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This article examines the Fourier expansions of certain non-
classical p-adic modular forms of weight one: the eponymous 
generalised eigenforms of the title, so called because they lie 
in a generalised eigenspace for the Hecke operators. When 
this generalised eigenspace contains the theta series attached 
to a character of a real quadratic field K in which the 
prime p splits, the coefficients of the attendant generalised 
eigenform are expressed as p-adic logarithms of algebraic 
numbers belonging to an idoneous ring class field of K. This 
suggests an approach to “explicit class field theory” for real 
quadratic fields which is simpler than the one based on Stark’s 
conjecture or its p-adic variants, and is perhaps closer in spirit 
to the classical theory of singular moduli.

© 2015 Published by Elsevier Inc.

1. Introduction and statement of the main result

Fourier coefficients of modular forms often describe interesting arithmetic functions. 
Classical examples are the partition function, the divisor function, and representation 
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numbers of quadratic forms, which are related to Fourier coefficients of the Dedekind 
eta function, Eisenstein series, and theta series, respectively. A more modern instance is 
the appearance of Frobenius traces of two-dimensional Galois representations as Fourier 
coefficients of normalised eigenforms. Just as germane to an understanding of the present 
work are the topological and arithmetic intersection numbers of special cycles arising in 
the formulae of Hirzebruch–Zagier, Gross–Kohnen–Zagier, and their vast generalisations 
growing out of the “Kudla program”.

The main theorem of this paper expresses the Fourier coefficients of certain p-adic 
modular forms of weight one as p-adic logarithms of algebraic numbers in ring class 
fields of real quadratic fields. It suggests an approach to “explicit class field theory” 
for real quadratic fields which is simpler than the one based on Stark’s (still unproved) 
conjecture [17] or Gross’s (more tractable) p-adic variant [13]. An analogy with the 
growing body of work on Fourier coefficients of incoherent Eisenstein series and weak 
harmonic Maass forms suggests that this approach is perhaps closer in spirit to the 
classical theory of singular moduli.

To set the stage for the main result, let K be a real quadratic field of discriminant 
D > 0 and let χK denote the even quadratic Dirichlet character associated to it. Let

ψ : GK := Gal(K̄/K) −→ C×

be a ray class character (of order m, conductor fψ and central character χψ) which is of 
mixed signature, i.e., which is even at precisely one of the infinite places of K and odd 
at the other. Hecke’s theta series g := θψ attached to ψ is a holomorphic newform of 
weight one, level N and nebentype character χ with Fourier coefficients in L := Q(μm), 
where

N = D · NormK/Q fψ, χ = χKχψ.

Fix a prime p = pp′ which does not divide N and is split in K/Q. The eigenform g is 
said to be regular at p if the Hecke polynomial

x2 − ap(g)x + χ(p) = (x− ψ(p′))(x− ψ(p)) =: (x− α)(x− β)

has distinct roots. Assume henceforth that this regularity hypothesis holds, and let

gα(z) := g(z) − βg(pz), gβ(z) := g(z) − αg(pz)

be the two distinct p-stabilisations of g, which are eigenvectors for the Up operator with 
eigenvalues α and β respectively. Note that these stabilisations are both ordinary, since 
α and β are roots of unity.

Let Sk(N, χ) (resp. S(p)
k (N, χ)) denote the space of classical (resp. p-adic overconver-

gent) modular forms of weight k, level N and character χ, with coefficients in Cp. The 
Hecke algebra T of level Np generated over Q by the operators T� with � � Np and Uq with 
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q|Np acts naturally on the spaces Sk(Np, χ) and S(p)
k (N, χ). The normalised eigenform 

gα ∈ S1(Np, χ) gives rise to an algebra homomorphism ϕgα : T −→ L satisfying

ϕgα(T�) = a�(g) if � � Np, ϕgα(U�) =
{
a�(g) if �|N ;
α if � = p,

and gα generates the one-dimensional eigenspace S1(Np, χ)[gα] attached to this system 
of Hecke eigenvalues.

In [4], Cho and Vatsal make the important observation that the Coleman–Mazur 
eigencurve is smooth but not étale over weight space at the points corresponding to 
gα and gβ . (It is likely that the ramification degree of the weight map is always equal 
to two at these points under the regularity assumption: see [4,1], and Adel Bettina’s 
forthcoming PhD thesis [2] for various results in this direction.) In particular, letting Igα
be the kernel of ϕgα , the submodule of S(p)

1 (N, χ) which is annihilated by I2
gα , denoted 

S
(p)
1 (N, χ)[[gα]], is two-dimensional and contains non-classical forms which do not lie in 

the image of the natural inclusion

S1(Np, χ)[gα] ↪→ S
(p)
1 (N,χ)[[gα]].

An overconvergent form in S(p)
1 (N, χ)[[gα]] which is not a multiple of gα is called a 

generalised eigenform attached to gα, and is said to be normalised if its first Fourier 
coefficient is equal to zero. Such a normalised generalised eigenform, denoted

g�α :=
∞∑

n=2
an(g�α)qn,

is uniquely determined by gα up to scaling, and the Hecke operators act on it by the rule

T�g
�
α = a�(gα)g�α + a�(g�α)gα, Uqg

�
α = aq(gα)g�α + aq(g�α)gα, (1)

for all primes � � Np and all q|Np. Theorem 1 below shows that the Fourier coefficients 
an(g�α) are interesting arithmetic quantities with a bearing on explicit class field theory 
for K.

Let ψ′ denote the character deduced from ψ by composing it with the involution in 
Gal(K/Q). The ratio ψ♥ := ψ/ψ′ is a totally odd ring class character of K. Let H denote 
the ring class field of K which is fixed by the kernel of ψ♥, and set G := Gal(H/K).

If � � N is any rational prime which is inert in K/Q, the corresponding prime � of K
splits completely in H/K, and the set Σ� of primes of H above � is endowed with the 
structure of a principal G-set. Given λ ∈ Σ�, let u(λ) ∈ OH [1/λ]× ⊗Q be any λ-unit of 
H satisfying ordλ(u(λ)) = 1. While u(λ) is only defined up to units in O×

H , the element

u(ψ♥, λ) =
∑

ψ−1
♥ (σ) ⊗ u(λ)σ ∈ L⊗OH [1/�]×
σ∈G
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is independent of the choice of generator u(λ), since there are no genuine units in L ⊗O×
H

in the eigencomponents for the totally odd character ψ♥. The �-unit u(ψ♥, λ) does depend 
on the choice of λ ∈ Σ�. Section 2 below uses ψ to define a function η : Σ� −→ μm for 
which the element

u(ψ♥, �) := η(λ) ⊗ u(ψ♥, λ) ∈ L⊗OH [1/�]× (2)

depends only on the inert prime � and not on the choice of prime λ ∈ Σ� above it.
Fix embeddings of L and of H into Q̄p, and let

logp : L⊗H× −→ Q̄p

be the resulting p-adic logarithm on H×, extended to L ⊗H× by L-linearity. The main 
result of this paper is

Theorem 1. The normalised generalised eigenform g�α attached to gα can be scaled in 
such a way that, for all primes � � N ,

a�(g�α) =
{

0 if χK(�) = +1;
logp u(ψ♥, �) if χK(�) = −1.

More generally, for all n ≥ 2 with gcd(n, N) = 1,

an(g�α) = 1
2
∑
�|n

logp u(ψ♥, �) · (ord�(n) + 1) · an/�(gα), (3)

where the sum runs over primes � that are inert in K.

The following two examples illustrate Theorem 1.

Example 1.1. Let ψ be the quadratic character of K = Q(
√

21) of conductor fψ :=
(3, 

√
21) attached to the quadratic extension K(

√
3 +

√
21) of K, so that m = 2 and 

L = Q. The weight one modular form g attached to ψ is of level N = 63 and has for 
nebentype character the odd quadratic Dirichlet character χ7 of conductor 7. The ring 
class character ψ♥ is a genus character associated to K and the associated genus field is 
just the (narrow) Hilbert class field H = Q(

√
−3, 

√
−7) of K.

The prime p = 5 is split in K, and the roots of the associated Hecke polynomial are 
α = 1 and β = −1. Hence the generalised eigenspace of gα in S(5)

1 (63, χ7) contains a 
normalised generalised eigenform g�α which is unique up to scaling. The fast algorithms 
of [15] for calculating with overconvergent modular forms were used to efficiently compute 
this generalised eigenform numerically with an accuracy of 50 significant 5-adic digits, 
producing a modular form whose first non-vanishing Fourier coefficient a2(g�α) is equal 
to 1.
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For primes � < 300 that split in K (including � = p) it was observed that a�(g�α) = 0. 
When χK(�) = −1, it was observed that

a�(g�α) =
logp(u(ψ♥, �))
logp(u(ψ♥, 2)) , (4)

where u(ψ♥, �) denotes a suitable fundamental �-unit of norm 1 in H/K, for all inert 
� ≥ 2. (The logarithm of such a unit is unique up to sign.) At the ramified primes we 
observed

a3(g�α) = 0, a7(g�α) = 1
2 ·

logp(u(ψ♥, 7))
logp(u(ψ♥, 2)) . (5)

Here the 2-unit is u(ψ♥, 2) := (−3 +
√
−7)/4. The numerical values of the first few 

non-zero coefficients a�(g�α) for � > 2 prime, and the values of u(ψ♥, �) verifying (4)
and (5), are listed in the table below. The p-adic logarithms were calculated relative to 
the 5-adic embedding of H in which 

√
21 ≡ −1 mod 5.

� a�(g�
α) mod 550 u(ψ♥, �)

7 20012844832326722144621655295530693 (1 − 4
√
−3)/7

11 9753260368539762436495550803834302 (−3 − 4
√
−7)/11

13 80089851328257507529397205421800237 (−1 + 15
√
−3)/26

19 5387308298676565974776485314728008 (11 + 21
√
−3)/38

23 7951947833969991753485495228957006 (9 + 8
√
−7)/23

29 59833461154145179184050173388767665 (−27 − 4
√
−7)/29

31 8202575240226165174943058721099781 (−13 + 35
√
−3)/62

Example 1.2. Let χ be a Dirichlet character of conductor 145 with order 4 at the prime 
5 and order 2 at the prime 29. The space S1(145, χ) is one-dimensional and spanned by 
the modular form

g = q + iq4 + iq5 + (−i− 1)q7 − iq9 + (−i + 1)q13 − q16 − q20 + · · · .

It is the theta series attached to a quartic character of K = Q(
√

29) ramified at one of 
the primes above (5). Level 145 is the smallest where one encounters weight one theta 
series attached to a character of a real quadratic field, but not to a character of any 
imaginary quadratic field. (There are two non-conjugate such forms, the other of which 
appears in [6, Example 4.1].)

The prime p = 13 is split in K and the roots of the Hecke polynomial for this prime are 
α = 1 and β = −i. We view gα as a 13-adic modular form using the embedding of L =
Q(i) into Q13 for which i ≡ 5 mod 13. The coefficients of the normalised eigenform g�α, 
scaled so that a2(gα)� = 1, are given in the second column of the table below for the 
inert primes � = 3, 11, 17 and 19 of K.
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The ring class field H of conductor 5 is a cyclic quartic extension of K given by

H = K(
√

5, δ) where δ2 =
√

145 − 15
32 .

Let σ be the generator of Gal(H/K) defined by

σ(
√

5) = −
√

5, σ(δ) = −1
4(3

√
5 +

√
29)δ.

We embed H in the quartic unramified extension

Q134 = Q(α) where α4 + 3α2 + 12α + 2 = 0

of Q13, in such a way that

√
29 ≡ 9,

√
5 ≡ 8α3 + 2α2 + 7α + 10, δ ≡ α3 + 5α2 + 6α + 10 (mod 13).

For � = 3, 11, 17 and 19, it was verified that

a�(g�α) = log13(u(ψ♥, �))
log13(u(ψ♥, 2))

to 20-digits of 13-adic precision, where (denoting the group operation in L ⊗H× addi-
tively)

u(ψ♥, �) := u� + i⊗ σ(u�) − σ2(u�) − i⊗ σ3(u�),

for a suitable �-unit u� of H. The 2-unit u2 is given by

u2 := 1
2(−

√
5 −

√
29 + 6)δ + 1

8(
√

29 − 7)
√

5 + 1
8(

√
29 + 1),

and the others are listed in the last column of the table below.

� a�(g�
α) mod 1320 u�

3 12915196799386050150007 (
√

5 +
√

29 − 4)δ + 1
4 (

√
29 − 4)

√
5 + 1

4 (2
√

29 − 13)
11 3524143318627577732842

( 1
4
(
(
√

29 + 1)
√

5 + (−
√

29 + 11)
)
δ + 1

4
(√

5 − 1
))4

17 229407992393437964510
(
(16

√
29 + 84)

√
5 + (36

√
29 + 200)

)
δ + 1

4 (11
√

29 + 63)
√

5
+ 1

4 (15
√

29 + 83)
19 15142834827825079965585

( 1
4
(
(3

√
29 − 13)

√
5 + (−15

√
29 + 85)

)
δ + 1

8 (3
√

29 − 15)
√

5
+ 1

8 (7
√

29 − 35)
)2

Remark 1.3. Theorem 1 was inspired by the work of Bellaïche and Dimitrov [1] on the 
geometry of the Coleman–Mazur eigencurve at classical weight one points. Theorem 1.1. 
of [1] asserts that this eigencurve is étale over weight space at any classical weight one 
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point for which p is regular, unless g is a theta series of a real quadratic field in which 
p splits. This explains why Theorem 1 above focuses on this setting, the only “regular 
at p” scenario where a non-trivial generalised eigenform co-exists with its classical weight 
one counterpart.

Remark 1.4. Every (totally odd) ring class character of K can be written as ψ′/ψ for a 
suitable ray class character ψ (of mixed signature). (Cf. for example Lemma 6.7 of [7].) 
Hence all ring class fields of K can be generated by exponentials of the Fourier coefficients 
of g�α for suitable real dihedral newforms g of weight one attached to K, in much the same 
way that the ring class fields of a quadratic imaginary K can be generated by values of the 
modular function j(z) at arguments z ∈ K. The existence of the generalised eigenforms 
g�α of Theorem 1 can therefore be envisioned as an eventual pathway to “explicit class 
field theory” for real quadratic fields.

Remark 1.5. Comparing (3) with the formula for the coefficient denoted an(φ) in Theo-
rem 1 of [14] reveals a strong analogy between Theorem 1 and a fundamental result of 
Kudla, Rapoport, and Yang on the Fourier coefficients of central derivatives of incoher-
ent Eisenstein series of weight one. When Eisenstein series are replaced by a weight one 
cuspidal newform g, the notion of mock modular forms provides a fruitful substitute for 
Kudla’s incoherent Eisenstein series. The mock modular form attached to g, denoted g
, 
is the holomorphic part of a harmonic weak Maass form mapping to g under an appro-
priate differential operator. Recent work of Bill Duke, Stephan Ehlen, Yingkun Li, and 
Maryna Viazovska relates the Fourier coefficients of g
 to the complex logarithms of al-
gebraic numbers belonging to the field cut out by the adjoint Adg of the two-dimensional 
Artin representation attached to g. The articles [10,12,11,19] focus largely on the case 
where g is a theta series of an imaginary quadratic field. The algebraic numbers whose 
logarithms arise in the Fourier expansion of g
 then belong to abelian extensions of 
imaginary rather than real quadratic fields, and the proofs in [10,12,11,19] rely crucially 
on the theory of complex multiplication. Such a theory is unavailable for real quadratic 
fields, and the techniques exploited in the present work, based on deformations of Galois 
representations, are thus quite different, substantially simpler, and fundamentally p-adic 
in nature.

Remark 1.6. The concluding section of [10] makes an experimental study of g
 when 
g is an octahedral newform of level 283, in which the Stark conjecture for the Artin 
L-function attached to Adg (as described, for instance, in Section 6 of [17]) plays an 
essential role. The case where g is the theta series of a character of a real quadratic 
field is treated extensively in [16], where it is explained that the Fourier coefficients of 
g
 are expected to be logarithms of algebraic numbers belonging to K rather than to 
some non-trivial ring class field of K. This (disappointing, at least for explicit class field 
theory) feature of the archimedean context can be traced to the fact that the L-function 
of the representation induced from ψ♥ does not vanish at s = 0, and that there are 
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no non-trivial Stark units in the ψ♥-isotypic part of the unit group of H. As pointed 
out in [4] and [1], it is precisely this phenomenon which leads to the existence of the 
overconvergent generalised eigenform g�α of Theorem 1.

Remark 1.7. There are other instances where the properties of weak harmonic Maass 
forms resonate with those of overconvergent modular forms like g�α. For example, Bruinier 
and Ono study the Fourier coefficients of the holomorphic part of the weak harmonic 
Maass form of weight 1/2 attached to a classical modular form g of weight 3/2 whose 
Shimura lift has rational coefficients and hence corresponds to an elliptic curve over Q. 
The main result of [3] relates these Fourier coefficients to Heegner points on the elliptic 
curve defined over a varying collection of quadratic fields. The p-adic logarithms of the 
same Heegner points are realised in [8] as the Fourier coefficients of a “modular form of 
weight 3/2 + ε” arising as an infinitesimal p-adic deformation of g over weight space. It 
would be interesting to flesh out the rather tantalising analogy between weak harmonic 
Maass forms and p-adic deformations of classical eigenforms. To what extent can the 
latter be envisaged as non-archimedean counterparts of the former?

Remark 1.8. The �-units u(ψ♥, �) are precisely the Gross–Stark units studied in [5]. The 
latter reference proposes a conjectural analytic formula for their �-adic logarithms refining 
Gross’s �-adic analogue of the Stark conjectures. Theorem 1 above holds unconditionally 
and concerns the p-adic logarithms of the same �-units, for primes p �= �. It therefore 
bears no direct connection with the Gross–Stark conjecture, even though its proof, like 
that of the Gross–Stark conjecture given in [9] and [18], relies crucially on the deformation 
theory of p-adic Galois representations.

We close the introduction with the following corollary of Theorem 1, which shows 
that a naive version of the q-expansion principle fails for the generalised eigenspace 
S

(p)
1 (N, χ)[[gα]].

Corollary 2. Let S ⊂ S
(p)
1 (N, χ)[[gα]] be a Q̄-vector space which is stable under all the 

Hecke operators. Then either S is contained in S1(Np, χ)[gα], or it is infinite-dimensional 
over Q̄.

Proof. If S is not contained in S1(Np, χ)[gα], it contains a non-zero (not necessarily 
normalised) generalised eigenform h of the form g�α + λgα, where g�α is a normalised 
generalised eigenform and λ ∈ Cp. By (1) combined with the stability of S under the 
Hecke operators,

(T� − a�(gα))h = a�(g�α)gα

also belongs to S, for all primes � � Np. Theorem 1 implies that the forms 
Ω logp(u(ψ♥, �))gα (for a suitable Ω �= 0) belong to S, for all � � Np which are inert 
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in K. The corollary follows from the linear independence over Q̄ of the p-adic logarithms 
of algebraic numbers.

2. Proof of Theorem 1

The theta series g = θψ corresponds to an odd, irreducible, two-dimensional Artin 
representation

� : GQ −→ GL2(L),

obtained by inducing ψ from GK to GQ. The two-dimensional L-vector space underlying �
decomposes as a direct sum of one-dimensional representations ψ and ψ′ when restricted 
to GK . Fix an element τ0 in the complement GQ \ GK of GK in GQ, and let e1 and 
e2 be eigenvectors for the GK-action attached to ψ and ψ′ respectively, chosen so that 
e1 = �(τ0)e2. Relative to this basis,

�|GK
=

(
ψ 0
0 ψ′

)
, �|GQ\GK

=
(

0 η′

η 0

)
(6)

where η and η′ are L-valued functions on GQ \GK given by the rule η(τ) := ψ(τ0τ) and 
η′(τ) := ψ(ττ−1

0 ).
Let Lp denote a p-adic completion of L and let Lp[ε] denote the ring of dual numbers, 

for which ε2 = 0. The theorems of Cho–Vatsal [4] and Bellaïche–Dimitrov [1] show that 
the tangent space H1

ord(Q, Ad0(�)) of the universal ordinary deformation space attached 
to � with constant determinant, denoted as tD′ in [1, Definition 2.1], is one-dimensional 
over Lp. This means that there is a unique (up to conjugation, and replacing ε by a 
non-zero multiple) ordinary lift

�̃ : GQ −→ GL2(Lp[ε])

of � satisfying

det(�̃) = det(�). (7)

We begin by observing that �̃ can be written in the form

�̃|GK
=

(
ψ ψ′κ′ · ε

ψκ · ε ψ′

)
, �̃|GQ\GK

=
(
d1 · ε η′

η d2 · ε

)
. (8)

The fact that the diagonal entries of �̃|GK
remain “constant”, i.e., belong to L and 

are equal to those of �, follows from (7) and the fact that this is true of the lower 
right-hand matrix entry, which is unramified at p by the ordinarity of �̃, since there are 
no non-trivial homomorphisms from GK to Lp that are unramified at a prime above p. It 
likewise ensures that the anti-diagonal entries of �̃|GQ\GK

are equal to those of �|GQ\GK
, 

i.e., are described by the functions η and η′.
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Lemma 2.1. The functions κ and κ′ belong to H1(K, Lp(ψ−1
♥ )) and to H1(K, Lp(ψ♥))

respectively. Their restrictions to GH are related by the rule

κ′(σ) = η′(τ)
η(τ) κ(τστ−1), (9)

for any τ ∈ GQ \GK . The class κ is unramified at p, and the class κ′ is unramified at p′.

Proof. The first assertion is standard, and follows directly from the fact that � is a 
homomorphism on GK . The second follows by a similar argument, from a direct cal-
culation of the anti-diagonal entries of �̃(τστ−1) = �̃(τ)�̃(σ)�̃(τ)−1, using the fact that 
ψ(σ) = ψ′(σ) when σ ∈ GH to simplify the calculation. Finally, the fact that � is ordi-
nary at the rational prime p (relative to a p-adic embedding of H which sends K to its 
completion at p) implies that κ is unramified at p. The relation (9) between κ and κ′

implies that κ′ is unramified at p′, since any τ ∈ GQ \GK interchanges the primes p and 
p′ of K above p. �

The space H1
p′(K, Lp(ψ♥)) of global classes that are unramified at p′ is one-

dimensional over Lp, and restriction to GH gives an isomorphism

H1
p′(K,Lp(ψ♥)) −→ homp′(GH , Lp(ψ♥))Gal(H/K). (10)

The target of this restriction map can be described explicitly in terms of global class 
field theory, which identifies homp′(GH , Lp) with the continuous homomorphisms from 
the group A×

H of idèles of H which are trivial on principal elements and on O×
Hv

for all 
primes v � p of H. The space homp′(GH , Lp) is of dimension t := [H:K]

2 . To describe 
it more concretely, let σ∞ denote complex conjugation in G = Gal(H/K) (which is 
well-defined, independently of the choice of a complex embedding of H). Given a choice 
σ1, . . . , σt of coset representatives for 〈σ∞〉 in G, let κj denote the idèle class character 
whose restriction to O×

Hv
is trivial for all v � p and whose restriction to H×

p := (H⊗KKp)×
is equal to

κj(a) = logp(aσj/aσjσ∞).

The elements κ1, . . . , κt form an Lp basis for homp′(GH , Lp), and the one-dimensional 
target of (10) is spanned by the function

κψ♥ :=
t∑

j=1
ψ−1
♥ (σj)κj ,

whose restriction to H×
p is given by

κψ♥(a) =
∑
σ∈G

ψ−1
♥ (σ) · logp(aσ). (11)
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Lemma 2.2. For all primes � of Q that are inert in K, and all λ ∈ Σ�,

κψ♥(Frobλ) = logp(u(ψ♥, λ)).

Proof. By global class field theory, the value of κψ♥(Frobλ) is equal to the image of κψ♥

on the idèle which is equal to the inverse of a local uniformiser of Hλ at λ, and to 1
everywhere else. This idèle class agrees, modulo the kernel of κψ♥ , with the idèle which 
is trivial at all places of H except p and equal to u(λ) in H×

p . The result now follows 
from (11). �

Assume from now on that κ′ has been scaled so that it is equal to the class κψ♥

of (11). The Galois representation �̃ comes from an overconvergent weight one eigenform

g̃α = gα + g�α · ε

with coefficients in the ring Lp[ε] of dual numbers. The modular form g�α is a gener-
alised eigenform in the sense of the introduction, and its Fourier coefficients acquire a 
Galois-theoretic interpretation via the identity

trace(�̃(σ�)) = a�(gα) + a�(g�α) · ε, (12)

where � � N is any rational prime and σ� ∈ GQ is a Frobenius element at � (attached 
to an arbitrary embedding of Q̄ into Q̄�). Note that although �̃ is always ramified at p, 
(8) ensures that the trace of �̃(σp) does not depend on the choice of Frobenius element 
at p.

If � � N is a prime of K for which χK(�) = 1, and hence factors as a product of two 
primes λ and λ′ of K, then the Frobenius element Frob� attached to � belongs to GK , 
and hence by (8),

trace(�̃(Frob�)) = ψ(λ) + ψ′(λ) = a�(gα).

The first assertion in Theorem 1 when � is a split prime follows in light of (12).
Let now � � N be a prime of K for which χK(�) = −1. Let H� be the abelian extension 

of K which is fixed by the kernel of �. The function η gives rise to a function on the 
primes of H� above � by setting η(λ) := η(σλ), where σλ ∈ Gal(H�/Q) is the �-power 
Frobenius automorphism attached to the prime λ. Observe that, if λ1 = σλ2 for some 
σ ∈ Gal(H�/K), then

η(λ1) = η(σλ1) = η(σσλ2σ
−1) = ψ−1

♥ (σ)η(λ2). (13)

In particular, the value η(λ) depends only on the restriction of the ideal λ to the ring 
class field H ⊂ H�, and therefore η can also be viewed as a function on the sets Σ� of 
primes of H that were described in the introduction.
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Fix now an embedding ι� : Q̄ ↪→ Q̄�. It determines a Frobenius element σ� ∈ GQ, 
whose square is the Frobenius element in GK attached to the prime � of K. Let λ ∈ Σ�

denote the prime of H above � determined by ι�. By (12) and (8),

trace(�̃(σ�)) = (d1(σ�) + d2(σ�)) · ε = a�(g�α) · ε, (14)

while a direct calculation of �̃(σ2
� ) using (8) shows that

(
ψ(σ2

� ) ψ′(σ2
� )κ′(σ2

� ) · ε
ψ(σ2

� )κ(σ2
� ) · ε ψ′(σ2

� )

)

=
(

η(σ�)η′(σ�) η′(σ�)(d1(σ�) + d2(σ�)) · ε
η′(σ�)(d1(σ�) + d2(σ�)) · ε η(σ�)η′(σ�)

)
.

Comparing the upper right hand corners in this equality of matrices yields

ψ′(σ2
� )κ′(σ2

� ) = η′(σ�)(d1(σ�) + d2(σ�)),

and hence by (14),

a�(g�α) = η(σ�)κ′(σ2
� ) = η(λ)κψ♥(Frobλ) = η(λ) logp u(ψ♥, λ) = logp u(ψ♥, �),

where the penultimate equality follows from Lemma 2.2, and the last from the definition 
of u(ψ♥, �) given in (2). The first assertion in Theorem 1 follows. The second assertion 
is a direct consequence of the multiplicativity properties of the Fourier coefficients of g̃α, 
now that the values of a�(g̃α) for � prime are known.
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