
It follows from (22) that to the restriction of V4 to Gg, one might associate two natural
unramified A[Gg,]-modules of rank one, namely

Vg = Ag(thg) and Ug =VI(X eeyesaye)-

Define similarly the unramified modules V(M) and [Ug(M )
Let

Tu¢ = ag(¢)$, VLt Mp, }
Upp = ap(¢)¢ ’

For any cristalline arithmetic point = € W:/; of weight k, the specialization of a A-adic test

@) SR = {6 ST st |

vector ¢ € S¢A(M, x)[#] at z is a classical eigenform by € Sk(Mp, x) with coefficients in
L, =2(Ay) ® Q, and the same eigenvalues as ¢, for the good Hecke operators.
Likewise, define

STNM, %)V [¢] = {n L SU(M, x) — Ag ’ ZZ% _ Zi((ﬁ)%’ Ve }

Let Q4 denote the field of fractions of Ag. Associated to any test vector ¢ e S¢A(M, ) (],
[DR1, Lemma 2.19] describes a Qg-linear dual test vector

<V or o >
(43) ¢ € SFUM, %) B Qy
such that for any ¢ € S¢4(M, ¥) and any point x € Wg,
<V <qu§xa ¢z>
(¢ (¢)) = ==,
<¢x7 ¢m>

where (,) denotes the pairing induced by Poincaré duality on the modular curve associated
to the congruence subgroup I'y (M) NTo(p). This way, the specialization of a A-adic dual test

Y
vector ¢ € SUY(M, x)V[¢] at x gives rise to a linear functional

oV B "
d):c : Sk(Mp7X)[¢x] — Lpa
which in view of the above isomorphisms we may identify with an element 7 € D(V(; (Mp)).

A natural Qg-basis of SP4(M, x)[p] ® Qp is given by the A-adic modular forms ¢(q?) as

d ranges over the positive divisors of M /My and it is also obvious that {¢(¢?)" : d | MMd)

provides a Qg-basis of ST (M, Y)Y [p] ® Qp.
The following statement shows that the linear maps described above can be made to vary
in families.

Proposition 1.7. For any A-adic test vector ¢ € S¢A(M, x)[p] there exist

(1) a homomorphism of Ag-modules
(wg): DUL (M) — Ay
such that for every x € W;, the specialization of W at x is the linear form

zo(,wy) = (,w(%z) :D(Uqf (Mp)) — Ly.

2) and a homomorphism of Ag-modules
¢

(,13) : DV (M) — Qg



STARK-HEEGNER POINTS AND GENERALISED KATO CLASSES 19

whose specialization at a classical point x € Wf; such that ¢, is the ordinary stabiliza-
tion of an eigenform ¢5 of level M, agrees with the functional

I ST
zo(,ng) = ACACAR D(Vy. (Mp)) — Ly.
Here
(44) Eo(7) =1 —x"" 0B ", &1(e7) =1 - x(pagyip"

are the Euler factors appearing in [DR1, Theorem 1.3].

Proof. This is a reformulation of [KLZ, Proposition 10.1.1 and 10.1.2], which in turn builds on
[Oh2]. Namely, Prop. 10.1.1 of loc.cit. proves the statement, except that the interpolation
property in the second claim reads as
&\/
x . —
7008 = Ngneaeneatey Ve M) — b

where \(¢2) € Q* denotes the pseudo-eigenvalue of ¢2, which we recall it is the scalar given
by
(45) Wi (dz) = Mz) - &5,
where Wiy @ Sp(M,x) — Sp(M,x ') stands for the Atkin-Lehner operator. Since we are
assuming that Ag contains the M-th roots of unity (cf.the remark right after Definition
1.1), Prop. 10.1.2 of loc. cit.shows that there exists an element A\(¢) € Ay interpolating the

pseudo-eigenvalues of the classical p-stabilized specializations of ¢. The claim follows, as the
functional (,74) above is obtained as the product of that of [KLZ] and A(¢). O

Remark 1.8. If gzubx is the p-stabilization of an eigenform (5; of level M, then

Bos 4V Bes\ _sgov
wy = (1- " Jwiwge and @, = (1— ad);)wf Ja

2. STARK-HEEGNER POINTS

2.1. Review of Stark-Heegner points. This section recalls briefly the construction of
Stark-Heegner points originally proposed in [Dar] and compares it with the equivalent but
slightly different presentation given in the introduction. As explained in Remark 3, we provide
the details under the running assumptions of loc. cit., and we refer to the references quoted in
the introduction for the analogous story under the more general hypothesis (2).

Let E/Q be an elliptic curve of conductor N := pM with p{ M. Since E has multiplicative
reduction at p, the group E(Q,2) of local points over the quadratic unramified extension Q2
of Q, is equipped with Tate’s p-adic uniformisation

Prrype - Q;z/qz — E(Q}ﬂ)'

Let f be the weight two newform attached to E via Wiles’ modularity theorem, which satisfies
the usual invariance properties under Hecke’s congruence group I'g(N), and let

r::{(‘c‘ Z)eSLg(Z[l/p]), ¢c=0 (mod M)}

denote the associated p-arithmetic group, which acts by Md6bius transformations both on the
complex upper-half plane H and on Drinfeld’s p-adic analogue H, := P1(C,) — P1(Q,). The
main construction of Sections 1-3 of [Dar] attaches to f a non-trivial indefinite multiplicative
integral

Ty
Hy x P1(Q) x P1(Q) — (C;/qz, (1,2,9) H}[/ wy
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satisfying

VT VY Ty
(46) ][ / wy :][/ wy, for all v € T,
Yy x

along with the requirement that

o ()" Feef

This function is obtained, roughly speaking, by applying the Schneider-Teitelbaum p-adic
Poisson transform to a suitable harmonic cocycle constructed from the modular symbol at-
tached to f. It is important to note that there are in fact two distinct such modular symbols,
which depend on a choice of a sign wo = £1 at oo and are referred to as the plus and
the minus modular symbols, and therefore two distinct multiplicative integral functions, with
different transformation properties under matrices of determinant —1 in GLo(Z[1/p]). More
precisely, the multiplicative integral associated to wy, satisfies the further invariance property

L)

See sections 1-3 of loc. cit., and §3.3. in particular, for further details.
Let K be a real quadratic field of discriminant D > 0, whose associated Dirichlet character
Xk satisfies the Heegner hypothesis

xk(P)=—-1,  xk(f) =1 for all {|M.

It follows that D is a quadratic residue modulo M, and we may fix a § € (Z/MZ)* satisfying
6> = D (mod M). Let K, ~ Q2 denote the completion of K at p, and let VD denote a
chosen square root of D in K,.

Fix an order O of K, of conductor ¢ relatively prime to DN. The narrow Picard group
Go := Pic(O) is in bijection with the set of SLy(Z)-equivalence classes of binary quadratic
forms of discriminant Dc?. A binary quadratic form F = Az?+ Bxy+Cy? of this discriminant
is said to be a Heegner form relative to the pair (M, ¢) if M divides A and B = dc¢ (mod M).
Every class in Gp admits a representative which is a Heegner form, and all such representatives
are equivalent under the natural action of the group I'g(M). In particular, we can write

Go = Do(M)\ {A2* + Bzy + Cy*  with (A, B) = (0,6c) (mod M)} .
For each class a := Az? + Bxy + Cy? € Go as above, let

—B+¢VD r-Bs —20s
Ta::Ter_@pCHP’ ’yu::< ZAS T+BS>’

where (7, s) is a primitive solution to the Pell equation x? — Dc?y? = 1. The matrix 7, € T’
has 7, as a fixed point for its action on #,. This fact, combined with properties (46) and

(47), implies that the period
Ta [Yal
Ja :f/ wy c KK/QZ
x
@

does not depend on the choice of z € P1(Q) that was made to define it. Property (46) also
shows that J, depends only on a and not on the choice of Heegner representative that was
made in order to define 7, and 4. The local point

y(a) := Prare(Ja) € B(K))

is called the Stark-Heegner point attached to the class a € Go.

Let H denote the narrow ring class field of K attached to O, whose Galois group is canoni-
cally identified with G via global class field theory. Because p is inert in K/Q and Gal (H/K)
is a generalised dihedral group, this prime splits completely in H/K. The set P of primes of
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H that lie above p has cardinality [H : K] and is endowed with a simply transitive action of
Gal (H/K) = Go, denoted (a,p) — a=p.
Set K;) := Hom(P, E(K,)) ~ K,[,H:K]. There is a canonical identification

(48) H®Q,=K),

sending z € H ® Q, to the function p — z(p) := x,, where z, denotes the natural image of
x in Hy = K,. The group Gal (H/K) acts compatibly on both sides of (48), acting on the
latter via the rule

(49) ox(p) = a:(a_l *P).

Our fixed embedding of H into Q, determines a prime py € P. Conjecture 5.6 of [Dar]
asserts that the points y(a) are the images in E(K,) of global points P/ € FE(H) under
this embedding, and Conjecture 5.9 of loc. cit. asserts that these points satisfy the Shimura
reciprocity law

P!, =rec(b) 1P, for all b € Pic(O),

where rec : Pic(O) — Gal (H/K) denotes the reciprocity map of global class field theory.
It is convenient to reformulate the conjectures of [Dar]| as suggested in the introduction, by
parlaying the collection {y(a)} of local points in E(K,,) into a collection of semi-local points

P, c E(H®Q,) = E(K,)"

indexed by a € Gp. This is done by letting P, (viewed as an E(K))-valued function on the
set P) be the element of E(H @ Q) given by

(Fa)(bx po) := y(ab),
so that, by definition
(50) Pba(p) - Pa(b * P)

This point of view has the pleasant consequence that the Shimura reciprocity law becomes
a formal consequence of the definitions:

Lemma 2.1. The semi-local Stark-Heegner points Py, € E(H ® Q)) satisfy the Shimura reci-
procity law
rec(b)_l(Pa) = Pha.

Proof. By (49),
rec(b)"H(P,)(p) = Py(rec(b) x p) = Pa(b % p), for all p € P.
But on the other hand, by (50)

Py(bxp) = Poa(p).
The result follows from the two displayed identities. O

The modular form f is an eigenvector for the Atkin-Lehner involution Wy acting on Xy (V).
Let wy denote its associated eigenvalue. Note that this is the negative of the sign in the
functional equation for L(FE,s) and hence that E(Q) is expected to have odd (resp. even)
rank if wy = 1 (resp. if wy = —1). Recall the prime py of H attached to the chosen
embedding of H into @,. The frobenius element at pg in Gal (H/Q) is a reflection in this
dihedral group, and is denoted by oy, .

Proposition 2.2. For all a € Go,

O-)J()Pcl - wNPafl.
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Proof. Proposition 5.10 of [Dar| asserts that

opoy(a) = wyy(ca)

for some ¢ € Gp. The definition of ¢ which occurs in equation (177) of loc.cit. directly implies
that

opoy(1) = wny(1), opoy(a) = wyy(a™t),

and the result follows from this. O

Lemma 2.1 shows that the collection of Stark-Heegner points P, is preserved under the
action of Gal (H/K), essentially by fiat. A corollary of the less formal Proposition 2.2 is the
following invariance of the Stark-Heegner points under the full action of Gal (H/Q):

Corollary 2.3. For all 0 € Gal (H/Q) and all a € Go,

oP, = w?\‘,’Pb, for some b € Gp,

where

s _ [0 ifoeGal(H/K)
0_{1 if o ¢ Gal(H/K).

Proof. This follows from the fact that Gal (H/Q) is generated by Gal (H/K) together with
the reflection oy, . O

To each p € P we have associated an embedding j, : H — K, and a frobenius element
op € Gal (H/Q). If p’ = o * p is another prime in P, then we observe that

(51) Jy =jpoo Oy = 0opo 1, Jy 0Oy =jyoopo0 .
Let ¢ : Gal (H/K) — L* be a ring class character, let

1
e¢ = #G@

> (o) € L[Go]

ceGo
be the associated idempotent in the group ring, and denote by
Pw = 6¢P1 € E(H & Qp) ® L

the t-component of the Stark-Heegner point. Recall from the introduction the sign a €
{—1,1} which is equal to 1 (resp. —1) if F has split (resp. non-split) multiplicative reduction
at the prime p. Following the notations of the introduction, write

P§ = (1 + aoy)Py.

Lemma 2.4. The local point jp(Pg) is independent of the choice of prime p € P that was
made to define it, up to multiplication by a scalar in Y(Gp) C L*.

Proof. Let p’ = o * p be any other element of P. Then by (51),
Jw(l+aoy)Py = jpoo (14 acopo NeyPr = jyo (1+aoy)o teyP
= ¢(0) "Gy o (1+aoy)Py.

The result follows. O
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2.2. Examples. This section describes a few numerical examples illustrating the scope and
applicability of the main results of this paper. By way of illustration, suppose that F is an
elliptic curve of prime conductor N = p, so that M = 1. In that special case the Atkin-Lehner
sign wy is related to the local sign o by

WN = —a.

The following proposition reveals that the analytic non-vanishing hypothesis fails in the setting
of the Stark-Heegner theorem for quadratic characters of [BD2] when ¢ = —1:

Proposition 2.5. Let ¥ be a totally even quadratic ring class character of K of conductor
prime to N. Then Pj}‘ is trivial.

Proof. Let (x1,x2) = (X, xxk) be the pair of even quadratic Dirichlet characters associated
to 1, ordered in such a way that L(E, x1,s) and L(E, x2, s) have signs 1 and —1 respectively
in their functional equations. Writing sign(FE,x) € {—1,1} for the sign in the functional
equation of the twisted L-function L(E, x, s), it is well-known that, if the conductor of x is
relatively prime to NV,

sign(£, x) = sign(E)x(—N) = —wyx(=1)x(p) = ax(p)x(-1).
It follows that
axi(p) =1, axa(p) = -1,
but equation (4) in the Stark-Heegner theorem for quadratic characters implies P$ =0. O

The systematic vanishing of Py for even quadratic ring class characters of K can be traced
to the failure of the analytic non-vanishing hypothesis of the introduction, which arises for
simple parity reasons. The failure is expected to occur essentially only when E has prime
conductor p, i.e., when M = 1, and never when M satisfies ord,(M) = 1 for some prime
q. Because of Proposition 2.5, the main theorem of [BD2] gives no information about the
Stark-Heegner point P$ attached to even quadratic ring class characters of conductor prime
to p, on an elliptic curve of conductor p.

On the other hand, in the setting of Theorem A of the introduction, where v has order > 2,
this phenomenon does not occur as the non-vanishing of P$ and PJ “ are equivalent to each
other, in light of the irreducibility of the induced representation V,,. The numerical examples
below show many instances of non-vanishing P$ for ring class characters of both even and
odd parity.

Example. Let E : 4?4y = 23— be the elliptic curve of conductor p = 37, whose Mordell-Weil
group is generated by the point (0,0) € F(Q). Let K = Q(+/5) be the real quadratic field of
smallest discriminant in which p is inert. It is readily checked that L(E/K,s) has a simple
zero at s = 1 and that F(K) also has Mordell-Weil rank one. The curve E has non-split
multiplicative reduction at p and hence o« = —1 in this case. It is readily verified that the
pair of odd characters (1, x2) attached to the quadratic imaginary fields of discriminant —4
and —20 satisfy the three conditions in (4), and hence the analytic non-vanishing hypothesis
is satisfied for the triple (F, K,e = 1). In particular, Theorem A holds for F, K, and all even
ring class characters of K of conductor prime to 37.

Let O be an order of Ok with class number 3, and let H be the corresponding cubic
extension of K. The prime p of H over p and a generator o of Gal (H/K) can be chosen so
that the components

P1 = Pp, P2 = Popa P3 = PUZP
in E(Hy) = E(K,) of the Stark-Heegner point in E(H ® Q,) satisfy

Py =D, Py = P4, Ps = P,.
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Letting ¢ be the cubic character which sends o to ¢ := (1 4+ /—3)/2, we find that
Jp(Py) = Pi+(P+ (P,
op(jp(Py)) = Pi1+(Py+(*Ps =P+ (Ps+ Py,
Gp(Py) = V=3x(Pa—Ps) =vV=3x (P~ Pa).
The following table lists the Stark-Heegner points Py, P, and Py — P attached to the first
few orders O C O of conductor ¢ = ¢(O) and of class number three, calculated to a 37-adic

accuracy of 2 significant digits. (The numerical entries in the table below are thus to be
understood as elements of (Z/37%Z)[\V/5].)

C(O) P1 P2 Pg - PQ
18 | (=635, —256) (319 + 6785, —481230+/5) (—360, 684 + 27/5)
38 | (—154,447) | (—588 4 1237/5,367 + 386+/5) (—437,684 + 87/5)
46 | (223,12-37) | (=112 + 629v/5, (—6 + 34/5) - 37) 00
47 | (610, —229) (539 + 714/5, 10 + 439+/5) (—293,684 + 11321/5)
54 | (533,—561) (679 + 984+/5, 391 + 862+/5) (93,684 + 673/5)

Since the Mordell-Weil group of E(K) has rank one, the data in this table is enough to
conclude that the pro-37-Selmer groups of E over the ring class fields of K attached to the
orders of conductors 18, 38, 47 and 54 have rank at least 3. As for the order of conductor 46, a
calculation modulo 373 reveals that P, — Py is non-trivial, and hence the pro-37 Selmer group
has rank > 3 over the ring class field of that conductor as well. Under the Stark-Heegner
conjecture, more is true: the Stark-Heegner points above are 37-adic approximations of global
points rather than mere Selmer classes. But recognising them as such (and thereby proving
that the Mordell-Weil ranks are > 3) typically requires a calculations to higher accuracy,
depending on the eventual height of the Stark-Heegner point as an algebraic point, about
which nothing is known of course a priori, and which can behave somewhat erratically. For
example, the x-coordinates of the Stark-Heegner points attached to the order of conductor 47
appear to satisfy the cubic polynomial

23 — 31922 4 190z + 420,

while those of the Stark-Heegner points for the order of conductor 46 appear to satisfy the
cubic polynomial

235234700123 — 347726987912 + 138835821427z — 136501565573

with much larger coeflficients, whose recognition requires a calculation to at least 7 digits of
37-adic accuracy.

The table above produced many examples of non-vanishing P$ for ¢ even, and in particular
it verifies the non-vanishing hypothesis for Stark-Heegner points stated in the introduction,
for the sign € = —1. This means that Theorem A is also true for odd ring class characters of
K, even if the premise of (6) is never verified for odd quadratic characters of K.

2.3. p-adic L-functions associated to Hida families over real quadratic fields. Let

= an(f)q" € Ag[lq]

n>1

be the Hida family of tame level M and trivial tame character passing through f. Let zo € W§¢
denote the point of weight 2 such that f;, = f. Note that f;, € So(N) is new at p, while for
any x € Wy with wt(z) = k > 2, £,(¢q) = £7(q) — BEf;(¢P) is the ordinary p-stabilisation of an
eigenform f; of level M = N/p. We set f; = f,, = f.

Let K be a real quadratic field in which p remains inert and all prime factors of M split,
and fix throughout a finite order anticyclotomic character ¢ of K of conductor ¢ coprime to
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DN, with values in a finite extension L,/Q,. Note that ¢)(p) = 1 as the prime ideal pOk is
principal.

Under our running assumptions, the sign of the functional equation satisfied by the Hasse-
Weil-Artin L-series L(E/K,v,s) = L(f,v, s) is

e(E/K, ) =—1,

and in particular the order of vanishing of L(E/K,v,s) at s = 1 is odd. In contrast, at
every classical point x of even weight k > 2 the sign of the functional equation satisfied by
L(f:/K, 9, s) is
(£, /K ) = +1
and one expects generic non-vanishing of the central critical value L(f,/K, 1, k/2).
In [BD2, Definition 3.4], a p-adic L-function

Ly(£/K,¢) € As

associated to the Hida family f, the ring class character ) and a choice of collection of periods
was defined, by interpolating the algebraic part of (the square-root of) the critical values
L(f,/K, v, k/2) for x € W¢ with wt(z) = k =k, +2 > 2. See also [LMY, §4.1] for a more
general treatment, encompassing the setting considered here.

In order to describe this p-adic L-function in more detail, let ®¢, ¢ denote the classical
modular symbol associated to f, with values in the space P}, (C) of homogeneous polynomials
of degree k, in two variables with coefficients in C. The space of modular symbols is naturally

endowed with an action of GL2(Q) and we let @;; ¢ and ®¢ o denote the plus and minus
eigencomponents of ®¢ ¢ under the involution at infinity induced by weo = ((1) 0 )

As proved in [KZ, §1.1] (with slightly different normalizations as for the powers of the
period 27 that appear in the formulas, which we have taken into account accordingly), there

exists a pair of collections of complex periods

{Q;‘;(C}xEva {sz.,(c}xew;’ cc

satisfying the following two conditions:
(i) the modular symbols

+ b
T - z,(c .
of = Qi £, @p = fo take values in Q(£,) = Q({an(£z) }n>1),
£,,C £2,C
(ii) and Q;; c Qo= 42 (£0 £2).

Note that conditions (i) and (ii) above only characterize Q?;C up to multiplication by
non-zero scalars in the number field Q(f).

Fix an embedding Q — @p C C,, through which we regard @i as Cp-valued modular
symbols. In [GS], Greenberg and Stevens introduced measure-valued modular symbols s
and pe interpolating the classical modular symbols @;Z and ®¢ as x ranges over the classical
specializations of f.

More precisely, they show (cf. [GS, Theorem 5.13] and [BD1, Theorem 1.5]) that for every
x € Wy, there exist p-adic periods

(52) QF

fz,p? Qfx,p € CP

such that the specialisation of ,u? and g at x satisfy

(53) e(uf) =Qf ,-of,  xlpp) =0

fo,p fz,p ' q)fx.

Since no natural choice of periods Qi ¢ presents itself, the scalars Qg; » and (¢ , are not
expected to vary p-adically continuously. However, conditions (i) and (ii) above implies that
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the product Q;; . Qe » € C, is a more canonical quantity, as it may also be characterized by
the formula

54 + =—Qf O @?C@fl’c

which is independent of any choices of periods

This suggests that the map x — Q Q _p may extend to a p-adic analytic function,
possibly after multiplying it by sultable Euler like factors at p. And indeed, the following
statement was proved in [BD3, Theorem 3.4]:

Proposition 2.6. There exists a rigid-analytic function Z,(Sym?(f)) on a neighborhood Ug
of Wr around xq such that for all classical points x € Ug N WY of weight k > 2:
(55) Zp(Sym?(£))(x) = Eo(£2)E1 () - O 0

p° fr,p’
where Ey(£,) and &1(f,) are the Euler factors introduced in (44).

Remark 2.7. The motivation for denoting .%,(Sym?(f)) the p-adic function appearing above
relies on the fact that Qi p are p-adic analogues of the complex periods Q;‘; c- As is well-

known, the product th c Qo= 472 (£2,£2) is essentially the near-central critical value of
the classical L-function associated to the symmetric square of f;. In addition to this, as M.
L. Hsieh remarked to us, it might not be difficult to show that .%,(Sym?(f)) is a generator of

Hida’s congruence ideal in the sense of [Hs, §1.4, p.4].

The result characterizing the p-adic L-function £,(f/K, 1) alluded to above is [BD2, The-
orem 3.5], which we recall below. Although [BD2, Theorem 3.5] is stated in loc. cit. only for
genus characters, the proof has been recently generalized to arbitrary (not necessarily qua-
dratic) ring class characters 1 of conductor ¢ with (¢, DN) =1 by Longo, Martin and Yan in
[LMY, Theorem 4.2], by employing Gross-Prasad test vectors to extend Popa’s formula [Po,
Theorem 6.3.1] to this setting.

Let f. € K* denote the explicit simple constant introduced at the first display of [LMY,
§3.2]. It only depends on the conductor ¢ and its square lies in Q*.

Theorem 2.8. The p-adic L-function Ly(f/K,1) satisfies the following interpolation prop-
erty: for all x € W of weight wt(x) =k =k, +2 > 2, we have

L,(f/K, ) (x) = fep(x) x LE /K, 0, k/2)"/?

where -
+ ks €y
o (@) = (1 — az2phy Je DD T (! ey
, fo (2mi)ko /2 0 ¢

2.4. A p-adic Gross-Zagier formula for Stark-Heegner points. One of the main theo-
rems of [BD2] is a formula for the derivative of £,(f/K,) at the point z¢, relating it to the
formal group logarithm of a Stark-Heegner point. This formula shall be crucial for relating
these points to generalized Kato classes and eventually proving our main results.

Theorem 2.9. The p-adic L-function L,(f/K, 1)) vanishes at the point xo of weight 2 and

d

1
(56) %fp(f/K’ w)\x:xo = 5 logp(Pg)'

Proof. The vanishing of £,(f/K, ) at = x¢ is a direct consequence of the assumptions and
definitions, because x = x( lies in the region of interpolation of the p-adic L-function and
therefore £, (f/K,)(zo) is a non-zero multiple of the central critical value L(f/K,,1). This
L-value vanishes as remarked at the beginning of this section.
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The formula for the derivative follows verbatim as in the proof of [BD2, Theorem 4.1]. See
also [LMY, Theorem 5.1] for the statement in the generality required here. Finally, we refer to
[LV] for a formulation and proof of this formula in the setting of quaternionic Stark-Heegner
points, under the general assumption of (2). O

3. GENERALISED KATO CLASSES

3.1. A compatible collection of cycles. This section defines a collection of codimension
two cycles in X1 (Mp")? indexed by elements of (Z/p"7Z)*? and records some of their properties.

We retain the notations that were in force in Section 1.3 regarding the meanings of the
curves X = X;(M), X, = X1(Mp") and X, ;. In addition, let

Y(") =Y xxy Y(»"), X(@"):=X xxu) X(®")

denote the (affine and projective, respectively) modular curve over Q(¢,) with full level p”
structure. The curve Y(p") classifies triples (A, P,Q) in which A is an elliptic curve with
I'1 (M) level structure and (P, Q) is a basis for A[p"] satisfying (P, @) = (., where ( ,) denotes
the Weil pairing and ¢, is a fixed primitive p"-th root of unity. The curve X(p") is geometrically
connected but does not descend to a curve over Q, as can be seen by noting that the description
of its moduli problem depends on the choice of {,. The covering X(p")/X is Galois with Galois
group SLo(Z/p"Z), acting on the left by the rule

(57) ( “ b ) (A4, P,Q) = (A,aP +bQ,cP + dQ).

Consider the natural projection map
(58) ol x o] x wi: X3 — X3

induced on triple products by the map @/ of (24). Write A C X3 for the usual diagonal
cycle, namely the image of X under the diagonal embedding = +— (z,x,z). Let A, be the
fiber product A x ys X3 via the natural inclusion and the map of (58), which fits into the
cartesian diagram

A XS‘

o

A X3
An element of a Z,-module €2 is said to be primitive if it does not belong to p{2, and the set
of such primitive elements is denoted €Y. Let

3= (2L x Z/p'2)) C (Z/p"Z)%)
be the set of triples of primitive row vectors of length 2 with entries in Z/p"Z, equipped with
the action of GLa(Z/p"Z) acting diagonally by right multiplication.

Lemma 3.1. The geometrically irreducible components of A, are defined over Q(¢,) and are
in canonical bijection with the set of left orbits

L /SLa(Z/p"Z).
Proof. Each triple
(v1,v2,v3) = ((z1,41), (22, 92), (%3,y3)) € &y
determines a morphism
Plon o) * X(07) — A C X7

of curves over Q(¢;), defined in terms of the moduli descriptions on Y(p") by

(A, P,Q) — ((A,z1P+1y1Q), (A, 22P 4+ 12Q), (A, z3P 4+ y3Q) ).
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It is easy to see that if two elements (v1,v2,v3) and (v}, vh, v4) € X, satisfy
('Ui’ Uév ’Ué) = (Ulv v2, 7)3)77 with v E SLZ(Z/Z)TZ)’
then
So(vi,vé,v/s) = P(v1,v2,03) © s

where + is being viewed as an automorphism of X(p") as in (57). It follows that the geomet-
rically irreducible cycle

A,«(Ul, V2, U3) = @(Ul,vg,vg)*(x(pr))

depends only on the SLo(Z/p"Z)-orbit of (vi,va,v3).

Since SLo(Z/p"Z) acts transitively on (Z/p"Z x Z/p"Z)', one further checks that the col-
lection of cycles A, (vi,vq,v3) for (vi,v2,v3) € X,/SLa(Z/p"Z) do not overlap on Y,> and
cover A,. Hence the irreducible components of A, are precisely A, (vy,ve,v3) for (vy,ve,v3) €
S, /SLa(Z/p" 7). O

The quotient X, /SLy(Z/p"Z) is equipped with a natural determinant map
D : %, /SLy(Z/p"Z) — (Z/p"Z)*
defined by

T2 Y2
T3 Y3

3 Y3
1 Y1

r1 U1

D ((z1y1), (w2, 92), (23, y3)) == ( T2 Y2

) |
For each [dy,ds,ds] € (Z/p"Z)3, we can then write
Y, [dy, da,ds] := {(v1,v2,v3) € B, with D(v1,va,v3) = (d1,da,d3)} .
The group SLa(Z/p"Z) operates simply transitively on ¥,.[d1, da, ds] if (and only if)
(59) [d1,do, d3) € I, := (Z/p"7)*3.

In particular, if (v1,v2,v3) belongs to X, [d1, da, d3], then the cycle A, (v1,v2,v3) depends only
on [dy,ds,ds] € I, and will henceforth be denoted

A,[dy,dg, d3) € CH*(XD).

A somewhat more intrinsic definition of A,[d1,d2,d3] as a curve embedded in X3 is that it
corresponds to the schematic closure of the locus of points ((A, Py), (4, P»), (A, Ps)) satisfying

(60) (P, P3)y=(, (PP =(R (PR = (5

This description also makes it apparent that the cycle A, [d1, da, ds] is defined over Q((,) but
not over Q. Let o, € Gal(Q({)/Q) be the automorphism associated to m € (Z/p"Z)*,
sending ¢, to ¢™. The threefold X3 is also equipped with an action of the group

(61) G = ((Z/p"2))® = {{a1,a2,a3), a1,as,a3 € (Z/p"Z)*}

of diamond operators, where the automorphism associated to a triple ({a1), (a2), (a3)) has
simply been denoted (a1, az, as).

Lemma 3.2. For all diamond operators (a1, az,as) € G, and all [dy,da,ds] € I,
(62) (a1,a2,a3)Av[d1,da, d3) = Arlagas - di,aras - d2, aras - ds].

For all 0, € Gal (Q(¢,)/Q),
(63) O'mAT[dl,dz,dig] :Ar[m-dl,m-dg,m-dg].
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Proof. Equation (62) follows directly from the identity
D(ayv1, agve, azvs) = [azas, arag, araz] D(v1, va, v3).

The first equality in (63) is most readily seen from the equation (60) defining the cycle
A,[dy,da, ds], since applying the automorphism o, € Gal (Q((,)/Q) has the effect of replacing

G by ¢ O

Remark 3.3. Assume m is a quadratic residue in (Z/p"Z)*, which is the case, for instance,
when o, belongs to Gal (Q(¢,)/Q(¢1)). Then it follows from (62) and (63) that

(64) OmAr[dy, da, dg] = (m,m,m)2A,[dy, dy, d).

Let us now turn to the compatibility properties of the cycles A,[d1,d2,ds] as the level r
varies. Recall the modular curve X,.,; classifying generalised elliptic curves together with a
distinguished cyclic subgroup of order p"+! and a point of order p” in it. The maps p, @y, 71,
wq and o of (25) induce similar maps on the triple products:

3 3
(65) Xr+1 Xr+1
3 3
w1 W3
J{;ﬁ’\ i;ﬁ\
3 3 3 3
X1~ X0 Xrrp1 —5~ X
1 2

A finite morphism j : V3 — V5 of varieties induces maps
jo: CHI (V1) — CH/(Va),  j*: CH/(V,) — CH/ (1))

between Chow groups, and j,j* agrees with the multiplication by deg(j) on CHY(V3). If j is
a Galois cover with Galois group G,

(66) FGe(B8) =) oA,
o€
By abuse of notation we will denote the associated maps on cycles (rather than just on cycle
classes) by the same symbols.
Lemma 3.4. For all v > 1 and all [d},d5, d5] € I,41 whose image in I, is [dy,d2, d3],
(wzl)’)*AT-I-l[ /17 /27 dé] = p3A7«[d1, da, d3]7 (w%)*AT-H[ ,17 /2’ dé] = (U;D)®3A7”[dl7 da, d3]'
The cycles Ay[d1,da,ds] also satisfy the distribution relations
Z AT+1[ /17 éadg} = (w:lg)*AT[dlvd%dfi]a
[d1,d5,d3]
where the sum is taken over all triples [dy, db, ds] € I,41 which map to [dy,ds,ds] in I,.

Proof. A direct verification based on the definitions shows that the morphisms p® and 75 of
(65) induce morphisms
3

3 T
AT‘+1 [dlld/Q’ dg] Hﬂ. MEAT+1 [dlla d/27 d/3] 14) Ar [dla d27 d3]7

of degrees 1 and p? respectively. Hence the restriction of @3 to A,;1[d}, d, d5] induces a map
of degree p3 from A, 1[d},d), ds] to A.[d1,da,ds], which implies the first assertion. It also
follows from this that

(67) ,ui)Ar‘Jrl[ /17 ,27 dg] = (W?)*Ar[dlv d27 d3]
Applying (73)« to this identity implies that
(w%)*AT+1[ /17 /27d£’)] - (Up)®3AT[d17d27d3]'
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The second compatibility relation follows. To prove the distribution relation, observe that the
sum that occurs in it is taken over the p3 translates of a fixed A,1[d}, d},d}] for the action
of the Galois group of X§+1 over XS’JH, and hence, by (66), that

Z Ar-i—l[ /17 é?dg] = (M*)BMEAT-%l[d/l?dl% d/3]
[dy .5 5]

The result then follows from (67). O

3.2. Galois cohomology classes. The goal of this section is to parlay the cycles A, [dy,d2, ds]
into Galois cohomology classes with values in H (X, Z,)®3(2), essentially by considering their
images under the p-adic étale Abel-Jacobi map:

(68) Adet s CH?(X7)o — HY(Q, H (X, Z,(2))),

where
CH?*(X?2)o := ker (CH*(X}?) — HZ (X2, Z,(2)))

denotes the kernel of the étale cycle class map, i.e., the group of null-homologous algebraic
cycles defined over Q. There are two issues that need to be dealt with. Firstly, the cycles
A,ld1,ds, ds] need not be null-homologous and have to be suitably modified so that they lie
in the domain of the Abel Jacobi map. Secondly, these cycles are defined over Q(¢,) and not
over Q, and it is desirable to descend the field of definition of the associated extension classes.

To deal with the first issue, let ¢ be any prime not dividing Mp, and let T}, denote the Hecke
operator attached to this prime. It can be used to construct an algebraic correspondence on
X3 by setting

0y = (T, — (g +1))%.

Lemma 3.5. The element 0, annihilates the target HL(X2,7,) of the étale cycle class map
on CH?(X3).

Proof. The correspondence T, acts as multiplication by (¢+1) on H, 2(X,,Zp) and 6, therefore
annihilates all the terms in the Kiinneth decomposition of HZ (X, Z,). O

The modified diagonal cycles in CH*(X?) are defined by the rule
(69) AYldy, dg, d3] == 0,A[d1,da, d3).
Lemma 3.5 shows that they are null-homologous and defined over Q(¢,). Define
Rrldy,da,ds] == AJe(A7[d1, do, d3]) € HY(Q(G), Hey(Xr, Zy)*%(2)).

To deal with the circumstance that the cycles A?[dy,d2,ds] are only defined over Q(¢,), and
hence that the associated cohomology classes k., [d1, d2, d3] need not (and in fact, do not) extend
to G, it is necessary to replace the Z,[G,|[Ggl-module H}(X,,Z,)®3(2) by an appropriate
twist over Q(¢,). Let G, denote the Sylow p-subgroup of the group G, of (61), and let
G := @Gr. Let

A(Gy) = Zp|Gy], AGx) = Zp[[Go]

be the finite group ring attached to G, and the associated Iwasawa algebra, respectively.

Let A(GT)(%) denote the Galois module which is isomorphic to A(G,) as a A(G,)-module,
and on which the Galois group Gg(c,) is made to act via its quotient Gal (Q(¢,)/Q(¢1)) =

1+ pZ/p"Z, the element o, acting as multiplication by the group-like element (m,m, m)_l/ 2,

Let A(Goo)(%) denote the projective limit of the A(GT)(%). It follows from the definitions
that if
Vky by, © MGr) — Z/p" L, or  Upm i AGe) — Z
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is the homomorphism sending (a1, az, as) to alfo ag" as®, then
1 —
(70) MG () @y o L/PL = (Z)p L) (eglo ToTme)/2),

where the tensor product is taken over A(G, ), and similarly for G. In particular if k, + £, +
m, = 2t is an even integer,

1
(71) AMGoo)(F) @uy g m, Lp = Lp(—t) (W)
as Gg-modules. More generally, if 2 is any A(Gs) module, write

QAF) = Q0pen) MG)F), A5 = Q@40 AMGa)(55),

for the relevant twists of €2, which are isomorphic to Q as a A(Goo )Gy, )]-module but are
endowed with different actions of Gg.
There is a canonical Galois-equivariant A(G,)-hermitian bilinear, A(G,)-valued pairing

(72) (0 ) HYXZ)®@)(5) x HYXZ)®(W)(5) — AG)),

given by the formula
<<a7b>>7' = Z <aa;b>Xr : <d17d27d3>7
o=(d1,d2,d3)€Gr
where
()% 1 Hop(Xr, Zp)®%(2) x He(Xy, Zp) (1) — HZ(Xr, Zyp(1))®° = Z

arises from the Poincaré duality between H3(X?2,7Z,)(2) and H3(X2,Z,)(1). This pairing
enjoys the following properties:

e For all A € A(G,),
(Aa,0)r = A"(a,b))r, (@, A0)r = A(a; b)),

where \* € A(G,) is obtained from A\ by applying the involution on the group ring
which sends every group-like element to its inverse. In particular, the pairing of (72)
can and will also be viewed as a A(G,)-valued *-hermitian pairing

(0 D s Ha(Xr, 2p)(2) x Hoy(Xr, Zp) (1) — A(Gy).

e For all 0 € Gg(¢,), we have ((oa,ob)), = ((a,b)),.
e The U, and U, operators are adjoint to each other under this pairing, giving rise to a
duality (denoted by the same symbol, by an abuse of notation)

(0 e @ HYX Z)P2)(5) x eHLY (X Z)P (1) (F) — AG,).

2
Define
HLY(X,) = Hompg, (HY (X0 Z,) (1)), AGy)) = HL (X, Z,)%(2)(5),
HIN(X,) = Homyqg,(eHY (X0, Z,) " (1) (5 (

), A(Gy)) = e HY (X, Z,)%3(2) (5)-
)-

The above identifications are isomorphisms of A(G,
A(G,)-linear in the second entry.

To descend the field of definition of the classes k,[d1, da, d3], we package them together into
elements

modules via the pairing (72), which is

Kela.bc] € H'(Q(G), H'M (X))
indexed by triples

(73) la.boc] € Iy = (Z/pL)® = ppr (Z,)° © ()P,
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The class k,[a, b, c] is defined by setting, for all 0 € Gg(c,) and all v, € HL(X,,Z,)%3(1),
(74) Kr [CL, b, C] (U)(7T) = «HT [a, b, c] (U)’ ’YT’>>T7

where the elements a,b,c € (Z/pZ)* are viewed as elements of (Z/p"Z)* via the Teichmuller
lift alluded to in (73). Note that there is a natural identification

HY(Q(G), H'M (X)) = Exth g, ) (ot (X, Z5) (1), A(G),

1

because HYL (X, Z,)®3(1) = Hgt(XT,Zp)@)?’(l)(?) as Go(,)-modules and the A(G,)-dual of

the latter is H'''(X,.). With these definitions we have

Lemma 3.6. The class k.[a,b,c] is the restriction to Gg,) of a class

rrla, byl € HHQUG), B (X)) = Exth g, oy ) (K, Z) ™ (D) (5, AGY)).

Gaen)
Furthermore, for all m € p,—1(Zy),

Om Krla,b,c] = k.[ma, mb, mc]|.

Proof. We will prove this by giving a more conceptual description of the cohomology class
Krla,b,c]. Let |A| denote the support of an algebraic cycle A, and let

(75) Ao, by c]] = [A3[a, byl x x5 X7
denote the inverse image in X3 of |AS[a, b, c]|, which fits into the cartesian diagram
A2la, b, ] —= X?
ey
183[a, b ]| —= X},
As in the proof of Lemma 3.1, observe that

Af‘[[a’u b7 CH = |_| ’Ai[adh bd27 Cd3]|
[dl,dg,dg]el,}

where I! denotes the p-Sylow subgroup of I,. Consider now the commutative diagram of
A(G;)[Go(¢1)]-modules with exact rows:

(76) AGr)(=D)

HE (X7, 2,)(2) = HE(X7=A[a, b, c]], Z,)(2) —= Hg (A[a, b, c]], Zp)o

Hoy (X, Zp)*%(2),

where

e the map j is the inclusion defined on group-like elements by
j (<d1, dg, d3>) = Cl(A? [ad2d3, bdldg, Cdldz]),

which is Gg(¢,)-equivariant by Lemma 3.2;
e the middle row arises from the excision exact sequence in étale cohomology (cf. [Ja,
(3.6)] and [Mi, p. 108]);
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e the subscript of 0 appearing in the rightmost term in the exact sequence denotes the
kernel of the cycle class map, i.e.,

Hey(A7lla, b, c]l, Zy)o = ker (Hey(A7[la, b, c]], Zy)o — He(X7, Zp(2)))

and the fact that the image of j is contained in HY(AS[[a,b,c]],Zy)o follows from
Lemma 3.5;
e the projection p is the one arising from the Kiinneth decomposition.

Taking the pushout and pullback of the extension in (76) via the maps p and j yields an exact
sequence of A(G,)[Gg(¢1)]-modules

(77) 0 —— He (X, Zp)®%(2) — Er — A(G) (=) —= 0.

Taking the A(G)-dual of this exact sequence, we obtain

1 . _
0— A(Gr)(?) — B, — Helt(XT7 Zp)®3(1)* —0.

where M* means the A(G,)-module obtained from M by letting act A(G,) on it by composing

—1
=) =

—1
with the involution A — A*. Twisting this sequence by (=) and noting that M™(

1o, . :
M (5)* yields an extension

(78) 00— A(Gy) —= B} — H (X, Z,)**(1)(5)" —=0.

Since
Hét(XmZp)m(l)(?) = Homy (g, ) (Hey (X7, Zp)®*(2 )(2),/\(6‘7«)),

it follows that the cohomology class realizing the extension E| is an element of

HY(Q(G1), Homy g,y (HY (X, Z,) P (1)(5), AG)) = HH(Q(G), B (X,),

because the duality afforded by {(, ), is hermitian (and not A-linear). When restricted to
Gq(¢,), this class coincides with &, [a,b,c|, and the first assertion follows.

The second assertion is an immediate consequence of the definitions, using the Galois
equivariance properties of the cycles A, [d1, d2, d3] given in the first assertion of Lemma 3.2. [

Remark 3.7. The extension E; of (78) can also be realised as a subquotient of the étale
cohomology group H2(X-A2[[a,b, c]],Z,)(1) with compact supports, in light of the Poincaré
duality

He (X700 [a, b, ]], Zp)(2) % HY(X)=A0[la,b, €], Zp) (1) — Zp.

3.3. A-adic cohomology classes. Thanks to Lemma 3.6, we now dispose, for each [a, b, c] €
pp—1(Zyp)3, of a system

(79) wrla,bd € H(Q(G), H' (X,)),  e'mrla, b, € HY(Q(G), Hra (X))
of cohomology classes indexed by the integers r > 1. Let
Pt MGrp1) — A(Gr)
be the projection on finite group rings induced from the natural homomorphism G, 1 — G,.

Lemma 3.8. Let 41 € HY(X,41,Z,)%3(1) and v € HL(X,,Z,)®3(1) be elements that
are compatible under the pushforward by w3, i.e., that satisfy (@3)«(Yr11) = Yr. For all
0 € Goa)s

Pr+1,r (”T-H [a7 b7 C] (U) (77"-1-1)) = Kr [a7 b7 C] (U)(fyr)’
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Proof. This amounts to the statement that

pr+1,T(<<HT+1 [(I, bv 6]7 ’7T+1>>T+1) = <<"{7" [av b, C]a 77“»7"
But
pr+1,r(<<’%r+1 [av b, C]a 'Yr+1>>r+1) = Z((M?))*(MS)*K/T-H [adIZ g’n bd/l év Cd,ldIQ]u 7r+1>Xr+1 -<d1, da, d3>7
Gr

where the sum runs over (di,d2,ds) € G, and (d,d5,d;) denotes an (arbitrary) lift of
(d1,dg,ds) to Gy41. The third assertion in Lemma 3.4 allows us to rewrite the right-hand side
as

Pr+1r((Krgila, b, ), g1 )rp1) = Z((wi’)*lir[adzd&bd1d3,cd1d2],%+1>xr+1'<d1,d2,d3>
Gr

= > (rrladads, bdidy, cdids), (@})rri1) x, - (d1, do, d3)
Gr

= > (rrladads, bdids, cdids), ) x,, - (di, da, d3)
Gr
= <<K:T [a’ ba C] 9 7T>>7'a
and the result follows. O

Define
1

(80) H'N(XL) = Homypg) (HA (X%, Z,) 3 (1)(5), A(Geo))

= Homy gy (HL (X1, £3)%3(1)(5), A(Gwo)),

where the identification follows from (29).
Thanks to Lemma 3.8, the classes k,[a, b, ¢] can be packaged into a compatible collection

(81) Koola, b, ] == (Kr[a, b, c]),>; € HML(XE).

It will also be useful to replace the classes k@, b, ¢| by elements that are essentially indexed
by triples
(w1, ws,ws) : (Z/p2*)> — Z,

of tame characters of G, /Gy. Assume that the product wjwsws is an even character. This
assumption is equivalent to requiring that
wiwaws = 6%, for some & : (Z/pZ)* — LY.

Note that for a given (w1, ws,ws), there are in fact two characters § as above, which differ by
the unique quadratic character of conductor p. With the choices of wi,ws, w3 and ¢ in hand,
we set

3
(82) Koo (w1, w2, ws;0) = v f ch Z 6 Yabe) - wi(a)wy(b)ws(c) - Koolbe, ac, abl,
[a,b,c]

where the sum is taken over the triples [a, b, c| of (p — 1)st roots of unity in Z). The classes
Koo(w1,ws,ws; d) satisfy the following properties.
Lemma 3.9. For all 0,, € Gal (Q((x)/Q),
OmKoo (W1, w2, ws; d) = 0(M) Koo (W1, w2, ws;0).
For all diamond operators (a1, a2, a3) € pip—1(Zp)>
(a1, a2, a3)Koo(w1,ws,ws; d) = wigs(al, az, as) - Keo(wi,ws,ws;d).

Proof. This follows from a direct calculation based on the definitions, using the compatibilities
of Lemma 3.2 satisfied by the cycles A,[d1, da, d3]. O
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The classes kKxola, b, ¢] and Koo(wi,wa,ws;d) are called the A-adic cohomology classes at-
tached to the triple [a, b, c] € pp—1(Z,)? or the quadruple (w1, ws,ws;d). As will be explained
in the next section, they are three variable families of cohomology classes parametrised by
points in the triple product W x W x W of weight spaces, and taking values in the three-
parameter family of self-dual Tate twists of the Galois representations attached to the different
specialisations of a triple of Hida families.

Remark 3.10. Tt is instructive to compare the construction of kK [a, b, ¢] to the approach taken
in [DR2], which associated to a triple (f, g, h) consisting of a fized newform f and a pair (g, h)
of Hida families a one-variable family of cohomology classes instead of the two-variable family
that one might have felt entitled to a priori. This shortcoming of the earlier approach can be
understood by noting that the space of embeddings of X(p") into X x X, x X, as above in
which the projection to the first factor is fixed is naturally parametrized by the coset space
My(Z/p"Z) |SLo(Z/p"Z), where M3(Z/p"Z)" denotes the set of 2 x 2 matrices whose rows are
not divisible by p. The analogue of the cycles A,[d1,ds, ds] above are therefore parametrised
by the coset space GLa(Z/p"Z)/SLa(Z/p"Z) = (Z/p"Z)*, whose inverse limit with r is the
one dimensional p-adic space Z; rather than a two-dimensional one.

3.4. Higher weight balanced specialisations. For every integer k, > 0 define
Wi = HL (X1, 1)
and recall from the combination of (29), (31) and (32) the specialisation map
(83) P, + Hou(Xio, Zy) = HY (X0, £3) — W
Fix throughout this section a triple

k=Fk + 2, (=10 42, m=m, +2

of integers > 2 for which k + ¢, +m, = 2t is even. Let
HEolome . — ko [ HE ] H e
viewed as a sheaf on X3, and
Wit — W oW o W™ (2 —t).

Wfo 7[0 ;Mg

As one readily checks, the p-adic Galois representation is Kummer self-dual, i.e.,

there is an isomorphism of Gg-modules
Homg, (W™ Z,,(1)) =~ Wi=e ™.
The specialisation maps give rise, in light of (71), to the triple product specialisation map
(84) SPk. 0. m, ‘= SPj. ®@SPy @Sp,, MY (X)) — Wf"’["’m"
and to the associated collection of specialised classes

(85) k1(k,, €, m,)[a,b,c] :=spy, o m (Koola,b,c]) € HY(Q(G), W),

©07 %0

Note that for (k,,¢,m,) = (0,0,0), it follows from the definitions (cf.e.g.the proof of
Lemma 3.6) that the class x1(k,, ¢, m,)[a, b, | is simply the image under the étale Abel-Jacobi
map of the cycle Af[a, b, c].

The main goal of this section is to offer a similar geometric description for the above classes
also when (k, £, m) is balanced and k,, ¢,, m, > 0, which we assume henceforth for the remainder
of this section.

In order to do this, it shall be useful to dispose of an alternate description of the extension
(77) in terms of the étale cohomology of the (open) three-fold X3 — |A$[a, b, ¢]| with values in

appropriate sheaves.
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Lemma 3.11. Let L™ denote the exterior tensor product of L, over the triple product X3.
There is a commutative diagram

0—— Hgt (X;}v Zp)(2) - Hgt (X;"s - A?[[aa bv CH? Zp)(Q)

0 ——= HE, (X}, £759)(2) — B, (X — |A3[a, by ]|, £79)(2) —= HO(1A3[a, b, ]|, L),

Hg (A7 [, b, c]], Zp)

wn which the horizontal sequences are exact.
Proof. Recall from (27) that
£ = (@ x ] x w2,

where

I x o T x T X — X3
is defined as in (58). The vertical isomorphisms then follow from Shapiro’s lemma and the def-
inition of A?[[a, b, ¢]] in (75). The horizontal sequence arises from the excision exact sequence

in étale cohomology of [Ja, (3.6)] and [Mi, p. 108]. O
Lemma 3.12. For all [a,b,c] € I4,
HY (A[a, b, o], 1) = Z,(t).

Proof. The Clebsch-Gordan formula asserts that the space of tri-homogenous polynomials in
6 = 2+ 2 + 2 variables of tridegree (k,,¢,,m, ) has a unique SLo-invariant element, namely,
the polynomial

k' &' my'
T2 Y2 T3 Y3 1 Y1
P X ) ’x ) ’m ) = )
bt s (21, U1, 2, Y2, T3, Y3) r3 Y3 T oy T2 Yo
where Fo+ 6+ k-l + k4
— m — m —m,
k !/ — ° o o E / —_ _° ° o !/ —_ _° ° ° .
o 2 9 (e} 2 mo 2
Since the triplet of weights is balanced, it follows that k', £’,m,’ > 0. From the Clebsch-

Gordan formula it follows that H,(A1]a, b, ¢], H* ™) is spanned by the global section whose
stalk at a point ((4, P1), (A, P2), (A, P3)) € Aifa,b, ] as in (60) is given by

(X20Y3—Y2®X3)®% @ (X1 @Y — Y1 ® X3)% @ (X1 @Y — V1 ® X3)8™,

where (X;,Y;), i = 1,2,3, is a basis of the stalk of H at the point (A, P;) in X;. The Galois
action is given by the ¢-th power of the cyclotomic character because the Weil pairing takes
values in Z,(1) and k' + £ +m,'  =t. O

Write cly, ¢ m (A1la,b,c]) € HS(|AS[a, b, ]|, HY o) for the standard generator given by
Lemma 3.12. Define

(86) AJk, gy m, (Dila,b,d]) € HY(Q(G), W)

to be the extension class constructed by pulling back by j and pushing forward by p in the
exact sequence of the middle row of the following diagram:

87) Z,(t)
J
HE (XF, Moo ) (2) > HE (XF-A, ol ) (2) —= HG (A, Heome)
P

WS (),
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where

o A= Ajfa,b,cl;

e the map j is the Gg(¢,)-equivariant inclusion defined by j(1) = cly, ¢ m, (A);

e the surjectivity of the right-most horizontal row follows from the vanishing of the
group HZ (X3, H% %) which in turn is a consequence of the Kiinneth formula and
the vanishing of the terms H2 (X1, H%) when k, > 0 (cf.[BDP1, Lemmas 2.1, 2.2]).

In particular the image of j lies in the image of the right-most horizontal row and this holds
regardless whether the cycle is null-homologous or not. The reader may compare this con-
struction with (76), where the cycle A?[[a,b,c]] is null-homologous and this property was
crucially exploited.

Theorem 3.13. Set AJy o m (Afa,b,c]) = 0,AJk 1 m, (A1la,b,c]). Then the identity
k1(k,, L, m,)[a,b,c] = AJy o m (Afla,b,c])

07 Mo

holds in H'(Q(¢y), Wi,

Proof. Set A := A$[a, b, c] in order to alleviate notations. Thanks to Lemma 3.11, the diagram
in (76) used to construct the extension E, realising the class k,[a,b,c| is the same as the
diagram

(88) AGr)(=)

0 —— H3 (X7, £;%°)(2) —— H&(X} — [A], £1%%)(2) — HG(|A], £1%%)
&
Hey(X1, £7)%%(2).
Let
Uk, 4,m, : MGr) — Z/p"Z

be the algebra homomorphism sending the group like element (d1,ds,ds) to d’f" d% dgn", and
observe that the moment maps of (30) allow us to identify

L Dy )y (f5T) = H o

Tensoring (88) over A(G,) with Z/p"Z via the map vy ¢ m : AMGr) — Z/p"Z, yields
the specialised diagram which coincides exactly with the mod p" reduction of (87), with
A = Afla, b, ¢|]. The result follows by passing to the limit with 7. O

Corollary 3.14. Let

(89) A?(wl,wg,wg;é) .

Z 6 abe)wi (a)wa (b)ws(c)ASa, b, cl.
(p [a,b,c]elr
Then
8Pk, 6, .m, (Foo (W1, w2, w330) = Ay g, m, (A (w1, w2, w33 0)).

Proof. This follows directly from the definitions. O
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3.5. Cristalline specialisations. Let f, g, h be three arbitrary primitive, residually irre-
ducible p-adic Hida families of tame levels My, My, M), and tame characters xr, Xq4, Xn,
respectively, with associated weight space Wr x Wg x Wg. Assume xyxgxn = 1 and set
M =lem(Myg, My, Mp). Let (z,y,2) € Wg x Wg x W, be a point lying above a classical triple
(VU e1 V2, e0> Vimg e3) € W3 of weight space. As in Definition 1.2, the point (z, v, 2) is said to be
tamely ramified if the three characters €1, eo and €3 are tamely ramified, i.e., factor through
the quotient (Z/pZ)* of Z,, and is said to be cristalline if aw R = euwh = euw T = 1.

Fix such a cristalline point (z,y, z) of balanced weight (k,¢,m) = (k, + 2,4, + 2, m, + 2),
and let (f;, gy, h;) be the specialisations of (f, g, h) at (z,y,z). The ordinariness hypothesis
implies that, for all but finitely many exceptions, these eigenforms are the p-stabilisations of
newforms of level dividing M, denoted f, g and h respectively:

f:(q) = f(q) — Br f(d"), gy = 9(q) — Byg(d’), h.(q) = h(q) — Brh(q").

Since the point (z, vy, z) is fixed throughout this section, the dependency of (f, g, h) on (z,y, 2)
has been suppressed from the notations, and we also write (fa, ga, ha) := (fz, 8y, h.) for the
ordinary p-stabilisations of f, g and h.

Recall the quotient Xo; of X, having I'g(p)-level structure at p, and the projection map
p: X1 — Xop introduced in (25). By an abuse of notation, the symbol H* is also used to
denote the étale sheaves appearing in (14) over any quotient of X, such as Xo;. Let

Wi = HY (X, HP) @ HYy (X1, He) @ Hy (X, H™) (2 — 1),
Wor = He(Xor, H*) @ Hey(Xo1, H®) @ Hey(Xo1, H™)(2 - 1),

be the Galois representations arising from the cohomology of X; and Xy; with values in these
sheaves. They are endowed with a natural action of the triple tensor product of the Hecke
algebras of weight k_, £, m, and level Mp.

Let Wi[fa, ga, ha| denote the (fq, ga, ha)-isotypic component of W7 on which the Hecke
operators act with the same eigenvalues as on fo ®ga®ha. Let 7¢, g, ho : Wi = Wilfa, ga, hal
denote the associated projection. Use similar notations for Wy;.

Recall the family
(90) Foo(€1w ™ eqw ™ e3w™™e: 1) = Koo(1,1,1;1)
that was introduced in (82). By Lemma 3.9, this class lies in H(Q, H'(X%.)).

Recall the choice of auxiliary prime ¢ made in the definition of the modified diagonal cycle
(69). We assume now that g is chosen so that Cy := (aq(f) —q¢—1)(aq(9) —¢—1)(aq(h)—q—1)
is a p-adic unit. Note that this is possible because the Galois representations of, 0g and on
were assumed to be residually irreducible and hence f, g and h are non-Eisenstein mod p. Let

(91) Hl(fomgayha) = " T fa,gasha Sp;,%z 500(1717131)) € Hl(@7 Wl[favgaaha])

1
Cy
be the specialisation at the cristalline point (z,y, z) of (90), after projecting it to the (fa, ga, ha)-
isotypic component of Wy via 7wy, 4. n.. We normalize the class by multiplying it by the above
constant in order to remove the dependency on the choice of q.

The main goal of this section is to relate this class to the generalised Gross-Schoen diagonal
cycles that were studied in [DR1], arising from cycles in Kuga-Sato varieties which are fibered
over X2 and have good reduction at p.

The fact that (x, y, z) is a cristalline point implies that the diamond operators in Gal (X3 /X¢1)
act trivially on the (fa, go, ha)-eigencomponents, and hence the Hecke-equivariant projection
u3 Wy — Wy, induces an isomorphism

:u’i : Wl[fa7goé7h0é] — WOl[fongavha]'
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Our first aim is to give a geometric description of the class

KOl(fcwgom ha) = Mi"ﬁl (fou Jas ha)
in terms of appropriate algebraic cycles. To this end, recall the cycles Aj[a,b,c] € CH*(X?)
introduced before, and let p* := +p be such that Q(1/p*) is the quadratic subfield of Q((3).

Lemma 3.15. The cycle p2Aila,b,c] depends only on the quadratic residue symbol (“Tlfc)
attached to abc € (Z/pZ)*. The cycles

b
ABLl = M‘:’A1[a,b, c]  for any a,b,c with <apc) =1,

b
Ay = p3Aq[a,b,c]  for any a,b,c with <apc> = -1,

belong to CH?(X3,/Q(v/p*)) and are interchanged by the non-trivial automorphism of Q(v/p*).
Proof. Arguing as in Lemma 3.2,

(d1,d2, d3)Ai[a, b, c] = Ai[dadsa, didsb, didad], for all (dy,dy, d3) € Iy = (Z/pZ)*>.
The orbit of the triple [a,b,c] under the action of I; is precisely the set of triples [a/, ¥, (]
for which (%) = (a?bc). Since Xp; is the quotient of Xy by the group Iy, it follows that
p3Aqla,b,c] depends only on this quadratic residue symbol, and hence that the classes Aa'l
and Ay in the statement of Lemma 3.15 are well-defined. Furthermore, Lemma 3.6 implies
that, for all m € (Z/pZ)*, the Galois automorphism oy, fixes Ad; and Ay, if m is a square
modulo p, and interchanges these two cycle classes otherwise. It follows that they are invariant

under the Galois group Gal (Q(¢1)/Q(y/p*)) and hence descend to a pair of conjugate cycles
A(jﬁ defined over Q(/p*), as claimed. O

It follows from this lemma that the algebraic cycle
(92) Aor == AG + Ay, € CH* (X3, /Q).

is defined over Q. To describe it concretely, note that a triple (C7, Cs, C3) of distinct cyclic
subgroups of order p in an elliptic curve A admits a somewhat subtle discrete invariant in
(15® — {1}) modulo the action of (Z/pZ)*?, denoted o(Cy, C2,C3) and called the orientation
of (C1,Cy, C3). This orientation is defined by choosing generators Pi, Py, P3 of C1, Cy and C3
respectively and setting

0(C1,Ca, Cs) := (P, P3) ® (P3, P1) @ (Py, P2) € p® — {1}.

It is easy to check that the value of 0o(Cy, Cy,C3) in p® — {1} only depends on the choices of

generators P, P, and Ps, up to multiplication by a non-zero square in (Z/pZ)*. In view of
(60), we then have

Al = {((A,C1),(A,0s),(A,C5))  with o(C1,Cs,C3) = al{®,  a € (Z/pL)*?},
Ay = {((A,C1),(A,C), (A C3))  with o(Ch,Co, Cs) = a(,  a & (Z/pZ)**},
93) Ao = {((4,C1),(4,C2),(A,C5))  with  Cy # Co # Cs}.
Recall the natural projections
w1, Xo1 — X, wi, g X1 — X
to the curve X = Xo(M) of prime to p level, and set
Wo = He(Xo,H") @ Hey(Xo, H®) @ Hey(Xo, H™)(2 — 1),

The Galois representation Wy is endowed with a natural action of the triple tensor product
of the Hecke algebras of weight k , £, m, and level M. Let Wyl[f, g, h] denote the (f,g,h)-

°) o)
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isotypic component of Wy, on which the Hecke operators act with the same eigenvalues as
on f®g® h. Note that the U, operator does not act naturally on Wy and hence one
cannot speak of the (fa, ga, ha)-eigenspace of this Hecke module. One can, however, denote
by Wi[f, g, h] and Wyi[f, g, h] the (f, g, h)-isotypic component of these Galois representations,
in which the action of the Uy operators on the three factors are not taken into account. Thus,
Wo1lfas 9as hal is the image of Wo1[f, g, h| under the ordinary projection, and likewise for Wj.
In other words, denoting by m¢ 45 the projection to the (f,g,h)-isotypic component on any
of these modules, one has
T forgasha = 6*7Tf’g7h
whenever the left-hand projection is defined.
The projection maps
(m1,m1,m1) s Xop — X3, (w1, m1,01) : X3 — X3
induces push-forward maps

(71'1,7'('1,7'('1)* : WOl[faagaaha] — WO[va» h]» (wlawlawl)* : Wl[fougavha] — WO[fag, h]

on cohomology, as well as maps on the associated Galois cohomology groups.
Our goal is now to relate the class

(94) (@1, @1, @1)«(F1(fos Gar ha)) = (71, 71, 71 )5 (K01 (far, Gas har))

to those arising from the diagonal cycles on the curve Xy = X, whose level is prime to p.

To do this, it is key to understand how the maps . and (71,71, 7). interact with the
Hecke operators, especially with the ordinary and anti-ordinary projectors e and e*, which do
not act naturally on the target of m1,. Consider the map

(71, 72) : Wokf = HL (Xo1, H®) — Woko = HL (Xo, H").

It is compatible in the obvious way with the good Hecke operators arising from primes ¢ { Mp,
and therefore induces a map

(95) (m1,m2) : Wes [f] — Wee[f] @ W [f]

on the f-isotypic components for this Hecke action. As before, note that Wg‘l’ [f] is a priori

larger than Wéﬁf [fa], which is its ordinary quotient.
Let £ := x f(p)pk*1 be the determinant of the frobenius at p acting on the two-dimensional
Galois representation attached to f, and likewise for g and h.

Lemma 3.16. For the map (w1, m2) as in (95),

(2)eo=(" )(5) (B)5=(am uln)(5)
Proof. The definitions m and ma imply that, viewing U, and U, (vesp. T})) as correspondences
on a Kuga-Sato variety fibered over X¢; (resp. over Xj), we have

mU, = Tpm — 72, wlU; = pmy
moU, = plp|m 7T2U; = —[p|m + Tpma,

where [p] is the correspondence induced by the multiplication by p on the fibers and on the
prime-to-p part of the level structure. The result follows by passing to the f-isotypic parts,
using the fact that [p] induces multiplication by & fp*1 on this isotypic part. O

For the next calculations, it shall be notationally convenient to introduce the notations

5f:af—5f, 592049—69, 5h:ah—ﬁh, 5fgh:5ffsg(5h-
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Lemma 3.17. For (m,m2) as in Lemma 3.16,
moe= WL T2 mroe= MBI _ g oo,
of Of
_ _ —1
ﬂloe*zw, Mg oe® = &P 7T1+afw2:pa]71-(7rloe*).
Of of
Proof. The matrix identities
( ap(f) —4,) B ( 11 ) y ( aj 0 ) y < 11 >1
& 0 B oy 0 By By ar )
(ot ) = (o a2 (¥ 5 ) (o oih )
&t ap(f) &t &pt 0 B Ep~t &lppt '
show that
n! -1
w (0 ) - (3N A e (2 )
& 0 Br oy 0 0 By ag & —Br

. 0 D n! B .
hIIl< _é.fp_l ap(f)) = 6f

and the result now follows from Lemma 3.16. O

Lemma 3.18. Let k € H'(Q, Wo1[f, g, h]) be any cohomology class with values in the (f, g, h)-
isotypic subspace of Wo1, and let e, e* : HY(Q, Woi[fgh]) — HY(Q, Wo1[fa, gas ha]) denote
the ordinary and anti-ordinary projections. Then
(71-1771-177[-1)*(6&) = 5;‘91h X {afagah(ﬂ-laﬂ-laﬂ-l)*
*OégOéh(Wz,Wl, T )s — afah(ﬂl,ﬂz,ﬂl)* - O[fag(ﬂ-lyﬂ-la 2)

+Ozf(7r1,7f2,7f2)* + Oég(ﬂ2,7T1,7T2)* + oy, - (T2, T2, 1)

—(71’2,’7'&’2,71’2)*}(/%).

(1,71, m)w(€°K) = 67, X { — BrBgBr(m1, m1, 1)«
+pBgBn(T2, ™1, 71)x + PByBr(m1, T2, m1)w + BBy (1, T, T2)
—p? B (1, T2, T2)x — P*By(ma, 1, T2)s — D Br(Ta, T2, T1)
-%pg(ﬂévﬂéaﬂé)*}(ﬂ),

where we recall that dfgp, == ((af — By) (g — By)(an — Br))-
Proof. This follows directly from Lemma 3.17. 0

Recall the notations
k =k—2, (o =0—2, m, :=m — 2, r:=(k +¢ +m,)/2.

Let A denote the Kuga-Sato variety over X as introduced in 1.2. In [DRI, Definitions
3.1,3.2 and 3.3|, a generalized diagonal cycle

Aol o :A’Smfo’mo e CH™2(A% x A+ x A™ Q)

is associated to the triple (k,,£,,m,).

When k ,¢,m, > 0, A% is obtained by choosing subsets A, B and C of the set

{1,...,r} which satisfy:

#A:ko7 #B:£o7 #C:m7

(e}

ANBNC =1,
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#BNC)=r—Fk

(<)

#ANC)=r—1¢, #ANB)=r—m,.
The cycle Ak & is defined as the image of the embedding A" into A% x A% x A™ given by
sending (E, (P1,...,P.)) to ((E, Pa), (E, Pg),(E, Pc)), where for instance P4 is a shorthand

for the k -tuple of points P; with j € A.

Let also Ag'i&’% € CH"2(A*% x A% x A™) denote the generalised diagonal cycle in the
product of the three Kuga-Sato varieties of weights (k, ¢, m) fibered over Xy, defined in a
similar way as in (93) and along the same lines as recalled above.

More precisely, Ag‘”l’z‘” "M is defined as the schematic closure in A% x A% x A" of the set of
tuples ((E,Cy, Pa), (E,Cs, Pg),(E,Cs, Pc)) where Py, Pg, Pc are as above, and C1, Ca, Cs is
a triple of pairwise distinct subgroups of order p in the elliptic curve E.

Since the triple (k,, ¢, ,m,) is fixed throughout this section, in order to alleviate notations

in the statements below we shall simply denote A?* and A(ﬁn for Akt and Agﬁ’& ™o respec-
tively.

Lemma 3.19. The following identities hold in CH™T2(A% x Al x A™):

(m,m,m)(Af) = (p+ Dplp — 1)(A%),

(ma, w1, ) (D) = plp—1) x (T, 1, 1)(A%),

(m1,m2, 1) (A]) = p(p—1) x (1, T, 1)(AH),

(m1 11, M) (A) = plp—1) x (1,1,T,)(A),

(m1,m2,m2)u(AD) = (p—1) x (1, T, Tp)(A%) — p" % Dy)

(w21, m2)u(A8) = (p— 1) x (Ty, 1, T,)(AF) — p' =% Dy)

(ma, 72, ) (Af)) = (p— 1) x (Tp, T, 1)(AF) — p" "™ D3)

(12, M2, ™) (AL) = (T, T, Tp) (AF) = p" o By — p" 6 By — p' ™™ By — p" (p + 1) A,

where the cycles D1, Do and D3 satisfy

([p]alal)*(Dl) kO(Tpvlvl) (Aﬁ)a (17[p]71)*(D2) :peo(laTI” 1)*(Aﬂ)7

(1,1, [p])«(D3) = p™ (1,1, T,) (A%),
and the cycles E1, FEo and E3 satisfy

([p), 1, Du(Br) = p* (T2, 1, 1)(AF), (1, [p], 1)u(Ba) = p= (1, Tp, 1)(AF),

(17 1, [pD*(Eg) =p"e (1’ L, TPQ)(Aﬂ)7
and T2 == T2 — (p+1)[p].
Proof. The first four identities are straightforward: the map w1 X 7 X 7 induces a finite
map from Agl to Af of degree (p + 1)p(p — 1), which is the number of possible choices of an
ordered triple of distinct subgroups of order p on an elliptic curve, and likewise my X 7 X 71
induces a map of degree p(p — 1) from Agl to (T,,1,1)A%. The remaining identities follow

from combinatorial reasonings based on the explicit description of the cycles Agl and Af.
For the 5th identity, observe that (1,72, m2), induces a degree (p — 1) map from A(ﬁn to the
variety X parametrising triples ((E, Pa), (E’, Pg), (E", P{%)) for which there are distinct cyclic
p-isogenies ¢’ : E — E' and ¢’/ : E — E”, the system of points P; C E’ and P/, C E”
indexed by the sets B and C' satisfy

QOI(PAHB) = PAﬂBa QO//(PAQC) = PXﬁCa
and for which there exists points @pnc C E indexed by B N C satisfying

¢'(@pnc) = Ppres ¢"(@Bnc) = Ppnc-
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On the other hand, (1,7}, T,) parametrises triples of the same type, in which E’ and E” need
not be distinct. It follows that

(96) (1, Ty, T,)(A%) = X 4+ p" % Dy,

where the closed points of D; correspond to triples of the form ((E, Pa), (E', Py), (E', P))
for which there is a cyclic p-isogeny ¢’ : E — E’ satisfying

SOI(PAOB) = P,lamBa SDI(PAQC) = P,/LmC'

The coefficient of p" % in (96) arises because each closed point of D; comes from p#(BNC)

distinct closed points on (1,7}, T},)(A"), obtained by translating the points P; € Ppnc with
j € BN C by arbitrary elements of ker(yp). The fifth identity now follows after noting that
the map ([p],1,1]) induces a map of degree p* from D; to (T, 1,1).Af. The 6th and 7th
identity can be treated with an identical reasoning by interchanging the three factors in
Wk x Wh x W™ . As for the last identity, the map (7o, 72, ™) induces a map of degree 1
to the variety Y consisting of triples (E’, E”, E") of elliptic curves which are p-isogenous to
a common elliptic curve F and distinct. But it is not hard to see that

(T, Tp, Tp)(AH) =Y + p" % By 4 p o Ey + p" ™ E3 4+ p" (p + 1) A
where the additional terms on the right hand side account for triples (E’, E”, E"") where

E' # E" = E", where E” #+# E' = E", where E"” # E' = E”, and where £/ = E"” = E"”
respectively. O

Assume for the remainder of the section that k,,/ ,m, > 0. Recall the projectors ¢ of

(15). It was shown in [DR1, §3.1] that (e , €z , €, )AR©™ is a null-homologous cycle and
we may define

(97) H(va) h) = Tfg.h AJet((GkovqoafoLo)Al%7£O7%) € Hl(@a WO[faga h])

as the image of this cycle under the p-adic étale Abel-Jacobi map, followed by the natural
projection from HZ (AR x AL x A™ Q,(c)) to Wg" ‘o™ induced by the Kiinneth decom-
position and the projection 7y g 5.

It follows from [DR1, (66)], (15) and the vanishing of the terms H{ (X1, H%) for i # 1
when k, > 0, that the class k(f,g,h) is realized by the (f, g, h)-isotypic component of the
same extension class as in (87), after replacing X; by the curve X = Xy and A = A%00 ig
taken to be the usual diagonal cycle in X3. In the notations of (86), this amounts to

(98) Fé(f? 9, h) - Wf,g,hAJko,fo Mg, (A)

Similar statements holds over the curve Xy;. Namely, we also have the following:
Proposition 3.20. The cycle (e, € ,€m, )Algol,éo oM
equality of classes holds in H'(Q, Wo1[fa, 9as Pa):

is null-homologous and the following
(99) K01 (far 9o ha) = D* T g Adet (e, €, em ) AGS ™).
Proof. Corollary 3.14 together with (91) imply that

1 o
Kl(faagavhoc) = F " T fa,9a ha AJko,fmmo (Al(lv 1, 1;5))7
q

in which § = 1 is the trivial character of (Z/pZ)*. Since p® induces a finite map of degree
(p — 1)3 from the support of Ay(1,1,1;6) to Agi, it follows from the convention adopted in
(89) that

3
P o
Ko (fas Gas Pa) 1= 11 (Fas G ha) = G+ T asgaia ATk, by m, (AG1),
q
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where AJy ¢ m (A§;) is defined to be the class realized by the same extension class as in (87),
after replacing X; by the curve Xy; and replacing A by the cycle Ag; arising from (93). Since

ASOI’ZO " is fibered over Agp, the same argument as in (98) then shows that

Aditm (Bo1) = Adea(ery et €m JAG ™).

Since ¢, go.ha(Do1) = %qﬂfa,ga,ha(Agl)v the proposition follows. O

Theorem 3.21. With notations as before, letting c = r + 2, we have

(c/'bal s omhoz
(w1, @1, 1) K1(farGa, ha) = E(fa)(g(gz)g(hi) x k(f,g,h),

where

EY N (fay gar ha) = (1 — apBeBrp ™) (1 — BragBup™ ) (1 — BrByanp™ ) (1 — BBy Bup ™),

and
E(fa) =1=x7" 0B Elga) =1—x," B  E(ha) =1—x;, (0)BiP" ™

Proof. Tn view of (94), (97) and (99), it suffices to prove the claim for the cycles A% %™ and
(1, T, 1)« e*AS"l’eO’%. Since k,, £ ,m, are fixed throughout the discussion, we again denote

Al = Akl gnd A(ﬁ)l = Algf’l’g" " to lighten notations.

When combined with Lemma 3.18, Lemma 3.19 equips us with a completely explicit formula
for comparing (ﬂl,ﬂl,wl)*e*(Agl) with the generalised diagonal cycle Af. Namely, since
the correspondences ([p],1,1), (1,[p],1) and (1,1, [p]) induce multiplication by p, p% and
p™ respectively on the (f, g, h)-isotypic parts, while (7, 1,1), (1,7p,1), and (1,1,7,) induce
multiplication by a,(f), a,(g), and a,(h) respectively, it follows that, with notations as in the
proof of Lemma 3.19,

Trgn(D1) = ap()Trgn(AY),  mpgn(D2) = ap(9)mrn(A%),  Trgn(D3) = ap(h)msgn(AL),
and that

Trgn(B1) = (a2(f) — (p+ Dpf)msgn(AY),
BEy) = (ai(9) — (p+ 1)p°)msgn(AY),
Bs) = (ai(h) — (p+ 1)p"™ ) gn(A%).

that are given in Lemma 3.19 and substituting them into Lemma 3.18, one obtains a expression
for ef g.n(m1, 1, Wl)*e*(A(ﬁn) as a multiple of 77, ,(A*) by an explicit factor, which is a rational
function in af, oy and . This explicit factor is somewhat tedious to calculate by hand, but
the identity asserted in Theorem 3.21 is readily checked with the help of a symbolic algebra
package. (]

3.6. Triple product p-adic L-functions. Let (f,g, h) be a triple of p-adic Hida families
of tame levels My, M,, M) and tame characters xr, Xq4, X» as in the previous section. Let
also (f*,g*,h*) = (f ® Xr,8 ® Xg,h ® Xp,) denote the conjugate triple. As before, we assume
XfXgXn = 1 and set M =lem(My, My, My,).

Let Af, Ag and Ay be the finite flat extensions of A generated by the coefficients of the
Hida families f, g and h, and set Aggp, = Af®ZpAg®ZpAh. Let also Qf denote the fraction
field of Af and define

Of gh = Qr@OAgDA,.

Let Wi?gh = W X W x Wy C Wegh = Spf(Aggn) denote the set of triples of cristalline

classical points, at which the three Hida families specialize to modular forms with trivial
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nebentype at p (and may be either old or new at p). This set admits a natural partition,
namely

Wf?gh = Wff

g h bal
gh U ngh U ngh U ngh

where
. Wffgh denotes the set of points (x,y, z) € Wegn of weights (k, ¢, m) such that k > {+m.
° ngh and ngh are defined similarly, replacing the role of f with g (resp. h).
° Pa}ll is the set of balanced triples, consisting of points (x,y, z) of weights (k, £, m) such
that each of the weights is strictly smaller than the sum of the other two.
Each of the four subsets appearing in the above partition is dense in Wegy, for the rigid-
analytic topology.
Recall from (42) the spaces of A-adic test vectors S (M, xs)[f]. For any choice of a triple

(f,8,h) € SYU(M, xp)[] x SR(M, xg)[g] x SF(M, x»)[h]

of A-adic test vectors of tame level M, in [DR1, Lemma 2.19 and Definition 4.4] we constructed

a p-adic L-function Zp (f g, ) in Qr@Ag®Ap, giving rise to a meromorphic rigid-analytic
function

(100) 2,7 (f,8,h) : Wegnn, — C,,.

As shown in [DR1, §4], this p-adic L-function is characterized by an interpolation property
relating its values at classical points (z,y,2) € ngh to the central critical value of Gar-
rett’s triple-product complex L-function L(f;, gy, h.,s) associated to the triple of classical
eigenforms (f;,g,,h.). The fudge factors appearing in the interpolation property depend
heavily on the choice of test vectors: cf. [DR1, §4] and [DLR, §2] for more details. In a recent
preprint, Hsieh [Hs] has found an explicit choice of test vectors, which yields a very optimal
interpolation formula which shall be very useful for our purposes. We describe it below:

9

Proposition 3.22. (Hsieh) Fiz test vectors (f,8,h) as in [Hs, §3]. Then pr(f,g, h) lies in
Aggn and for every (x,y,2) € ngh of weights (k,¢,m) we have

PV a(k E m o _0 1.0
(o1) 2/ (0P 2) = (G @)  LiE g )
where
1) c= k:-‘rf-gm—Q’

i) a(k, f,m) = (2mi) 72 - (ERLpmad)) . (ka2 (Abme2)) (ko)
iii) e(z,y,2) = E(x,y,2)/E(x)E1(x) with

Eo(w) = 1—-x7'(0)Brr' ",
E(x) = 1—xp(p)og P,

_ k—0—m _ k—¢—m

E(z,y,2) = (1—Xf(p)ozfx1agyath 2 )X(l_Xf(p)O‘fxlagy/thp 2 )

_ k—t—m k—l—m
X (1—Xf(p)aleﬁgyath 2 ) X (1 —xs(p)ag ' Be,Bu.p” 2 )

Proof. This follows from [Hs, Theorem A}, after spelling out explicitly the definitions involved
in Hsieh’s formulation.

Let us remark that throughout the whole article [DR1], it was implicitly assumed that f,,
gy and h,, are all old at p, and note that the definition we have given here of the terms & (z),
&1(z) and &(x, y, z) is exactly the same as in [DR1] in such cases, because ¢, = Xf(p)agzlpk_l
when f,. is old at p.
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In contrast with loc. cit., in the above proposition we also allow any of the eigenforms f,,
gy and h,, to be new at p (which can only occur when the weight is 2); in such case, recall
the usual convention adopted in §1.2 to set 34 = 0 when p divides the primitive level of an
eigenform ¢. With these notations, the current formulation of £(z,y, ), & (x) and & (x) is
the correct one, as one can readily verify by rewriting the proof of [DR1, Lemma 4.10] in this
setting.

O

3.7. Perrin-Riou’s regulator and the triple product p-adic L-function. Recall the
A-adic cyclotomic character Ecye and the unramified characters V¢, Ug, Uy, of G, introduced
in Theorem 1.3. As a piece of notation, let g¢ : Gg, — Af denote the composition of gy
and the natural inclusion AX C A, and likewise for gg and gy,. Expressions like WpWgoWy,
OT E¢EgEl are a short-hand notation for the Afxgh—valued character of G, given by the tensor
product of the three characters.

Let V¢, Vg and Vy, be the Galois representations associated to f, g and h in Theorem 1.3.

The purpose of this section is describing in precise terms the close connection between the
Euler system of diagonal cycles constructed above and the three-variable triple-product p-adic

L-function. In order to do that, let us introduce the Aggp-modules

1 1 = _ _
(102) Vigh =Ve®@ Ve @ Vu(-1)(5) = Vi@ Vg ® Vh(ECylcgf 1/2§g 1/2§h1/2).
and
1
(103) Vign (M) := V(M) @ V(M) ® Vi (M)(—1)(5)-

As explained in the paragraphs following (34), Vlgh(M ) is isomorphic to the direct sum of
several copies of Vigh and there are canonical projections ws, wg, @y which assemble into a
Gg-equivariant map
wrgn : H'(XL) — Vi, (M),
Recall the three-variable A-adic global cohomology class
Koo (107 eaw™ e300 1) = Koo(1,1,1;1) € HY(Q, HMY(XX))

introduced in (90).

Set Cy(f,g,h) := (aq(f) — ¢ — 1)(aq(g8) — ¢ — 1)(aq(h) — ¢ — 1). Note that C,(f,g,h) is a
unit in Aggp, because its classical specializations are p-adic units (cf. (91)). Define

1

(104) k(f,g h):= C,(f.g.n)

- @ g hs (Foo (10 0™, €301 1)) € HY(Q, Vi (M)
to be the projection of the above class to the (f, g, h)-isotypical component. We normalize
it by the above constant so that the classical specializations of k(f,g,h) at classical points
coincide with the classes x1(fa, ga, ha) introduced in (91).

Let

Tesp - HI(Q’VI'gh(M)) - Hl(Qp’Vigh(M))

denote the restriction map to the local cohomology at p and set
kp(f, 8, h) == res, ((f, g, h)) € H'(Qp, Vg, (M)).

The main result of this section asserts that the p-adic L-function .,S/”pf (f' .8, fl) introduced in
§3.6 can be recast as the image of the A-adic class k,(f, g, h) under a suitable three-variable
Perrin-Riou regulator map whose formulation relies on a choice of families of periods which
depends on the test vectors f, g, h.
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The recipe we are about to describe depends solely only on the projection of k,(f, g, h)

to a suitable sub-quotient of Vigh which is free of rank one over Aggp, and whose definition
requires the following lemma.

Lemma 3.23. The Galois representation Vttgh is endowed with a four-step filtration
++ - T
0C Ve, C Vfgh C Vegn € Vegn

by G, -stable Aggn-submodules of ranks 0, 1, 4, 7 and 8 respectively.
The group Gq, acts on the successive quotients for this filtration (which are free over Aggn
of ranks 1, 3, 3 and 1 respectively) as a direct sum of one dimensional characters,

fgh Véh gh fh fg Vf_gh f g h Vigh
Vigh =18, i = D Oy vE ~ eh © M D rg: v = e
fgh fgh fgh
where
n'e = (UeWgUp x €Cyc(€f§g§h)1/27 Negh = YW Wh X €cyc(5f5 En)~ 1/2,
nE" = XU X eeye(er Tegen) A mEn = X Vr  WeWh X (ereg ey ),
Téh = _1\11 v 1\I’h X 5cyc(5f5 h)1/2 77§h = Xg‘ljflllhlllg1 X (§;1§g§£1)1/2a
mE = X Rl 0o X epolepegen Y2 il = xaUr Uyt X (g7 e ten) V2.

Proof. Let ¢ be a Hida family of tame character x as in §1.3. Let 1 denote the unramified
character of G, sending a Frobenius element Fr, to a,(¢) and recall from (22) that the
restriction of Vg to G, admits a filtration

0= Vi = Vg =V, >0 with Vj ~ A¢(¢;1ngylcgcyc) and Vg =~ Ag(1hg).
Set

—-1/2 —-1/2 —1/2
Vf—!—g-’l;: V+®V+®V+( cycf /7g/ h/)
Vin= (Ve@ViQVi + Vi @Ve@ Vi + Vi ® VL ® Vi) (eqher ez 2en %)

Vin= (Vi®Vg®VE + Vi@ Vi@ Vh + Vi @ Ve ® Vi) (enher g e )

It follows from the definitions that these three representations are Aggp[Gq,]-submodules

of V}gh of ranks 1, 4, 7 as claimed. Moreover, since x rX4Xn = 1, the rest of the lemma follows
from (22). O

A one-dimensional character 1 : Gg, — C is said to be of Hodge-Tate weight —j if it
is equal to a finite order character times the j-th power of the cyclotomic character. The
following is an immediate corollary of Lemma 3.23.

Corollary 3.24. Let (x,y,2) € ngh be a triple of classical points of weights (k,¢,m). The

Galois representation Vfi g,.hs is endowed with a four-step G, -stable filtration

+ - f
0C ‘/fac ,8y,hz c mevgyvhz C vaangyahz C ‘/facygy»hz’

and the Hodge-Tate weights of its successive quotients are:
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Subquotient Hodge-Tate weights
++ —k—l—m
‘/ffvvgyvhz 2 + 1
+ ++ kE=l—m —k+l—m —k—l+m
‘/f:cvgyvhz/‘/f'magy’hz 2 ) 2 ) 2

—k+7 k=1 k+7—
+2+m_1’ 2+m_17+ m _q

— +
‘/fzvgyahz /‘/fwgyvhz 2

‘/fmgyahz/‘/fz,gy,hz

E+l+m
5 2

Corollary 3.25. The Hodge-Tate weights of Vf;rgy n, are all strictly negative if and only if
(k, €, m) is balanced.

Let V%h and V%h(M ) be the subquotient of Vigh (resp. of Vigh(M )) on which Gq, acts via
(several copies of) the character

(105) ng" = uEh x o8"

where
. \Ilgh is the unramified character of G, sending Fr, to inl(p)ap(f)ap(g)_lap(h)_l,
and
° @%h is the Aggn-adic cyclotomic character whose specialization at a point of weight

(k,€,m) is Eiyc with ¢ := (=k + ¢+ m)/2.
The classical specializations of V%h are
I o 1 (0 e ) )
where the coefficient field is L, = Q,(f;, gy, h.). Note that ¢t > 0 when (z,y, z) € WF;&, while
t <0 when (z,y,2) € Wﬁ;h.
Recall now from §1.4 the Dieudonné module D(foyhz(M p)) associated to (106). As it
follows from loc. cit., every triple (n;,wa,ws) € D(Vf;:(]\/[p)) x D(Vg: (Mp)) x D(Vi.(Mp))

* *
Yy z

(106) foyhz =Vy ® Vg @ Vi (

gives rise to a linear functional 71 ® wy ® w3 : D(foyhz (Mp)) — Ly.

In order to deal with the p-adic variation of these Dieudonné modules, write V%h(M ) as
h h
VE (M) =U(6F")

where U is the unramified Aggp-adic representation of G, given by (several copies of) the

gh
character Wg".
As in §1.4, define the A-adic Dieudonné module

577 G
D(U) := (URZ," ).
In view of (38), for every (z,y,z) € Wegp, there is a natural specialisation map
Vo, : D(U) — D(UE"™)
h. h.
where Uéy = U @ngy, Qp(fe, gy, ) ~ Véy (Mp)(—t).
Proposition 3.26. For any triple of test vectors
(f,& h) € SFU(M, xp)[£] x SF4(M, xg)[g] x ST4(M, xp)[h],
there exists a homomorphism of Aggn-modules

(g @wgr Qwp.) : D(U) — Ofgn
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such that for all X € D(U) and all (z,y,2) € W})gaﬁ such that £, is the ordinary stabilization
of an eigenform £, of level M :

1
Va2 (A7l @ wgr @ wp)) = X Wz V), iy @ g @ iy )-

Eo(£2)E1(£7
Recall from (44) that
E(f) =1-x""0)Bkp' ", &) =1 x(pag2p* >

Proof. Since U is isomorphic to the unramified twist of Vi ® Vg ® VK, this follows from
Proposition 1.7 because & (fy) = & (£2*) and &1 (f) = E1(£2%). O

It follows from Example 1.6 (a) and (b) that the Bloch-Kato logarithm and dual exponential
maps yield isomorphisms

hoy ~
logpy : H'(Qy, VE'™) —

h, ~
exppy ¢ H' (vaffy ) —

(VB ift >0,
(V&P ite<o.
Define

(107) EPR(z,y,2) =

-1 _
1 - D 2 Oéfgc agy ahz - 1- p Cﬂfr agy ahz
¢

1 -1 1 _m—cC .
l—p 2 afag,qy 1 —p~Cax, Bg, fn.

The following is a three-variable version of Perrin-Riou’s regulator map constructed in [PR]
and [LZ14].

Proposition 3.27. There is a homomorphism
Legn : H'(Qp, VE"(M)) — D(U)

such that for all k, € H*(Qp, V%h(M)) the image L¢ gn(Kp) satisfies the following interpolation
properties:

(i) For all balanced points (x,y,z) € Wflpga}lv
=" cpr
Veyy,z (»Cf,gh(lip)) = e - E (:E,y, z) . lOgBK(VI,y7z(K'/p)),

(ii) For all points (x,y, z) € Wffgh,

Va,y,z (['f,gh(“p)) = (-1 - (1=t EPR(%y, z) - exppK (Va,y,z(Kp))-
Proof. This follows by standard methods as in [KLZ, Theorem 8.2.8], [LZ14, Appendix B|,
[DR2, §5.1]. 0
Proposition 3.28. The class k,(f, g, h) belongs to the image of H' (Qp,Vlfgh(M)) n
Hl((@p,VIgh(M)) under the map induced from the inclusion V};h(M) — Vigh(M).

Proof. Let (x,y,z) € Wean be a triple of classical points of weights (k,¢,m). By the results
proved in §3.5, the cohomology class x,(f;, gy, h;) is proportional to the image under the p-adic
étale Abel-Jacobi map of the cycles appearing in (97), that were introduced in [DR1, §3]. The
purity conjecture for the monodromy filtration is known to hold for the variety A% x A% x A™o
by the work of Saito (cf. [Sa97], [Ne98, (3.2)]). By Theorem 3.1 of loc.cit., it follows that the

extension k,(f;, gy, h,) is cristalline. Hence r,(f;, gy, h,) belongs to H}(Q,, Vf];’gy’hz(Mp)) C
HY(Qp, Vi g, 0. (MD))-
Since (k, ¢, m) is balanced, Corollary 3.25 implies that ij &b, is the subrepresentation of

‘/}i,gy,hz on which the Hodge-Tate weights are all strictly negative. As is well-known (cf. [F190,
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Lemma 2, p.125], [LZ16, §3.3] for similar results), the finite Bloch-Kato local Selmer group
of our ordinary representation can be recast a la Greenberg [Gr89] as

H} (@, Vi gy ) = Fer (HN @V g ) — B I Vi g Vi g )

where I, denotes the inertia group at p.
Since the set of balanced classical points is dense in Wk, for the rigid-analytic topology,
it follows that the A-adic class x,(f, g, h) belongs to the kernel of the natural map

H (Qp, Vigy (M) — H' (I, Vi, (M) [ Vi (M).
Since the kernel of the restriction map
H (Qp, Vi (M) Vi (M) — H' (I, Vigy, (M) / Vi, (M)
is trivial by Lemma 3.23, the result follows. O
Thanks to Lemma 3.23 and Proposition 3.28, we are entitled to define
(108) kl(f, g h)” € HY(Q,,VE(M))
as the projection of the local class k,(f, g, h) to Vgh(M).

Theorem 3.29. For any triple of A-adic test vectors (f,g, fl), the following equality holds in
the ring Qf gh-

<£f,gh(’££(fa g:h)” ), np Qugr Qi) = fpf(f',glvl),

Proof. It is enough to prove this equality for a subset of classical points that is dense for
the rigid-analytic topology, and we shall do so for all balanced triple of cristalline classical
points (z,y,2) € W}’g&‘ﬁ such that f,, g, and h,, are respectively the ordinary stabilization of
an eigenform f := {7, g := gy and h := h? of level M.

Set k, = m]];(f,g, h)™ and £ = (Lfgn(k, ), N5 ® wg @ wy,,) for notational simplicity.
Proposition 3.26 asserts that the following identity holds in Ly:

1 —
m<yx,y,2(£ﬂgh(ﬁp ))7 77{'; X wegx ® Wﬁ;)

Recall also from Remark 1.8 that

Vay,2(L)

nf'; = (1 - 5f/0‘f)wf(77f*)7 wé; = (1 - BQ/QQ)WT(Wg*), wﬁ; = (]. — ﬁh/ah)wf(wﬁ*)

and
(-1

t!

Vx,y72(£f,gh("5;)) = : 5PR($a Y, 2) 10gBK(Vx7y,Z("‘;))

by Proposition 3.27.
Recall the class k(f,g,h) = s(fy, g,,h?) introduced in (97) arising from the generalized
diagonal cycles of [DR1]. As in (108), we may define ﬁ;{;(f,g, h)~ € Hl(Qp,Vi’fh(M)) as the

projection to Vfgh(M) of the restriction at p of the global class k(f, g, h).
It follows from Theorem 3.21 that

Ebal(w,y,z)
(1= Bg/ag)(1 = Bg/ag)(l = Bu/an)

(wlv Wi, wl)*yxyyzz(’ip ) =

x k&I (f.9,h)"
where

EX(z,y,2) = (1 — apBeBrp ) (1 — BragBup ) (1 — BrByanp ) (1 — B ByBrp™°).
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The combination of the above identities shows that the value of £ at the balanced triple
(2,9,2) is
(_1)t i gbal(x’ Y, Z)ng(:L'v Y, Z)
th-&(f)E(f)

Besides, since the syntomic Abel-Jacobi map appearing in [DR1] is the composition of the
étale Abel-Jacobi map and the Bloch-Kato logarithm, the main theorem of loc. cit. asserts in
our notations that

V:U,y,Z(ﬁ) = X <10gBK(’f;J;(f,ga h))ﬂlf* @ W+ ®W7L*>

. . _ tgf
I/x,%z(fpf(f,g, h)) = ( t'l) 50((;)’5?1’(2})) <10gBK(’1£(fvg7 h)_)777f* ®w§; ®wh*>

where
ENw,y, 2) = (1= Braganp @) (1 — BragBup™) (1 — BrByanp ) (1 — BrByBup~©) -

Since
Nz, y, 2) = Pz, y, 2) x ETR(2,y, 2)

and the sign and factorial terms also cancel, we have
1/17?4,2(‘6) =Vry,z (Dzﬁpf (?7 g? l\:l))a

as we wanted to show. The theorem follows. O

4. THE MAIN RESULTS

We are finally in position to prove the main theorems of this article. Let E/Q be an elliptic
curve having multiplicative reduction at a prime p and set a = a,(E) = £1. Let

W : Gal (H/K) — L*

be an anticyclotomic character of a real quadratic field K satisfying the hypotheses stated in
the introduction.

In particular we assume that a prime ideal p above p in H has been fixed and either of
the non-vanishing hypothesis stated in loc. cit. holds; as explained in Step I of the strategy
of proof of Theorem A in the introduction, these hypotheses give rise to a character £ of K
that we fix for the remainder of this note, satisfying that the local Stark-Heegner point Pe,
is non-zero.

As shown in [DR2, Lemma 6.9], there exists a (non-necessarily anti-cyclotomic) character
1 of finite order of K and conductor prime to DNg such that

(109) /vy = /¢

Since by hypothesis £/1 is totally odd, it follows that 1y has mixed signature (4, —) with
respect to the two real embeddings of K.

Let ¢ C Ok denote the conductor of ¥y and let x denote the odd central Dirichlet character
of 1g. Let xx also denote the quadratic Dirichlet character associated to K/Q.

Let f € Sa(pMy) denote the modular form associated to E by modularity. Likewise, set

Mgy = Dc*-Ngg(c) and My, = D - Ngg(c)
and define the eigenforms
9= 0(to9) € S1(Mg,xxx) and  h=0(5") € Si(Mp, x™'xk)

to be the theta series associated to the characters 1y and v, ! respectively.

Recall from the introduction that E[p] is assumed to be irreducible as a Gg-module implies
that the mod p residual Galois representation attached to f is irreducible, and thus also non-
Eisenstein mod p. The same claim holds for g and h because ¥ and & have opposite signs and
p is odd, hence & # ¥*! (mod p).
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Note that p t+ MyMyM;. As in previous sections, we let M denote the least common
multiple of My, My and Mj,. The Artin representations V, and V}, associated to g and h are
both odd and unramified at the prime p. Since p remains inert in K, the arithmetic frobenius
Fr, acts on V, and V}, with eigenvalues

{ag, Bg} ={¢ —¢}, Aan, By = {7 ¢}

where ( is a root of unity satisfying x(p) = —(2.
In light of (109) we have gt /1o = ¢ and g1p/1j = &, hence the tensor product of V; and
V3, decomposes as

(110) Vo =V, @ V), Ind(%(w) ® Ind%({) as Gg-modules
and
Vo=V, oV, V= VR VI V= @ V4P as Gg,-modules
(a,b)

where (a, b) ranges through the four pairs (a, o), (g, Bn)s (Bg, an), (Bg, Br). Here V5, say, is
the Gg,-submodule of V;; on which Fr;, acts with eigenvalue g, and similarly for the remaining
terms.

4.1. Selmer groups. Let W), be an arbitrary self-dual Artin representation with coefficients
in L, and factoring through the Galois group of a finite extension H of Q. Assume W), is
unramified at p. There is a canonical isomorphism

(111) HY(QVp(B)@W,) ~ (H'(H,Vy(E)) @ W,) ! H/Y
= Homga (/) (Wp, H' (H, Vy(E))),

where the the second equality follows from the self-duality of W,. Kummer theory gives rise
to a homomorphism

(112) 52 B(H)" := Homga (yq) (Wp, B(H) ® Ly) — H'(Q, Vy(E) © W}).

12

For each rational prime ¢, the maps (111) and (112) admit local counterparts
HYQq, Vp(E)®@W,) =~  Homga (/0)(Wp, @xeH' (Ha, Vy(E))),
W,
S0: (BAeE(HN)) " — H'(Qp, Vp(E) © Wy),

for which the following diagram commutes:

(113) E(H)W» HY(Q,V,(E) @ W)

(@reE(HY)"? =2 HY(Qy, Vy(B) @ W)

For primes ¢ # p, it follows from [Ne98, (2.5) and (3.2)] that H*(Qy, V,(E) @ W,,) = 0. (We
warn however that if we were working with integral coefficients, these cohomology groups
may contain non-trivial torsion.) For ¢ = p, the Bloch-Kato submodule H} (Qp, V,(E) ® W,,)
is the subgroup of H'(Q,, V,(E) ® W,) formed by classes of cristalline extensions of Galois
representations of V,(E) ® W, by Q,. It may also be identified with the image of the local
connecting homomorphism dp,.

Lemma 4.1. There is a natural isomorphism of Ly-vector spaces
Fr Frp,=
HH(Qp, Vy(B) © W) = H'(Qy, Vi @ W, 7%) & H} (Qp, Vi @ W, 77,

where recall o = a,(E) = %1.
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Proof. We firstly observe that H{ (Q,, V,(E) @ W),) = Hé(Qp, Vo(E) ® Wp) by e.g. [Bel, Prop.
2.0 and Ex. 2.20], because V,(E) ® W, contains no unramified submodule. As shown in [F190,
Lemma , p.125], it follows that

Hfl(@pv Vp(E) @ W) = Ker(Hl(Qp, Vo(E) @ Wp) — Hl(Ipv V;)_(E) ® Wp))

is the kernel of the composition of the homomorphism in cohomology induced by the natural
projection V,(E) — V7 (E) and restriction to the inertia subgroup I, C Gq,.

The long exact sequence in Galois cohomology arising from (18) shows that the ker-
nel of the map H'(Qy, V,(E) ® W) — H'(Q,,V, (E) ® W,) is naturally identified with
HY(Qp, V! (E)®@W,). We have H'(I,,, Qp(1ecyc)) = 0 for any nontrivial unramified character
¥. Besides, it follows from Example 1.6 that H} (Qp, Qp(ccyc)) = ker (HY(Qp, Qp(ecye)) —
H' (I, Qp(ecyc))) is a line in the two-dimensional space H'(Qp, Qp(ecyc)), which Kummer
theory identifies with Z; ®Zpr sitting inside Q' ®Zpr-

Recall from (18) that V' (E) = Ly(¢fecyc) and V7 (E) ~ L, (¢ y) where 47 is the unramified
quadratic character of Gg, sending Fr;, to a. The lemma follows. O

The Selmer group Sel,(E, W),,) is defined as
Sely (B, W) = {} € H'(Q, V,(E) @ Wp) : resy(X) € Hi (Qp, Vo (E) ® W)}

Here res), stands for the natural map in cohomology induced by restriction from Gg to Gq,-

4.2. Factorisation of p-adic L-series. The goal of this section is proving a factorisation

formula of p-adic L-functions which shall be crucial in the proof of our main theorem.
Recall the sign a := a,(f) € {1} associated to E. Let g and h,¢-1 denote the ordinary

p-stabilizations of g and h on which the Hecke operator U, acts with eigenvalue

(114) ag:=C¢ and o :=al ",

respectively.

Let f, g and h be the Hida families of tame levels My, M,, M), and tame characters 1,
YXK, X XK passing respectively through f, g¢c and hge-1. The existence of these families
is a theorem of Wiles [W88], and their uniqueness follows from a recent result of Bellaiche
and Dimitrov [BeDi] (note that the main theorem of loc. cit. indeed applies because oy # g,
ap # B, and p does not split in K). Let xo, yo, 20 denote the classical points in We, Wg and
Wh respectively such that f,, = f, gy, = g¢ and h,, = hye-1.

Let

fesgi(M)f], geSRN(M,xxx)lgl, he ST (M, x " xx)[h]

be Hsieh’s choice of A-adic test vectors of tame level M as in Proposition 3.22. Associated to
it there is the three-variable p-adic L-function .,/ (f, g, h) introduced in (100), and we define

(115) L) (F, ¢, hac—1) € As

to be the one-variable p-adic L-function arising as the restriction of fpf (f‘ , 8, fl) to the rigid
analytic curve We X {90, 20}

In addition to it, recall the p-adic L-functions described in §2.3 associated to the twist of
E/K by an anticyclotomic character of K, and set fo(k,) := (Dc2)%/fz, where f. is the
simple constant invoked in that section. Note that the rule k — fo(k,) extends to an Iwasawa
function, that we continue to denote fo, because p does not divide Dc?. Recall also the
rigid-analytic function .%,(Sym?(f)) in a neighborhood Uy C Wt of zg introduced in (55).

Theorem 4.2. The following factorization of p-adic L-functions holds in Ag:
Zy(Sym*(£)) x LI (£, Gc, hoc—1) = fo - Lo/ K, ) x Zp(£/ K, €).
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Proof. Write

a(k) =a(k,1,1), e(z) = e(z,y0,20)
for the factors appearing in the interpolation formula satisfied by fpf (f‘ y ¢ ﬁa<f1) described
in Proposition 3.22.

Recall we set k = k, + 2. It directly follows from our definitions and running assumptions
that

E!)4

a(k) = (2mi) - (2

and . .
(I—ag'p?)? - (I+ag'p?)?  1—ag’ph
(1= B p' k) (1 — ag?ph) 1— g pt*

By Proposition 3.22, it follows that ,fpf (f' Jc 7La<71) satisfies the following interpolation
property for all x € Wy of weight k > 2:

e(z) =

L e ko L—ag?p L(£2,g,h, 512
gpf(faggvhozgfl)(x) = (2772) i (5')2 : 1— ﬂ? pl_k; ’ (fo fo>2

A

Besides, it follows from Theorem 2.8 that the product of .Z,(f/K,v¢) and Z,(f/K,§) sat-
isfies that for all x € WY of weight k > 2:

L8/ K, ) L8/ K, €)(x) = Ty (@) - fre(x) x LI /K, 0, k/2)' - L(E/ K, €, k/2)'?

where

, o) () of o

— fxap fx,p
Feos (@) - fe(2) = (1 — ag*p’) . 2. ——
(2mi)* U, o, ¢
A direct inspection to the Euler factors shows that for all x € Wy of weight k > 2:
(116) L(fa?ag7 h7 k/Q) - L(fE/K7w7 k/2) ' L(fxO/K7§7 k/2>

Recall finally that the value of the function .Z,(Sym?(f)) at a classical point = € Up N W§
is
Zp(Sym*(0)(@) = (1= B (1 = ag ") 0,
Combining the above formulae together with the equality
Of ¢ Qp ¢ =47°(87, 1),

)T

described in §2.3, it follows that the following formula holds for all x € Wy of weight k£ > 2:
(117)  Z(Sym*(£)(z) x LI (£, G, hac-1)(x) = Ao (k) - ZL(£/ K, ) (z) x Z,(£/ K, €)(x).

Since WY is dense in Wk for the rigid-analytic topology, the factorization formula claimed

in the theorem follows. O
In Theorem 2.8 we showed that £,(f/K,v) and L,(f/K,¢) both vanish at zy and
d 1 o d 1 o
(118) %Ep(f/Kv 1/})|:1::zo = 9 ) logp(Pw )7 %Ep(f/Ka E)\x:azo = 9 ’ logp(Pf )

As remarked e.g. in the remarks preceding [BD3, Theorem 3.4], the function .Z,(Sym?(f))
does not vanish at zg and takes an algebraic value in L*. It thus follows from Theorem 4.2
that the order of vanishing of Eg(f VY 9¢, hae—1) at @ = g is at least two and

d2 M o y Q 6]
(119) @ﬁﬁ(fv,gg, hac—1)je=zo = C1 - log,(Py) - log, (F¢"),

where C7 € L* is a non-zero simple algebraic constant.



STARK-HEEGNER POINTS AND GENERALISED KATO CLASSES 55

As recalled at the beginning of this chapter, Pg‘p is non-zero. We can also suppose that
P§ , is non-zero, as otherwise there is nothing to prove. Hence (119) shows that the order of

vanishing of ££(f'v, dc, ;Lacfl) at © = x¢ is exactly two.
4.3. Proof of Theorems A and B. Let
K‘(f7 g’ h) € Hl (Qa Vl’gh(M))

be the A-adic global cohomology class introduced in (104).
Define VI on(M) as the A¢[Ggl-module obtained by specialising the Aggh[Gg]-module VIgh(M )
at (yo, Zo). Let

(120) K(E, 9¢, hac—1) = vy 2okl 8, 1) € HY(Q, V], (M)
denote the specialisation of k(f, g, h) at (yo, 20), and

’k‘:(fa ge¢, hacfl) € Hl (Qa Vfgh(M))

denote the class obtained by specializing (120) further at x.

The goal of this section is proving that s(f,gc,hac—1) belongs to the Selmer group, and
computing its logarithm along a suitable direction, showing that it factors as the product of
logarithms of two Stark-Heegner points. This will allow us to prove Theorem C, from which
Theorems A and B also follow.

To this end, define the A¢[Gg,]-modules

~1/2 - — ~1/2
W= Ve(M)(gp *) @ VPP (M), W = Vi (M)(gg *) ® V™ (M),
It follows from (114) that Vgﬁhﬁ = Ly(a) is the one-dimensional representation afforded by
character of Gal (K,/Q,) sending Fr, to o = a,(E). /
~1/2
),

Hence W is the sub-quotient of Vi (M) that is isomorphic to several copies of Af(\Il?hgf

where as in (105), \I/?h denotes the unramified character of Gg, satisfying

h _ _
W (Fr,) = ay(F)a; (g1)ay () = - ay(F).
Let
(121) K3 (F.9¢, hac-1) € HY(Qp, W), K)(E, 9¢, hac-1)™ € H' (Qp, W)
denote the image of the restriction at p of (f, g¢,hqe-1) under the map induced by the
projection V;fgh(M ) — W, and further to W~ respectively.

Equivalently and in consonance with our notations, m{; (f,9¢, hoc—1)~ is the specialization

at (yo,20) of the local class m};(f, g,h)” introduced in (108) and invoked in Theorem 3.29.
Hvenceu this theorem applies, and asserts that the following identity holds in A¢ for any triple
(f,g,h) of A-adic test vectors:

(122) <£f,gh('</£(f7 g¢, hochl)i)7 Ure @ wéz @ wﬁ:g_l > = gpf(f.vv 57(7 77/0&“*1)‘

Let now Hg(f, gcs Pac-1) and /@;(f, gcy hac—1)" denote the specializations at g of the classes
in (121). Since ap(f) = a € {£1} and g¢(xg) = 1, it follows from the above description of W

and the character \Ilgh that, as Gg,-modules,
W(:‘UO) = VYP(E+)(M)7 W_(CB()) = LP(M)7

where E is the (trivial or quadratic) twist of E given by «, and L, stands for the trivial
representation.
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Hence

k5 (f. 9 hac1) € HY(Qp, Vp(EL)(M))  and &) (f, g¢, hac1)™ € H'(Qp, Ly(M).

The Bloch-Kato dual exponential and logarithm maps associated to the p-adic representa-
tion V,(E; ) (M) take values in a space L, (M) consisting of several copies of the base field L,,.
The choice of test vectors gives rise to a projection L,(M) — L,. Since the test vectors are
fixed throughout, we shall denote by a slight abuse of notation

expiik : H'(Qp, Vp(EL)(M)) — Ly, loggk : Hi (Qp, Vp(EL)(M)) — Ly

the composition of Bloch-Kato dual exponential and logarithm maps, respectively, with the
aforementioned projection to L,

Venerucci [Ve] has recently proved a variant of a conjecture of Perrin-Riou for elliptic curves
A having split multiplicative reduction at a prime p, exploiting the fact due to Kato and Ochiai
that the two-variable Mazur-Kitagawa p-adic L-function associated to A can be recast as the
image under the Perrin-Riou A-adic regulator of Kato’s Euler system of Siegel modular units
on the Ks-group of a tower of modular curves. Although Kato’s original setting is different
from ours, some of the results that Venerucci proves in the technical core of his article are
purely local, and can be applied to arbitrary local A-adic classes satisfying suitable conditions
that are also met in the present scenario. Using them we can prove the following result:

Theorem 4.3. The class f{{;(f, 9¢r hoc—1) belongs to HE (Qp, Vp(EL)(M)). In addition we
have

d? Sy oL Y
(123) @gpf(f 7§C7ho¢C*1)\x:az0 = 02 ' logBK(’%}J)c(fa gC7haC*1))

for some nonzero rational number Cy € Q.

Proof. Let fi = f®a denote the (trivial or quadratic) twist of f over K such that a,(f+) =1,
and f; be the Hida family passing through f.. Then W is isomorphic to several copies of
Ve, (g¢, Y 2) and thus we are placed in the setting covered by Theorem 3.1 of [Ve].

To be more precise, [Ve, Theorem 3.1] can be applied to any local two-variable A-adic class
in Hl, (Qp oo, Ve, ) := H(Qp, Vg, ® A(gcyc)); the two variables in play are the weight & of the
Hida family f, (or rather the points z in the finite flat cover Wt of weight space) and the
cyclotomic variable s, although the notations for the variables employed in loc. cit. differ from
ours here.

For our purposes it will suffice to apply loc. cit. restricted to the central critical line

s—1=—k(x)/2,

which is the one characterized by the fact that all classical specializations of Ve, @ A(ggyc)
at points on this line are Kummer self-dual. Moreover, the restriction of Vi & A(gy.) to

this line is precisely the A¢[Gg,]-module Ve, (ga 1/ 2) invoked above, whose specialization at a
point x of weight k is Vg~ (k/2).
Now that we have clarified the notational passage from [Ve] to our setting, the restriction

to the central critical line of [Ve, Theorem 3.1] applies, and combining it with (122) asserts

that p
1 “ v 7 *
(1- E)%‘i’ppf(fvago hocC_l)Lr:xo = Ep(EJr) eXPBK("ﬂ;J;(fv gc¢, haC_l))'
Since we concluded at the end of §4.2 that %, (fV, 9cs 71a¢1) vanishes at © = xg with order
exatly two, and the L-invariant of F is non-zero, it follows that Bloch-Kato’s dual exponential

vanishes at /@]Jj( f59¢, hac—1) for all choices of test vectors, and hence this class belongs to
H}(Qp, Vyo(EL)(M)), as claimed.
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We are hence in position to apply the second part of Theorem 5.1 of [Ve], which in combi-
nation with the displayed equation (6) of loc. cit. states that

2
log(ﬂgjs(fa g¢, hoagfl)) X @gpf(fvagﬁ haC*1)|z:x0 = 10g2(’€]]:(f7 g¢, hacfl))

up to a nonzero rational number. The argument of [Ve, Lemma 6.1] applies in this setting
and hence log(mg(f, gcshac-1)) # 0. The theorem follows. O

Corollary 4.4. The global class k(f,gc, hoc-1) lies in the Selmer group Sel,(E, Vyn(M)).

Proof. Write Hp(f, 9¢ hac—1) € HY(Qp, Vi @ Vgr(M)) for the restriction of &(f, gc, hac-1)) at
p and £, (f, g¢, hac—1) € H (Qp, Vi~ @ Vgn(M)) for its projection to Vi~ ® Vg, (M).
After setting Vgh =V ® V,f , we find that there is a natural decomposition

(124) Hl(Qw ®V:qh @Hl Qp, Vao( )

(a,b)

where (a,b) ranges through the four pairs (ag, ), (g, Br), (Bg, an), (Bg, Br). There are sim-
ilar decompositions of course for H} (Qp, V,(E) @ V,p,) and H(Q,, VP (E) @ Vgn).
Note that

(125) QgQp = Bgﬁh = Q, O‘gﬁh = 5g04h = —a.

Hence, according to Lemma 4.1 and the discussion preceding it, in order to prove the statement
we must show that rpy(f, gc, hac—1) lies in HY(Q,, V,H(E) ® Vgu(M)) and its (g, o) and
(Bg, Br)-components lie in the finite Bloch-Kato submodule.

By Proposition 3.28, the local class x,(f, gc,hacfl) is the specialization at (zg,yo, 20) of
a A-adic cohomology class with values in the A-adic representation V,;fgh(M ), which recall
is defined as the span in Vigh(M ) of (suitably twisted) triple tensor products of the form
V? ® Vg ® V}il, with at least two +’s in the exponents.

Since Vi = VgJr and Vgag =V, and similarly for Vj, it follows from the very definition
of V:fgh( ) that the (o, ap)-component of ky(f, gc, hac-1) in HY(Qp, Vi ® Vagah (M)) van-
ishes, and the (ay, B84) and (8B, ap)-components of x, (f, g¢, hac—1) in Hl((@p, ®Vago‘h( )
vanish. In addition to that, Theorem 4.3 amounts to saying that the (f,, Bh) component of
kp(fs 9cs hag-1) lies in HE(Qy, Vi ® Vgﬁhgﬁh(M)), and hence its projection to V;” ® Vgﬁhgﬁh(M)
also vanishes. Putting it together, the corollary follows. (|

We are finally in position to prove the main theorems stated in the introduction. We
start with Theorem C. In order to recall its statement, recall from (110) that V), = Vi & Ve
decomposes as the direct sum of the induced representations of ¢ and £. Write

(126) Ky(f, 9¢, hac-1) € Hi (Q,Vo(E) @ V(M) ke(f, g, hac1) € Hi (Q, Vp(E) © Ve(M))

for the projections of the class appearing in Corollary 4.4 to the corresponding quotients. We
denote as in the introduction

KS(f2 96 hac—1) = (1 + a0p)ky(f, 9y hac—1) € Hi (H, Vy(E)(M))¥®?

the component of ky(f, g¢, hac—1) on which o, acts with eigenvalue «, and likewise with 1
replaced by the auxiliary character &.

Lemma 4.5. We have

logE,p ’i%(fa ge¢, ha(*l) = 1OgE‘,p K’?(fa 9gc¢s ha(*1>'
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Proof. We may decompose the local class

Kp = /{p(f’ gc, hag—l) = (,iggah’ l{ggﬁh’ Kggah’ Hggﬁh)
in HY(Q,, V; ® Vgo;f “"(M)) as the sum of four contributions with respect to the decomposition

(124) afforded by the eigenspaces for the action of o,. In addition to that, &, also decomposes
as

kp = (Kyp, Kep) € Hfl((@pv Vp(E) ® Vy(M)) & Hfl(Qw Vp(E) @ Ve(M)),

where £y 5, kep are the local components at p of the classes in (126). An easy exercise in
linear algebra shows that

(127) rp” " = Ky~ Rgp Hggﬁh = Kp T Rgpe
It was shown in the proof of the previous corollary that x,?"" = 0. Hence the above display

implies that xj, , = kg, are the same element in H{ (Qp, Vi, (M)). The lemma follows. O

Let
1 : H} V Vn (M P H} V v iaBr (g 1% L
Ogﬁgﬁh : f(Qp’ f ® gh( )) — f (Qp7 f X gh ( )) D

denote the composition of the natural projection to the (8y, 8)-component with the Bloch-
Kato logarithm map associated to the p-adic representation Vf®Vgﬁhg P (M) ~ Vi, (M) and the
choice of test vectors. Note that H{ (Qp, Vs, ) = Hf (Qp, Q,(1)), which as recalled in Example
1.6 (c) is naturally identified with the completion of Z), and the Bloch-Kato logarithm is
nothing but the usual p-adic logarithm on Z; under this identification. Lemma 4.5 together
with the second identity in (127) imply that

(Z) 1OgE',p K/%(f’ 9¢, ha(*l) = lOgﬁgﬁh (Kp(fv g¢, ha(*l))'

Theorem 4.3 shows that

2

) d S
(”) logﬂgﬂh (Kp(fa 9¢s hag“*l)) = @fpf(fva 9¢, ha(*1)|x:zo (mOd LX)

Finally, fix (tu" , g, fl) to be Hsieh’s choice of A-adic test vectors satisfying the properties
stated in Theorem 4.2. Recall from (119) that, with this choice, we have

d? oo ¥
(7i7) Wﬁg(fv,gg, Roc=1)je=zo = 108, (Py) - log,(P&) (mod L*).

Putting together (i)-(ii)-(iii) it follows that

1OgE,p ’f%(ﬁ g¢, hagfl) = logE,p(P@(i) X logE,p(Pga) (mod LX)'

This is precisely the content of Theorem C, which we just proved.
Theorem A is now a direct consequence of Theorem C, if we take

Ry = IOgE,p(Pg'a)_l x K’zopé(fa Jas ha)-

Theorem B also follows, because the non-vanishing of the first derivative %fp(f JE ) o=

implies that P, # 0. Theorem A then implies that the class ky € HE(H,V,(E)(M))¥®Y is
non-trivial.
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