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1. INTRODUCTION

The aim of this article is to present a new proof of a theorem of Karl Rubin (see [Ru] and Thm. 1 below)
relating values of the Katz p-adic L-function of an imaginary quadratic field at certain points outside its
range of classical interpolation to the formal group logarithms of rational points on CM elliptic curves.
This theorem has been seminal in providing a motivation for Perrin-Riou’s formulation ([PR2], [PR3]) of
the p-adic Beilinson conjectures. The new proof described in this work is based on the p-adic Gross-Zagier
type formula of [BDP-gz|, and only makes use of Heegner points (as opposed to the original proof which
relied on on a comparison between Heegner points and elliptic units). Hence it should be adaptable to
more general situations, for example to the setting of general CM fields.

Let A be an elliptic curve over Q with complex multiplication by the ring of integers of a quadratic
imaginary field K. A classical result of Deuring identifies the Hasse-Weil L-series L(A, s) of A with the L-
series L(v4, s) attached to a Hecke character v4 of K of infinity type (1,0). When p is a prime which splits
in K and does not divide the conductor of A, the Hecke L-function L(v 4, s) has a p-adic analog, namely the
Katz two-variable p-adic L-function attached to K. It is a p-adic analytic function, denoted v — %, (v),
on the space of Hecke characters equipped with its natural p-adic analytic structure. Section 3.1 recalls
the definition of this L-function: the values .Z,(v) at Hecke characters of infinity type (1 + j1, —j2) with
Jj1,72 > 0 are defined by interpolation of the classical L-values L(r~!,0). Letting v* := v o ¢, where
¢ denotes complex conjugation on the ideals of K, it is readily seen by comparing Euler factors that
L(v,s) = L(v*,s). A similar equality need not hold in the p-adic setting, because the involution v — v/*
corresponds to the map (ji, j2) — (jo2,j1) on weight space and therefore does not preserve the lower right
quadrant of weights of Hecke characters that lie in the range of classical interpolation. Since v4 lies in the
domain of classical interpolation, the p-adic L-value .Z,(v4) is a simple multiple of L(V2170) = L(A,1).
Suppose that it vanishes. (This implies, by the Birch and Swinnerton-Dyer conjecture, that A(Q) is
infinite.) The value .Z,(v%) is a second, a priori more mysterious p-adic avatar of the leading term of
L(A,s) at s = 1. Rubin’s theorem gives a formula for this quantity:

Theorem 1 (Rubin). Let v4 be a Hecke character of type (1,0) attached to an elliptic curve A/Q with
complex multiplication. Then there exists a global point P € A(Q) such that

(1.1) (Vi) = Qp(A) " og,,  (P)*  (mod K*),

where

o O,(A) is the p-adic period attached to A as in Section 2.3;
o wy € V(A/Q) is a regular differential on A over Q, and log,,, : A(Q,)—Q, denotes the p-adic
formal group logarithm with respect to wa4.

The point P is of infinite order if and only if L(A, s) has a simple zero at s = 1.
(For a more precise statement without the K * ambiguity, see [Ru].) Formula (1.1) is peculiar to the p-

adic world and suggests that p-adic L-functions encode arithmetic information that is not readily apparent
in their complex counterparts.

The proof of Theorem 1 given in [Ru] breaks up naturally into two parts:
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(1) Rubin exploits the Euler system of elliptic units to construct a global cohomology class k4 be-
longing to a pro-p Selmer group Sel,(A/Q) attached to A. The close connection between elliptic
units and the Katz L-function is then parlayed into the explicit evaluation of two natural p-adic
invariants attached to x4: the p-adic formal group logarithm log 4 ,,(x4) and the cyclotomic p-adic
height (ka,ka):

(1.2) loga,(ka) = (1-0,1)7 %4 wi)%(A),
(1.3) (kaska) = (1—a, ) 2L (va) % vh),
where

e «a, and 3, denote the roots of the Hasse polynomial 2% — a,(A)x + p, ordered in such a way
that ord,(a,) = 0 and ord,(8,) = 1;
e the quantity £ (v4) denotes the derivative of .}, at v4 in the direction of the cyclotomic
character.
If fzﬁ(z/A) is non-zero, then an argument based on Perrin-Riou’s p-adic analogue of the Gross-Zagier
formula and the work of Kolyvagin implies that Sel,(A/Q) ® Q is a one-dimensional Q,-vector
space with k4 as a generator. (Cf. Thm. 8.1 and Cor. 8.3 of [Ru].) Equations (1.2) and (1.3)
then make it possible to evaluate the ratio

IOgi,p(“) _ (1— ﬁ;l)_2$p(yﬁl)Qp(A)2
(K, k) (1—ap ) 2Z)(va)

)

a quantity which does not depend on the choice of generator x of the Q,-vector space Sel,(4/Q)®Q.

(2) Independently of the construction of x4, the theory of Heegner points can be used to construct a
canonical point P € A(Q), which is of infinite order when . (v4) # 0. Its image xp € Sel,(A/Q)
under the connecting homomorphism of Kummer theory supplies us with a second generator for
Sel,(A4/Q) ® Q. Furthermore, the p-adic analogue of the Gross-Zagier formula proved by Perrin-
Riou in [PR1] shows that

(1.5) (kp,kp) = f;(z/A)Qp(A)_l (mod K™).

Rubin obtains Theorem 1 by setting x = kp in (1.4) and using (1.5) to eliminate the quantities involving
(kp,kp) and Z(va).

The reader will note the key role that is played in Rubin’s proof by both the Euler systems of elliptic
units and of Heegner points. The new approach to Theorem 1 described in this paper relies solely on
Heegner points, and requires neither elliptic units nor Perrin-Riou’s p-adic height calculations. Instead,
the key ingredient in this approach is the p-adic variant of the Gross-Zagier formula arising from the results
of [BDP-gz] which is stated in Theorem 3.12. This formula expresses p-adic logarithms of Heegner points
in terms of the special values of a p-adic Rankin L-function attached to a cusp form f and an imaginary
quadratic field K, and may be of some independent interest insofar as it exhibits a strong analogy with
Rubin’s formula but applies to arbitrary—mnot necessarily CM—elliptic curves over Q. When f is the theta
series attached to a Hecke character of K, Theorem 1 follows from the factorisation of the associated p-adic
Rankin L-function into a product of two Katz L-functions, a factorisation which is a simple manifestation
of the Artin formalism for these p-adic L-series.

One might expect that the statement of Theorem 1 should generalise to the setting where v4 is replaced
by an algebraic Hecke character v of infinity type (1,0) of a quadratic imaginary field K (of arbitrary class
number) satisfying

(1.6) Vlag = €x - N,

where e denotes the quadratic Dirichlet character associated to K/Q and N : AJ——R* is the adelic
norm character. Chapter 3 treats this more general setting, which (although probably amenable as well
to the original methods of [Ru]) is not yet covered in the literature. Assumption (1.6) implies that the
classical functional equation relates L(v, s) to L(v,2—s). Assume further that the sign w, in this functional
equation satisfies

(1.7) wy, = —1,
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so that L(v,s) vanishes to odd order at s = 1. For technical reasons, it will also be convenient to make
two further assumptions. Firstly, we assume that

(1.8) The discriminant —D of K is odd.

Secondly, we note that assumption (1.6) implies that 05 := v/—D necessarily divides the conductor of v,
and we further restrict the setting by imposing the assumption that

(1.9) The conductor of v is exactly divisible by 0.

The statement of Theorem 2 below requires some further notions which we now introduce. Let E, be
the subfield of C generated by the values of the Hecke character v, and let T, be its ring of integers. A
general construction which is recalled in Sections 2.2 and 3.6 attaches to v an abelian variety B, over K
of dimension [F, : K], equipped with inclusions

T, C Endk(B,), E, C Endg(B,) ® Q.
Given X € T, denote by [\] the corresponding endomorphism of B,, and set
(1.10) Q' (B,/E)"™ = {weQ'(B,/E,) suchthat [N'w=, VAET,},
(1.11) (B,(K)® E,)" := {PcB,K)®,E, suchthat [ANP=AP, VYAe€T,}.

The vector space (B, /E, )T is one-dimensional over E,. The results of Gross-Zagier and Kolyvagin,
which continue to hold in the setting of abelian variety quotients of modular curves, also imply that
(B,(K) ® E,)T is one-dimensional over E, when L(v, s) has a simple zero at s = 1.
After fixing a p-adic embedding K C Q,, the formal group logarithm on B, gives rise to a bilinear
pairing
(,): 0 B,/K) x BJK) — Q
(w,P) + log, P,

satisfying ([\]*w,P) = (w,[A]P) for all A € T,. This pairing can be extended by FE,-linearity to an
E, ® Qp-valued pairing between Q'(B,/E,) and B, (K) ® E,. When w and P belong to these E,-vector
spaces, we will continue to write log,,(P) for (w, P).

Theorem 2. Let v be an algebraic Hecke character of infinity type (1,0) satisfying (1.6), (1.7), (1.8) and
(1.9) above. Then there exists P, € B, (K) such that

ZLp(v*) = Qyp(v*)Hog,, (P,)*  (mod EJ),

where Q,(v*) € C, is the p-adic period attached to v in Definition 2.18, and w, is a non-zero element of
OYB,/E,)™. The point P, is non-zero if and only if L' (v,1) # 0.

Remark 3. Assumptions (1.8) and (1.9) could certainly be relaxed with more work. For instance, (1.8)
is needed since the main theorem of [BDP-gz| is only proved for imaginary quadratic fields of odd dis-
criminant. Likewise, removing (1.9) would require generalizing the main result of loc. cit. to the case of
Shimura curves over Q.

Remark 4. In [BDP-ch], we give a conjectural construction of rational points on CM elliptic curves
(called Chow-Heegner points) using cycles on higher dimensional varieties. While this construction of
points is contingent on a certain case of the Tate conjecture, the corresponding contruction at the level
of cohomology classes can be made unconditionally. The results of this paper, combined with those of
[BDP-gz], are used in [BDP-ch] to establish that these cohomology classes indeed correspond to global
points via the Kummer map.

Remark 5. The methods used in the proof of Theorem 2 also give information about the special values
Z,(v*) for Hecke characters v of type (1 + j, —j) satisfying (1.6) with j > 0. A discussion of this point
will be taken up in future work. (See [BDP-co].)

2. HECKE CHARACTERS AND PERIODS

_ Throughout this article, all number fields that arise are viewed as embedded in a fixed algebraic closure
Q of Q. A complex embedding Q—C and p-adic embeddings Q—C,, for each rational prime p are also
fixed from the outset, so that any finite extension of Q is simultaneously realised as a subfield of C and of
Cp.
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2.1. Algebraic Hecke characters. We will recall briefly some key definitions regarding algebraic Hecke
characters, mainly to fix notation. The reader is referred to [Scha] Ch. 0 for more details. Let K and F
be number fields. Given a Z-linear combination

o= Znoa € Z[Hom(K, Q)]

of embeddings of K into Q, we define

af = 1_[(005)”"7

o

for all & € K*. Let I; denote the group of fractional ideals of K which are prime to a given integral ideal
f of K, and let
Ji :={(a) such that « > 0and a —1€f} C I

Definition 2.1. An E-valued algebraic Hecke character (or simply Hecke character) of K of infinity type
¢ and conductor dividing f is a homomorphism

x:Ij— E
such that
(2.1) x((@)) =a?, for all (a) € J;.

The smallest integral ideal g such that x can be extended to a Hecke character of conductor dividing g is
called the conductor of x, and is denoted f,.

The most basic examples of algebraic Hecke characters are the norm characters on Q and on K respec-
tively, which are given by
N((a)) =la], Ng:=NoNj.
Note that the infinity type ¢ of a Hecke character x must be trivial on all totally positive units congruent
to 1 mod f. Hence the existence of such a y implies there is an integer w(x) (called the weight of x or of
¢) such that for any choice of embedding of Q into C,

ne +ns =w(x), forall o € Hom(K,Q).
Let U; C Uf' C A% be the subgroups defined by

Ul = {(%) € A% such that 7, =1 (modf), for all vff, }7

x, >0, for all real v

and
Ui := {(2») € Uj such that z, € O , for all non-archimedean v}.

A Hecke character y of conductor dividing f may also be viewed as a character on A /U; (denoted by the
same symbol by a common abuse of notation),

(2.2) x:Ax/Us — EX, satisfying X|xx = .
To wit, given x € A%, we define y(x) by choosing & € K* such that ax belongs to Ui, and setting
(2.3) x(z) = x(i(az))p(a) ",

where the symbol i(x) denotes the fractional ideal of K associated to x. This definition is independent of
the choice of a by (2.1). In the opposite direction, given a character x as in (2.2), we can set

x(a) = x(x), for any x € U{ such that i(z) = a.

The subfield of E generated by the values of x on I is easily seen to be independent of the choice of f and
will be denoted F, .

Definition 2.2. The central character €, of a Hecke character n of K is the finite order character of Q
given by
X = N Nw('r]).
77|A@ €
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ot

The infinity type ¢ defines a homomorphism Resg/q(G.n) — Resg;g(Gp) of algebraic groups and
therefore induces a homomorphism
da : AF — A%
on adelic points. Given a Hecke character x with values in E and a place X of E (either finite or infinite),
we may use ¢, to define an idele class character

xa:Ag/K* — EY,
by setting

(@) = x(2)/¢a(a)a-
If X is an infinite place, the character y, is a Grossencharacter of K of type Ag. If A is a finite place, then
X factors through G%P and gives a Galois character (denoted px,») valued in EY, satisfying

px.(Frobp) = x(p)
for any prime ideal p of K not dividing fA.

Let g be any integral ideal of K. The L-function (and L-function with modulus g) attached to y are

defined by 1 1
L(X,s):H(l—’liI(:j) , Lg(x,S)=H<1—)§sj) .

p pte
Note that L(x,s) = Ly, (x, 5).

The following definition will only be used in Sec. 3.6.

Definition 2.3. Let £ =[], E; be a product of number fields. An E-valued algebraic Hecke character of
conductor dividing f is a character

x:If— E*
whose projection to each component F; is an algebraic Hecke character in the sense defined above.

2.2. Abelian varieties associated to characters of type (1,0). In this section, we limit the discussion
to the case where K is an imaginary quadratic field. Let 7 : K — C be the given complex embedding of
K. A Hecke character of infinity type ¢ = n,7 + n-7 will also be said to be of infinity type (n.,nz).

Let v be a Hecke character of K of infinity type (1,0) and conductor f,, let E, D K denote the subfield
of Q generated by its values, and let T}, be the ring of integers of F,. The Hecke character v gives rise to
a compatible system of one-dimensional ¢-adic representations of Gk with values in (E, ® Qg)*, denoted
Pu.e, satisfying

pve(oa) =v(a), forallaclj,,
where o, € Gal(K/K) denotes Frobenius conjugacy class attached to a. The theory of complex multipli-
cation realises the representations p, , on the division points of CM abelian varieties:

Definition 2.4. A CM abelian variety over K is a pair (B, E) where

(1) B is an abelian variety over K;
(2) E is a product of CM fields equipped the structure of a K-algebra and an inclusion

i: F—Endg(B) ® Q,
satisfying dimg (E) = dim B;
(3) for all A € K C E, the endomorphism i(\) acts on the cotangent space Q!(B/K) as multiplication
by A.

The abelian varieties (B, E') over K with complex multiplication by a fixed E form a category denoted
CMkg g in which a morphism from B; to Bs is a morphism j : B;— B of abelian varieties over K for
which the diagrams

314j>32

f,k

B, — =B,
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commute, for all e € E which belong to both Endg (B1) and Endg (Bs). An isogeny in CM g g is simply
a morphism in this category arising from an isogeny on the underlying abelian varieties.

If (B, E) is a CM abelian variety, its endomorphism ring over K contains a finite index subring T of
the integral closure T of Z in E. After replacing B by the K-isogenous abelian variety Homr, (T, B), we
can assume that End g (B) contains T'. This assumption, which is occasionally convenient, will consistently
be made from now on.

Let (B, E) be a CM-abelian variety with F a field, and let E' O E be a finite extension of E with ring
of integers T’. The abelian variety B ®1 T" is defined to be the variety whose L-rational points, for any
L D K, are given by

(Bor T')(L) = (B(Q) @ T') /1.
This abelian variety is equipped with an action of 77 by K-rational endomorphisms, described by multi-
plication on the right, and therefore (B®@p 1", E’) is an object of CM gr. Note that B®¢ T is isogenous

to t := dimg(E’) copies of B, and that the action of ' on B ®7 T" agrees with the “diagonal” action of
T on Bt.

Let ¢ be a rational prime. For each CM abelian variety (B, E), let
T,(B) = lim BI'J(K),  Vi(B) = Tu(B) %z, Q

be the f-adic Tate module and ¢-adic representation of Gk attached to B. The Qg-vector space Vy(B)
is a free E ® Qg-module of rank one via the action of E by endomorphisms. The natural action of
G = Gal(K/K) on V;(B) commutes with this F ® Q-action, and the collection {V;(B)} thus gives rise
to a compatible system of one-dimensional /-adic representations of G'x with values in (E® Qy)*, denoted
pp.e. We note in passing that for any extension E' O E where T” is the integral closure of T in E’, we
have

Ti(BorT') =TiB)®r T, Vi(Bor T') = Vi(B) ®g E'.

The following result is due to Casselman (cf. Theorem 6 of [Shil).
Theorem 2.5. Let v be a Hecke character of K of type (1,0) as above, and let p,, be the associated
one-dimensional £-adic representation with values in (E, ® Qg)*. Then
(1) There exists a CM abelian variety (B,, E,) satisfying

PBy .t = Pu-

(2) The CM abelian variety B, is unique up to isogeny over K. More generally, if (B, E) is any CM
abelian variety with E D E,, satisfying ppe =~ pve Op, E as (E ® Q)[Gxk]-modules, then there is
an isogeny in CMg g from B to B, @1, T'.

Let 1 be a Hecke character of infinity type (1,0), and let y be a finite order Hecke character of K, so
that ¢x~! also has infinity type (1,0). In comparing the abelian varieties By and By, -1, it is useful to
introduce a CM abelian variety By, over K, which we now describe.

Let E, denote the field generated by K and the values of x. We denote by Ey , the compositum of
Ey and E,, and by Ty, C Ey  its ring of integers. We also write H, for the abelian extension of K
which is cut out by y viewed as a Galois character of Gg. Consider first the abelian variety over K with
endomorphisms by T,

0 ._
Bw,x = By @1, Ty x-
The natural inclusion @y, : Ty ——Ty , induces a morphism
(2.4) i: By—B,)
with finite kernel, which is compatible with the T);-actions on both sides and is given by

i(P)=P®]1.
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Lemma 2.6. Let F' be any number field containing Ey . With notations as in equation (1.10) of the
Introduction, the restriction map i* induces an isomorphism

(2.5) i QY B, /)T x—QN(By /F)T

of one-dimensional F-vector spaces.

Proof. The fact that By, and By, are CM abelian varieties over F' implies that the spaces Q'(B,/F) and
ot (B&X /F) of regular differentials over F' are free of rank one over Ty, ®o, F' and Ty, y ® 0, F' respectively.

In particular, the source and target in (2.5) are both one-dimensional over F'. The space QI(BS,’X /F) is
canonically identified with Homp, (Ty,y, ' (By/F)), and under this identification, the pullback

i* - QY (B, JF)—Q' (By/F)
corresponds to the natural restriction
Homr, (Ty ., ¥ (By/F))—Q (By/F)

sending the function ¢ to ¢(1). (To see this, consider the map i, on tangent spaces and dualize.) It follows
directly from this description that ker(i*) N Q' (B, | /F)™x = 0, and hence that the restriction of i* to

the one-dimensional F-vector space QI(B&X/F)T%X is injective. O
We define w&x € Ql(BS),X/(@)Tw’X by
(2.6) i*(wg,x) = wy, where wy € QY (By/E,)".

It follows from Lemma 2.6 that w&x exists and is unique (once w,, has been chosen), and that ngjx belongs
to Ql(Bg’X/vax).

The character ' : Gal(H, /K)—T} can be viewed as a one-cocycle in
H'(Gal(Hy/K),T),) C H'(Gal(H/K), Aut (B ).
Let
(2.7) By = (By, )"

denote the twist of B&X by this cocycle. There is a natural identification B&X(K) = By (K) of sets,
arising from an isomorphism of varieties over H,, where H, is the extension of K cut out by x. The
actions of Gk on By, | (K) and By, \(K), denoted #q and * respectively, are related by

1

(2.8) o P= (0% P)®x (o), for all 0 € Gk.
In particular, for any L O K, we have:
(2.9) By (L) = {P € By(Q)®r, Ty, such that cP = P® x(c), Vo € Gal(Q/L)}.

Likewise, the natural actions of Gk on Ql(Bg,X/f() and on QY(By , /K) are related by
(2.10) oxw=[x"Y0)]*(c % w) for all 0 € Gk.

The isomorphism of B&X and By, as CM abelian varieties over H, gives natural identifications
0 1 0 T T,
Ql(Bw,X/HX) = (Bva/HX)? Ql(Bw,X/Ev:ZJ,X) vix = QI(B'LHX/EQ//;,X) w,x7
where Ezl/},x denotes the subfield of Q generated by H, and Ey . Let wﬁ),x and wy, , be Fy , vector space
generators of Q' (B, /By )" and Q' (By,y/Ey )™ x respectively, the former being chosen to satisfy

(2.6) above. Since they both generate Ql(Bd,’X/El’p,X)Tw‘X as an El’pAX—vector space, they necessarily differ
by a non-zero scalar in Elll),x'

To spell out the relation between wg},x and wy, ,, more precisely, it will be useful to introduce the notion
of a generalised Gauss sum attached to any finite order character x of Gx. Given such a character, let
E{x} :={X € E, H, such that \? = x(0)\, Vo € Gal(E,H,/E\)}.

This set is a one-dimensional F,-vector space in a natural way. It is not closed under multiplication, but
(2.11) E{xi}  E{x2} = E{xix2} (mod (Ey, Ey,)").
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Definition 2.7. An E,-vector space generator of E{x} is called a Gauss sum attached to the character
X, and is denoted g(x).

By definition, the Gauss sum g(x) belongs to E{x} N (E\H,)*, but is only well-defined up to multi-
plication by E. Tt follows from (2.11) that

(2.12) glxixe) = alxa)a(xz)  (mod (Ey, Ey,)*),  g(x™) =900~ (mod EY).

The following lemma pins down the relationship between the differentials wy, | and wy, .
Lemma 2.8. For all Hecke characters 1 and x as above,

Wy = g(x)w?mx (mod ng)

Proof. Let A € (HyEy )™ be the scalar satisfying
(2.13) Wiy = Al -
Since wy,,, is an Ey ,-rational differential on By, , for all o € Gal(K/Ey ) we have
(2.14) Wiy = 0 % Wy y = [Xfl(a)]*a *Q Wy = X*I(J))\”w&X,
where the second equality follows from equation (2.10) and the last from the fact that the differential

wy, ,, belongs to Q'(BY, | /Ey )" x. Comparing (2.13) and (2.14) gives A = x(o)), and hence A = g(x)
(mod Ej ). O

The following lemma relates the abelian varieties By, and B, where v = Wy L
Lemma 2.9. There is an isogeny defined over K :
iy 2 By x—By, @1, Ty x
which is compatible with the action of Ty by endomorphisms on both sides.

Proof. The pair (B%X, Ey.) is a CM abelian variety having ¢ (viewed as taking values in Ey ) as its
associated Hecke character. The Hecke character attached to the Galois twist By , is therefore Pyt =w.
The second part of Theorem 2.5 implies that By, , and B, ®7, T, are isogenous over K as CM abelian

varieties. 0

2.3. Complex periods and special values of L-functions. This section recalls certain periods at-
tached to the quadratic imaginary field K and to Hecke characters of this field. We begin by fixing:

(1) An elliptic curve A with complex multiplication by Ok, defined over a finite extension F of K.

(Note that F' necessarily contains the Hilbert class field of K.)

(2) A regular differential wa € Q'(A/F).

(3) A non-zero element vy of H;(A(C),Q).
The complex period attached to this data is defined by

—— 1 X

(2.15) Q(A) = 5l ’ywA (mod F™).
Note that ©(A) depends on the pair (w,~y). A different choice of w or «y has the effect of multiplying Q(A)
by a scalar in F*, and therefore Q(A) can be viewed as a well-defined element of C* /F*.

For any Hecke character ¢ of K, recall that ¢* is the Hecke character defined as in the Introduction
by ¥*(z) = ¢(Z). Suppose that 1 is of infinity type (1,0), and as before let £, C Q C C denote the field
generated by the values of ¢ (or, equivalently, ©*). Choose (arbitrary) non-zero elements

Wy € Ql(Bw/E¢)T¢, v e Hl(Bw((C),Q),
where By, is the CM abelian variety attached to ¢ by Theorem 2.5, and Q'(By/E,)T is defined in
equation (1.10) of the Introduction. The period (¢*) attached to ¥* is defined by setting
" 1
Q™) = /ww (mod Ej).
¥

T 2mi

Note that the complex number Q(¢)*) does not depend, up to multiplication by E;, on the choices of wy
and v that were made to define it.



p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES 9

Lemma 2.10. If ¢ is a Hecke character of infinity type (1,0), and x is a finite order character, then
(2.16) Qy*x) = QP )a(x*) " (mod E ).

Proof. Choose a non-zero generator y of Hy (B&X(C), Q) = Hi(By,(C),Q) (viewed as a one-dimensional
Ey , vector space via the endomorphism action). By definition,

QAx)) = [ =800) [ ol = 8007 (mod E ).

Y

where the second equality follows from Lemma 2.8. The result now follows after substituting x*~! for
X- 0

As in [Scha] §1.8, one can also attach a period Q(¢) to an arbitrary Hecke character ¢ of K; these
satisfy the following relations:

Proposition 2.11. Let ¢ be a Hecke character of infinity type (k,j). Then
(1) The ratio
Q)
(2mi)iQ(A)k—i

18 algebraic.

(2) For all ¢ and 9/,
Q') = ABA)  (mod E ),
where By is the subfield of Q generated by Ey and Ey .

The following theorem is due to Goldstein and Schappacher [GS] in certain cases and Blasius [Bl] in
the general case (even CM fields).

Theorem 2.12. Suppose that 1 has infinity type (k,7) with k > j, and that m is a critical integer for
L(xp~t,s). Then
L', m)
———————— belongs to Ey,
(2mi)Q(4%) v

and for all T € Gal(Ey/K),

( L(ptim) > L((4~1)",m)
@riymQ()) )y

2.4. p-adic periods. Fix a prime p that splits in K. We will need p-adic analogs of the periods Q(A)
and Q(v*). The p-adic analogue ,(A) of 2(A) is obtained by considering the base change Ac, of A to
C, (via our fixed embedding of F' into C,). Assume that A has good reduction at the maximal ideal of
Oc,, i-e., that Ac, extends to a smooth proper model AOcp over Oc,. The p-adic completion AOCP of A
along its special fiber is isomorphic to Gon. Following [deS] II, §4.4, choose an isomorphism ¢, : A—G,,
over Oc,, and define Q,(A) € C) by the rule

(2.17) wa = Qp(A) - 15 (du/u),

where u is the standard coordinate on G,,. The invariant Q,(A) € C thus defined depends on the choices
of wa and ¢, but only up to multiplication by a scalar in F*. Observe also that (A4) and §,(A) each
depend linearly in the same way on the choice of the global differential w4 .

The p-adic period ,(A) can be used to define p-adic analogs of the complex periods that appear in
the statement of Theorem 2.12.

Definition 2.13. Let v be a Hecke character of K of type (1,0). The p-adic period Q,(v*) is defined by

Qv*)
Q,(v") :=Q,(A) - .
More generally, for any character v of infinity type (k,j), we define
Qv*)

() = B e
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It can be seen from this definition that the period €,(v*), like its complex counterpart Q(r*), is well-
defined up to multiplication by a scalar in E. The following p-adic analog of Lemma 2.10 is a direct
consequence of this lemma combined with the definition of €, ():

Lemma 2.14. If ¢ is a Hecke character of infinity type (1,0), and x is a finite order character, then
(2.18) Q(*x) = QW )a(x) ™ (mod EJ ).
Likewise, Proposition 2.11 implies:

Proposition 2.15. Let ¢ be a Hecke character of infinity type (k,j). Then
(1) The ratio
Q,(¥)
(@i Q, (A
is algebraic.
(2) For ally and v’

(2.19) Q(y) = Q)2 (¢)  (mod EF ).

3. p-ADIC L-FUNCTIONS AND RUBIN’S FORMULA

3.1. The Katz p-adic L-function. Throughout this chapter, we will fix a prime p that is split in K. Let
¢ be an integral ideal of K which is prime to p, and let X(c¢) denote the set of all Hecke characters of K of
conductor dividing ¢. Denote by p the prime above p corresponding to the chosen embedding K — Q,,.

A character v € X(c) is called a critical character if L(v—1,0) is a critical value in the sense of Deligne,
i.e., if the I-factors that arise in the functional equation for L(r~1, s) are non-vanishing and have no poles
at s = 0. The set 3eit(c) of critical characters can be expressed as the disjoint union

2
Zcrit(c) = Zgi)t(c) U Zgri)t(c)v
where
1
Zf:r?t
() ={re(c) of type (f1,6s) with £ > 1, 5 < 0}.

The possible infinity types of Hecke characters in these two critical regions are sketched in Figure 1.

(¢)={veX(c) oftype (¢1,¢2) with {1 <0, ¥ly>1},

Note in particular that when ¢ = ¢, the regions Zgi)t(c) and Zgi)t(c) are interchanged by the involution

v — v*. The set Xt (c) is endowed with a natural p-adic topology as described in Section 5.2 of [BDP-gz].
The subsets Egi)t(c) and £

2) (¢) are dense in the completion ¥ (c) relative to this topology.

Recall that p is the prime above p induced by our chosen embedding of K into C,. The following
theorem on the existence of the p-adic L-function is due to Katz. The statement below is a restatement
of [deS] (II, Thm. 4.14) with a minor correction, and restricted to characters unramified at p. We remark
that since our characters are unramified at p, the Gauss sum in the interpolation formula in loc. cit. is

equal to 1.

Theorem 3.1. There exists a p-adic analytic function v — %, (v) (valued in C,) on et (c) which is
determined by the interpolation property:

Zp,c(V) _ vD
QA% ~

LC(V717O)

12
(31) ) (6= 00— ) ) = ) ),

for all critical characters v € »® (¢) of infinity type (¢1,43).

crit

The right hand side of (3.1) belongs to Q, by Part 1 of Proposition 2.11 and Theorem 2.12 with m = 0.
Equation (3.1) should be interpreted to mean that the left hand side also belongs to Q, viewed as a subfield
of C, under the chosen embeddings, and agrees with the right hand side. Note that although both sides of
(3.1) depend on the choice of the differential w4 that was made in the definition of the periods €2(A4) and
Q,(A), the quantity %, (), just like its complex counterpart L (r~*,0), does not depend on this choice.
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Central
line

Region of
interpolation

FIGURE 1. Critical infinity types for the Katz p-adic L-function

Remark 3.2. Once a choice of ¢ is fixed, we shall often drop the subscript ¢ and simply write .Z, for the
p-adic L-function.

The following corollary is the p-adic counterpart of Thm. 2.12.
Corollary 3.3. Suppose that v € Egi)t(c). Then
L. (V)

Qp(v*)

Proof. Suppose that v has infinity type (¢1,¢2). By the definition of Q,(r*) and the the interpolation
property of the Katz p-adic L-function in Thm. 3.1, we have

belongs to E,,.

L) __Lpelv) | @ri)R(A)n "
Q) QA Q(vr)
Lo L (v 10
= VED" (- 010 - e - ) D
Q(v*)
The result is now a direct consequence of Theorem 2.12 with m = 0. O

Cor. 3.3 expresses .Z), (V) as an E,-multiple of a p-adic period ,(v*), when v lies in the range Egi)t(c)

of classical interpolation for the Katz p-adic L-function. On the other hand, the characters in Egii)t(c) are

outside the range of interpolation, and so Cor. 3.3 does not directly say anything about these values, and
indeed the main goal of this paper is to obtain analogous results for certain characters in Egi)t(c). It turns
out that the methods of this paper only allow us to study %), ((v) for characters v in x?

orip (€) satisfying
the following auxiliary (but not unnatural) condition:

(3.2) v is a self-dual Hecke character with €, = e
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For the benefit of the reader, we now recall this key definition.

Definition 3.4. A Hecke character v € X..i4(c) is said to be self-dual or anticyclotomic if

vv* = Ng.

The reason for the terminology in Definition 3.4 is that the functional equation for the L-series L(v~!,s)
relates L(v~—1,s) to L(v~!, —s), and therefore s = 0 is the central critical point for this complex L-series.
Note that a self-dual character is necessarily of infinity type (1+j, —j) for some j € Z. Also the conductor
of a self-dual character is clearly invariant under complex conjugation. If ¢ is an integral ideal such that
¢ = ¢, we denote by 44(c) the set of self-dual Hecke characters of conductor ezactly ¢, and write

20 == (0N Zae), =8 =22 0) N (o).

In particular, the possible infinity types of characters in Zii)

(¢) correspond to the black dots in Figure 1.
For convenience, we restate Thm. 3.1 for self-dual characters.

Proposition 3.5. For all characters v € Zgi)(c) of infinity type (14 j,—7) with j >0,

L) I, §1(2m) L (v~1,0)
33 W_(l (P VD Q(A) 1+

Remark 3.6. In the proposition above, we could equally write L(v—1,0) instead of L.(v~!,0) since v has
conductor exactly equal to c.

Remark 3.7. The central character of such a v is very restricted. Indeed, for any Hecke character v it is
clear that e; = g, while €,« = ¢,. If further v is a self-dual character, it follows that for any = € Aﬁ,

v(Ng (2)) = v(22) = (v*)(2) = Nk (2) = N(Ng ().
Hence
V|NQKA;<< =N and Eleé(AIx( = 1.

This implies that the central character €, of a self-dual character v is either 1 or ex, where ex denotes
the quadratic Dirichlet character corresponding to the extension K/Q. Conversely, it is easy to see that if
v is a Hecke character with w(v) =1 and €, = 1 or €g, then v is a self-dual character.

We define:
(3.4) Yea(6)T i={v € Bq(c); e, =1}, gq(c)” :={v € Xga(c); e, =ex}.
The sets 22(11)(0jE and Zéi)(c)i are defined similarly.

Our approach to studying .7, (v) for characters v satistying (3.2), i.e., those v lying in Eii) (¢)~ for some
¢, relies on a different kind of p-adic L-function. This latter p-adic L-function is attached to Rankin-Selberg
L-series and is recalled in the following section.

3.2. p-adic Rankin [L-series. In this section, we consider p-adic L-functions obtained by interpolating
special values of Rankin-Selberg L-series associated to modular forms and Hecke characters of a quadratic
imaginary field K of odd discriminant. We briefly recall the definition of this p-adic L-function that is
given in Sec. 5 of [BDP-gz], referring the reader to loc.cit. for a more detailed description.

Let Sk(T'o(N),e) denote the space of cusp forms of weight & > 2 and character € on I'o(N). Let
f € Sp(To(N),e) be a normalized newform and let E; denote the subfield of C generated by its Fourier
coefficients.

Definition 3.8. The pair (f, K) is said to satisfy the Heegner hypothesis if O contains a cyclic ideal of
norm N, i.e., an integral ideal M of Ok with O /N = Z/NZ.

Assume from now on that (f, K) satisfies the Heegner hypothesis, and let 91 be a cyclic Ok-ideal of
norm N. We write . for the unique ideal dividing 1 of norm V..

Definition 3.9. A Hecke character x of K of infinity type ({1, ¢2) is said to be central critical for f if
L+l =Ek and &, =e.
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The reason for the terminology of Definition 3.9 is that when y satisfies these hypotheses, the complex
Rankin L-series L(f,x~!,s) is self-dual and s = 0 is its central (critical) point.

Definition 3.10. Let ¢ be a rational integer prime to pN. Then X..(c, M, ¢) is defined to be the set of
Hecke characters x of K such that

(1) x is central critical for f.
(2) fy =c-M..
(3) The local sign ,4(f,x~ ') = +1 for all finite primes g.

It is easily checked that this agrees with the definition of X..(c,M,e) given in [BDP-gz] §4.1 where
this is just denoted X¢.(M). Further, as in loc. cit., given conditions (1) and (2) above, condition (3) is
automatic except possibly for primes ¢ lying in the set Sy defined by:

Spi=Aq: q|(N,D),qfNc}.
The set Xc.(¢, M, e) can be expressed as a disjoint union
ECC (Cv m? 5) = E((:i) (Cv m? 5) U Eg(z:) (Cv mv 5)7

where £V (¢, M, &) and Egi)(c, M, ) denote the subsets consisting of characters of infinity type (k+ j, —7)
with 1 —k < 57 < —1 and 7 > 0 respectively. We shall also denote by f)cc(c, M, e) the completion of
Yee(e, M, e) relative to the p-adic compact open topology on Y..(c, M, &) which is defined in Section 5.2 of
[BDP-gz|. The infinity types of Hecke characters in b (¢,M, ) and »@ (¢, M, e) correspond respectively
to the white and black dots in the shaded regions in Figure 2. We note that the set Z((;%) (¢, M, €) of classical
central critical characters “of type 27 is dense in Sec(c, 9, ¢€).

For all y € EE? (¢, M, ) of infinity type (k+j, —j) with j > 0, let E, denote the subfield of C generated

by E; and the values of x, and let Ey, . be the field generated by E, and by the abelian extension of
Q cut out by €. The algebraic part of L(f,x*,0) is defined by the rule

L(f,x"*,0)

(35) Lalg(fa Xﬁlvo) = w(va)ilc(faXaC) ’ W’

where w(f,x)"! € Ef .. and C(f, x,c) are respectively the scalar (of complex norm 1) and the explicit

real constant defined in equation (5.1.11) and Theorem 4.6 of [BDP-gz]; we have

284222 (k + 5 — Dlwge g — ek (q)
\/Ek+2j_1ck'+2j_1 g—1

where wyx = #0j is the number of roots of unity in K. Thm. 5.5 and Thm. 5.10 of loc. cit. show
respectively that the values Laig(f, x~1,0) belongs to Q, and that they interpolate p-adically:

(3.6) C(f,xc) =

)

qle

Proposition 3.11. Let x — L,(f,x) be the function on 2 (¢, M, e) defined by

(3.7) Ly(f,x) = Qp(APPF 2D (1= x 1 (P)ay (f) + x 2 (B)e(@)p" ") Larg (£, x 7, 0),
for x of infinity type (k + j,—j) with j > 0. This function extends (uniquely) to a p-adically continuous
function on Xec(c, M, ).

The function x — Ly,(f, x) on Sec(c, M, &) will be referred to as the p-adic Rankin L-function attached
to the cusp form f.

3.3. A p-adic Gross-Zagier formula. In this section, we specialise to the case where the newform f is
of weight k = 2, and assume that x is a finite order Hecke character of K satisfying

xNg  belongs to 2 (¢, M, ¢).

In particular, the character yNg lies outside the domain Eg) (¢, M, e) of classical interpolation defining

L,(f,—). The p-adic Gross-Zagier formula alluded to in the title of this section relates the special value
L,(f,xNg) to the formal group logarithm of a Heegner point on the modular abelian variety attached to

I
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Cer)tral _
critical line

FI1GURE 2. Critical infinity types for the p-adic Rankin L-function

The Eichler-Shimura construction associates to f an abelian variety By with endomorphism by an order
in the ring of integers Ty C Fy, and a surjective morphism

(I)f : Jl (N) HBf
of abelian varieties over Q, called the modular parametrisation, which is well-defined up to a rational
isogeny. Let
wy = 2mif(T)dr € Q1 (X1 (N)/Ey)
be the differential form on X (N) attached to f; we use the same symbol wy to denote the associated
one-form on Jy(N). Let wp, € Q' (By/Ef)™ be the unique one-form satisfying
(38) qf;c(wa) = ws.

Let A’ be an elliptic curve with endomorphism ring isomorphic to the order O, = Z+ cOg of conductor
¢, defined over the ring class field H,. of conductor ¢. The pair (A’, A’[N]) corresponds to a point on
Xo(N)(H.). Let t be any generator of A’'[M]. Then the triple (A’, A’[7],¢) corresponds to a point in
X1(N), whose field of definition H, & is an abelian extension of K, independent of the choice of ¢, and the
finite order Hecke character x can be viewed as a character

X : Gal(H; m/K)—E,.
Fix a cusp oo of X;(N) which is defined over Q, and let

(3.9) A=A AN, 1] = (00) € J1(N)(Hem)-
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To the pair (f, x) we associate a Heegner point by letting G = Gal(H. n/K) and setting
(3.10) =Y X N0)2f(A%) € Bf(Hem) @1, Ef .-
ceG

Note that, since Pr(x)? = Ps(x) for any o € Gal(H.o/Hy), the point P;(x) lies in the subspace
By(H,) @1, Efy. The embedding of Q into C, that was fixed from the outset allows us to consider
the formal group logarithm

longf : By(Hem)—C,.
We extend this function to By(H.n) @1, Efy by Ef y-linearity.
Theorem 3.12. With notations and assumptions as above,
Ly(f xNg) = (1= x" (0 ap () + X2 (0)=(p)p™")* logZ,, (Pr(x))-
Proof. Let
E(f,x) =M =x""Pp lap(f) +x 2 (Pelpp™!)? € Ef,

be the Euler factor appearing in the statement of Theorem 3.12. Let F’ denote the p-adic completion of
H. . Theorem 5.13 of [BDP-gz| in the case k = 2 and r = j = 0, with x replaced by xNg, gives

2
(3.11) Ly(f,xNk) = (Z X (o) AJp (A”)(Wf)> :

ceG

Note that in this context, the p-adic Abel-Jacobi map AJg/ that appears in (3.11) is related to the formal
group logarithm by

AJp (A)(wy) =log,, (A).
Therefore,

(3.12) Ly(f,xNg) = (Zx ! logwf(A")> :

oelG

Theorem 3.12 follows from this formula and the fact that, by (3.8),
logwf (A) 1Og<I>*(wB )(A) = longf ((I)f(A))

O

In the special case where f has rational Fourier coefficients and x = 1 is the trivial character, the
abelian variety By is an elliptic curve quotient of Jo(N) and the Heegner point Py := Py(1) belongs to
B¢(K). Theorem 3.12 implies in this case that

(3.13) L) = (P gy,

where log : By(K,)—K, is the formal group logarithm attached to a rational differential on B;/Q.
Equation (3.13) exhibits a strong analogy with Theorem 1 of the Introduction, although it applies to
arbitrary (modular) elliptic curves and not just elliptic curves with complex multiplication.

The remainder of Chapter 3 explains how Theorem 3.12 can in fact be used to prove Theorems 1 and
2 of the Introduction. The key to this proof is a relation between the Katz p-adic L-function of Section
3.1 and the p-adic Rankin L-function L, (f,x) of Section 3.2 in the special case where f is a theta series
attached to a Hecke character of the imaginary quadratic field K. This explicit relation is described in
the following section.
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3.4. A factorisation of the p-adic Rankin L-series. This section focuses on the Rankin L-function
L,(f,x) of f and K in the special case where f is a theta series associated to a Hecke character of the
same imaginary quadratic field K.

More precisely, let ¢ be a fixed Hecke character of K of infinity type (kK — 1,0) with k = r+2 > 2.
Consider the associated theta series:

Op =D P(@)q"* =D an(0y)q",
a n=1

where the first sum is taken over integral ideals of K. The Fourier coefficients of 6, generate a number
field Fy, which is clearly contained in E,.
The following classical proposition is due to Hecke and Schoenberg. (Cf. [Ogg| or Sec. 3.2 of [Zal]).

Proposition 3.13. The theta series 8y belongs to Si(I'o(N),€), where

(1) The level N is equal to DM, with M = Ngfw,
(2) The Nebentypus character ¢ is equal to €xey.

Lemma 3.14. If the conductor fy of v is a cyclic ideal m of norm M prime to D, then f := 0y salisfies
the Heegner hypothesis relative to K.

Proof. In this case, the modular form 60, is of level N = DM, by Proposition 3.13. But then the ideal
(314) N:= 0 m,
with 0k := (vV—Dk) is a cyclic ideal of K of norm N. O

We will assume from now on that the condition in Lemma 3.14 is satisfied. Furthermore, we will always
take 91 to be the ideal in (3.14).

The goal of this section is to factor the p-adic Rankin L-function L,(6y,-) as a product of two Katz
p-adic L-functions. As a preparation to stating the main result we record the following lemma:

Lemma 3.15. Let ¢ be an integer prime to pN and let x be any character in e (c, M, e).

1) If x belongs to 2&3) c, M, ), then p~tx belongs to »® )~ and p* 1y belongs to »? ArxM)~.
sd sd
(2) If x belongs to Eg) (e,M, ), then =Ly belongs to Eé(li)(cDK)* and * =1y belongs to Eg?(chM)’,

Proof. We first note that when x is of type (k+ j, —j) then ¥»~1x is of infinity type (1 + j, —j) and ¥* 1y
is of infinity type (k+ j,1 — (k + 7)). Since x € Yc(c, M, ), we have

Ex =E =€y - EK-

Thus €y-1, equals ex and the same holds for €,.-1, since ey« = &4. It follows then from Remark 3.7

X
that ¥~y and ¢* "'y are self-dual characters.

Let ¢ be a rational prime dividing M. Since m is a cyclic Og-ideal, it follows that ¢ = qq must be split
in K, and exactly one of q,q divides m. From this it is easy to see that £, has conductor exactly M, hence
¢ has conductor exactly N and 91 = 91. Thus f, = I = cogm and fpe—1,, = COgmmM = O M. On the
other hand, since €, = eyek, it follows that fp-1y = Ok

The preceding remarks imply that if x is in cc(c, M, ), then ¢~1y lies in Xgq(cdg)~ and Py
lies in Xyq(cdxM)~. To finish we note that if j > 0, then both 'y and * ' lie in Egi), while if
—(k—1) < j < —1, then ¢* 'y is in £ while ¢p~ 1y lies in (. O

Theorem 3.16. For all x € 3ec(c, M, e),

w(Byp, x) " tw q—ck(q _ .
315 Ly0u) = O TT L s i (5750 % Zpopar (070,
qle
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Proof. Since Eg)(c, M, e) is dense in ig)(c, M, e), it suffices to prove the formula for the characters y
in this range, where it follows directly from the interpolation properties defining the respective p-adic
L-functions. More precisely, by (3.7),

L,(0y,x s e 102 _
(3.16) Gy = (0= E) =T ) L 0)
Let 0c := ][, %KI(Q). By the definition of L (6y, x*,0) given in (3.5) and (3.6),
_ - L(0y,x",0)
Lalg(edhx 170) - w(OT/HX) 10(07/139(70) Q(z)g(k_;'_gj)
A ARGk + 5 - DY Lx L 0)L($*x ", 0)
_ -1 ) )
(3.17) = w(ly, X)Wkl DI Q(A)20+24)

w0y, )" wicde (J12m) LxT0) ) [ (k45— DIEm) LT 0)
2ck+2j—1 \/ﬁjQ(A)H-Qj \/Ek+j719(A)1+2(k+j71) ’

Combining (3.16) and (3.17) with the interpolation property of the Katz p-adic L-function given in Propo-
sition 3.5, we obtain

(3.18) L0y x) w0y, X)) wide " Lo (P X) o Ly corem(V 1Y)
' Q,(A)2(k+27) 9ck+2j—1 Q,(A)1+2 Q, (A)1+2k+i-1)
Clearing the powers of ©,(A) on both sides gives the desired result. O

The Nebentypus character € can be viewed as a finite order Galois character of Gg. Recall that £y -
denotes the smallest extension of Ey , containing the field through which this character factors.

Corollary 3.17. For all x € 3cc(c, M, €),

Lp(0y, x) = gp,cDK(dJ—lX) x gp,cbe(w*_1X> (mod EJ,X,s)-

Proof. This follows from Theorem 3.16 in light of the fact that the constant that appears on the right

hand side of (3.15) belongs to £ _. O

3.5. Proof of Rubin’s Theorem. The goal of this section is to prove Theorem 2 of the Introduction.
Let ¢ = ¢ be an integral ideal in Ok invariant under complex conjugation and let v € 3gq(c)~ be a Hecke
character of K of infinity type (1,0). Since &, = ek, it follows that dx|c. We will also assume that v
satisfies the following additional conditions:

(i) The sign w, of the functional equation of the L-function L(v,s) is —1.

(ii) 9x/|lc. Thus ¢ = (¢)0x for a unique positive rational integer ¢ that is prime to D.
Let p be a rational prime split in K that is prime to c.

Definition 3.18. A pair (¢, x) of Hecke characters is said to be good for v if it satisfies the following
conditions.

(1) The character ¢ is of type (1,0) and has conductor m, where m is a cyclic Ok-ideal prime to pD.
Thus 6, is a newform in Sy(I'g(N),e) where N = M D and € = eyek is a Dirichlet character of
conductor exactly N. Let 91 := mox.

(2) The character x is of finite order, and xNg belongs to E((;(lj)(c7 M, e). This implies (on account of
Lemma 3.15 applied to yNg) that ¢y~ xNy lies in Eié)(c) and ¥* ' xNg lies in Zii)(cM).

(3) The character ¥x ! is equal to v, i.e., "I xNg = v*.

(4) The classical L-value L(y*x 'Ny',0) is non-zero, i.e., %, car(¢* " 'xN) # 0.

Remark 3.19. Suppose that a pair (1, y) satisfies (1) and (3) above with m prime to ¢. Then such a
pair automatically satisfies (2) also. Indeed, the character XN = 9v* is of type (1,1) and its central
character is equal to

Ex = EyYlur = EYEK =€,
where ¢ is the nebentype character attached to 0y. Further, f, = fyf,« = m - cdg. It follows that the
character YN g belongs to ¥c.(c,M,e) with 0 = 0xgm. (The set Sp,, in the discussion below Defn. 3.10 is
empty since D | N..)
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Remark 3.20. Suppose that a pair (1, x) satisfies conditions (1), (2) and (3) above. Since YNk lies in
Eg(l;)(c, M, ), the sign in the functional equation of L(fy, x ™', s) is —1. As seen previously, this L-function
factors as

L0y, (XNg) ™", 5) = Lyx " 'N' s)L(w*x TNl s) = LN, s) L x T N, s).

The normalization here is such that the central point is s = 0. Since the sign of L(v, s) is —1, it follows
that the sign of L(z/;*X*lNI_(l, s) is +1. Hence condition (4) would be expected to hold generically.

The modular abelian variety By, attached to 1 is a CM abelian variety in the sense of Definition
2.4. Hence it is K-isogenous to the CM abelian variety B, constructed in Section 2.2. In particular, the
modular parametrisation ®, := @4, can be viewed as a surjective morphism of abelian varieties over K

(3.19) @, : Jy(N)— By

Given a good pair (1, x), recall the Heegner divisor A € J1(NV)(H,. n) that was constructed in Section 3.3,
and the Heegner point

(3.20) Py(x) = Po,(x) = > _ X '(0)2y(A%) € By(H,) @1, By
oeG

that was defined in equation (3.10) of that section with f = 6,. Recall also that wy is an Ey-vector
space generator of Q' (B, /Ey)"*. Viewing the point Py(x) as a formal linear combination of elements of
By (Hy) with coefficients in Ey, \, we define the expression log,, (Py (X)) by Ey,y-linearity.

In the rest of this section, we will denote by E;p,x the subfield of Q generated by Ey, E,, and the
abelian extension H;( of K cut out by the finite order characters x and x*. The motivation for singling
out good pairs for a special definition lies in the following proposition.

Proposition 3.21. For any pair (¢, x) which is good for v,

(3.21) Ly (V) = Q) ogl,, (Py(x))  (mod (B, )%),

where Q,(v*) is the p-adic period from Definition 2.183.

Proof. By Theorem 3.12 applied to f = 0y,

(3.22) Ly(0y, XNk) = log}, (Py(x)) (mod Ey ).

On the other hand, since Ez,p,x contains Ey -, Corollary 3.17 implies that
Lp(0y,xNK) = Lo 'xNg)Lp (v 'xNk)  (mod (E},)")

(3.23) = 2 (V)L T XNg)  (mod (B, ,)"),

where the second equality follows from condition 3 in the definition of a good pair. The value %}, car (¢* "' xN)
is non-zero by condition 4 in the definition of a good pair. Therefore, by Cor. 3.3,

(3.24) jp,cNI(¢*71XNK) = Qp(ﬂ’ilX*NK) (mod ng)

Since ¥x~! = v, we have

(3.25) (™ IX"Nk) = Qv XX Nk) = Q" - x"/x) = Q") (mod (B}, ,)*),

where the last equality follows from from Lemma 2.14. The proposition now follows by combining the
equations (3.22) through (3.25). O

To go further, we will analyse the expression log,,, (Py(x)) and relate it to quantities depending solely
on v and not on the good pair (¢, x). It will be useful to view the point Py(x) appearing in (3.21) as an
element of Bq(,z);,x(Hcﬁﬁ) or as a K-rational point on the abelian variety By, that was introduced in Section
2.2. More precisely, after setting

(3.26) Pu(x) =Y @A) @x (o) € By(K)®r, Tyy = B, (K),
ocelG
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we observe that, for all 7 € Gal(K /K),

TP = ) (A7) ©x (o)
ceG
= Y oA @xHorh) = Pyu(x)x (7).
oceG

The point Py, () therefore belongs to By , (K) by (2.9). For the following lemmas, recall the differentials
wa?z;,x € Ql<Bz?;,X/Ew,X)T¢”X and wy € Ql(Bw,x/Ew,x)T””'X~

Lemma 3.22. For all good pairs (1, x) attached to v =x~1,
log,,,, (Pu(x)) =log,o  (Puy(x))-
Proof. Let G = Gal(H.m/K) and let P = ®,;(A). Also, let ¢ be the map defined in (2.4). Then

log.., (Ps(0)) = 3 x(0) oz, (P7) = 3 x(0) oge gy (P7)
ceG ceG

= > x(0)"! log,o (P7®1)= > 108, (0)-10g  (P7 ©1)
ceG ’ oced

= Z log,o (P°@x(0)™ 1) = log,o <Z P?® X(O’)_1> = Ingﬁ,,X(Pw,x)-

e ceG

Lemma 3.23.
logo  (Py(x)) =log,, (Py(x) (mod (Ey,)"),

Proof. This follows from Lemma 2.8 since the Gauss sum g(x) lies in (£}, | )*. O

Lemma 3.24. There ezists P, € B,(K) and w, € Q' (B,/E,)™ such that
log,,, (Py(x)) =log, (P,) (mod (Ej ,)").
Proof. Recall from Lemma 2.9 that there is a K-rational isogeny
B, @1, Tyx—By -

Composing it with the natural morphism B,— B, ®7, Ty, we obtain a T,-equivariant morphism j :
B,— By defined over K with finite kernel. The fact that L(v, s) has a simple zero at s = 1 implies that
B,(K)® Q is one-dimensional over FE,, and therefore that By, , (K) ® Q is one-dimensional over Ey . In
particular, if P, is any generator of B, (K) ® Q, we may write

Pw(X) = )‘J(Pu)
for some non-zero scalar A\ € E . But letting
wy = J (wy) € QN (By/Ey )T,
we have

log,, (Py(x)) = log,, (Nj(F)) =logyy, (G(F))=Alog,, (i(F))
= Alogj.,, ()= Alog,, (P).

The lemma now follows after multiplying w, by an appropriate scalar in (El'%x)X so that it belongs to
OB, /E,)™. O

Proposition 3.25. There ezists w, € Q*(B,/E,)™ and P, € B,(K) such that

(3.27) L) = Q") logl, (Py)  (mod (B, )%),

for all good pairs (1, x) attached to v.

Proof. This follows immediately from Proposition 3.21 and Lemmas 3.22 through 3.24. O
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While Proposition 3.25 brings us close to Theorem 2 of the Introduction, it is somewhat more vague in
that both sides of the purported equality may differ a priori by a non-zero element of the typically larger
field Eilbx The alert reader will also notice that this proposition is potentially vacuous for now, because
the existence of a good pair for v has not yet been established! The next proposition repairs this omission,
and directly implies Theorem 2 of the Introduction.

Proposition 3.26. The set S, of pairs (1, x) that are good for v is non-empty. Furthermore,

(3.28) (| E,,=E.
(¥ x)€Sy

The proof of Proposition 3.26 rests crucially on a non-vanishing result of Rohrlich and Greenberg ([Ro],
[Gre]) for the central critical values of Hecke L-series. In order to state it, we fix a rational prime ¢ which
is split in K and let

K =Uy>0K,
be the so-called anti-cyclotomic Z, extension of K; it is the unique Zs-extension of K which is Galois over
Q and for which Gal(K/Q) = Z; x (Z/27Z) is a generalised dihedral group.

Lemma 3.27 (Greenberg, Rohrlich). Let 1y be a self-dual Hecke character of K of infinity type (1,0).
Assume that the sign wy, in the functional equation of L(o,s) is equal to 1. Then there are infinitely
many finite-order characters x of Gal(K /K) for which L(vgx,1) # 0.

o0

Proof. Let ¢’ be the conductor of ¢)y. In light of the hypothesis that wy, = 1, Theorem 1 of [Gre] implies
that the Katz p-adic L-function (with p = ¢) does not vanish identically on any open ¢-adic neighbourhood
of 1o in Xgq(c’). (Cf. the discussion in the first paragraph of the proof of Proposition 1 on p. 93 of [Gre].)
If U is any sufficiently small such neighbourhood, then

(1) The restriction to U of the Katz p-adic L-function is described by a power series with p-adically
bounded coefficients, and therefore admits only finitely many zeros by the Weierstrass preparation

theorem.
(2) The region U contains a dense subset of points of the form 1y, where y is a finite order character
of Gal(K/K).
Lemma 3.27 follows directly from these two facts. O

Proof of Proposition 3.26. Let S, D S, be the set of pairs satisfying conditions 1-3 in the definition of a
good pair, but without necessarily requiring the more subtle fourth condition. The proof of Proposition
3.26 will be broken down into four steps.

Step 1. The set S, is non-empty.

To see this, let ¢ be any Hecke character of K of infinity type (1,0) and conductor m, where m is a
cyclic Og-ideal prime to ¢. Setting xy = v 1, the pair (1, x) satisfies conditions 1 and 3 by construction,
and 2 as well on account of Remark 3.19. Therefore, the pair (¢, x) belongs to S,,.

Step 2. Given (¢, x) € S, there exist (¢, x1) and (¥, x2) € S, with El/l)ma N E{p%xrz C E;b,x'
To see this, let £ = A\ be a rational prime which splits in K and is relatively prime to the class number

of K and the conductors of ¥ and , and which is unramified in E:b,x /Q. For such a prime, let
Koc = UTLZOKna K(;o = UnZOK;L

be the unique Z-extensions of K which are unramified outside of A and \ respectively, with [K,, : K] = ("
and likewise for K. The condition that ¢ does not divide the class number of K implies that the fields
K,, and K/, are totally ramified at A and A respectively. If a is any character of Gal(K../K), the pair
(¥1,x1) = (Yo, xa) still belongs to S, with m in condition 1 replaced by mA” for a suitable n > 0.
Furthermore,

(3.29) L@ixi N, 0) = L(e*x T 'Ng' - (a*/a),0).
The character a*/a is an anticyclotomic character of K of ¢-power order and conductor, and all such

characters can be obtained by choosing « appropriately. The fact that (¢, x) satisfies conditions (1),(2)
and (3) of a good pair implies (see Remark 3.20) that the sign wy«, -1 is equal to +1. Hence, by Lemma
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3.27, there exists a choice of « for which the L-value appearing on the right of (3.29) is non-vanishing.
The corresponding pair (11, x1) belongs to S, and satisfies

Ejr i © By oxn = By QG KK,
for some n. Note that the extension £y  , /E; has degree dividing (>°(¢ —1). Repeating the same
construction with a different rational prime ¢ in place of £ such that £/ — 1 is prime to ¢ yields a second

pair (12, x2) € S, and a corresponding extension £, whose degree over £y, | divides ¢/ < —-1),
and such that

Xt

E;/J27X2 C E:/J,XWJL"
Let
E" = E:%X’e,n N Efll),x,f’,n"
We see then using degrees that £”/E;, | has degree dividing (¢ — 1), hence E” C Ej,  Q((,). Since £ is
unramified in Ej, | /Q, the extension £”/E; must be totally ramified at the primes above £. On the
x,f’,n’/E:/ﬂ,x’ it is also unramified at the primes above ¢, hence
CEy..

other hand being a subextension of E;p

" / . !/ !
B = Ew,x' It follows that Ewma N sz,Xz

Thanks to Step 2, we are reduced to showing that
(3.30) (\ E,,=E.
(¥, x)€Sy
The next step shows that the fields £j, |~ can be replaced by Ey  in this equality.

Step 3. For all (¢,x) € S,, there exists a finite order character a of G such that the pair (o, ya)
belongs to S, and

(3.31) Ey NEyy o S Epy
To see this, note that the finite order character x has cyclic image, isomorphic to Z/nZ say. Pick a such
that conditions (i)-(iii) below are satisfied:
(i) « has order n and is ramified at a single prime A\ of K which lies over a rational prime ¢ that is
split in K.
(ii) A is prime to the conductors of x and x*.
(iii) ¢ is unramified in E;Z)X/Q
Conditions (i) and (ii) imply:
(iv) The field Hyq/K is totally ramified at A and unramified at A\* while H, .+~ is unramified at A and
totally ramified at \*.

Taking
L=FEy,, M =HHx~, M;=HH:q-,
we see from (iii) and (iv) that
(v) LM, /L is unramified at all primes above ¢, and

(vi) Any subextension of LMs/L is ramified at some prime above A or \*.

Thus, LMiNLM, = L. But LM, = Ey yHHy~ = Ey, , . Also since a has order n, we have Ey = Ey
and

LMy = Ey yHyoHyror = By o Hyo Hyeor = Eyy (1,
so (3.31) follows.

Step 4. We are now reduced to showing

(3.32) (| Evx=E.
(¥, X)€S,

We will do this by showing

(3.33) There exists a pair (¢, x) € S, such that Ey , = E,,.
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We begin by choosing an ideal mg of Ok with the property that Ok /mo = Z/M7Z is cyclic, and an odd
quadratic Dirichlet character e); of conductor dividing M. Let ¢ be any Hecke character satisfying

Yo((a)) = ep(a mod mp)a

on principal ideals (a) of K. Such a v satisfies condition 1 in Definition 3.18, and therefore, after letting
Xo be the finite order character satisfying

vt = wo_lonKa

it follows that (¢g, xo) belongs to S,. Furthermore, the restriction of 1y to the group of principal ideals
of K takes values in K, and therefore

(3.34) Xo(o) € E,, for all 0 € Gy := Gal(K/H).

The character v itself takes values in a CM field of degree [H : K], denoted Ey, which need not be
contained in E, in general. To remedy this problem, let Hy be the abelian extension of the Hilbert class
field H cut out by the character yo. Next, let H/, be any abelian extension of K containing H such that

(1) There is an isomorphism u : Gal(H(/K)—Gal(H/K) of abstract groups such that the diagram
(3.35) OHGal(HO/H) HG&I(HO/K) —— Gal(H/K) ——=0,

0—— Gal(HO/H) — Gal(Ho/K) —— Gal(H/K) ——=0
commutes, where the dotted arrows indicate the isomorphisms induced by w and the other arrows
are the canonical maps of Galois theory.
(2) The relative discriminant of Hj over K is relatively prime to its conjugate (and therefore to the
discriminant of K, in particular).

If the bottom exact sequence of groups in (3.35) is split, then the extension H{ is readily produced, using
class field theory. To handle the general case, we follow an approach that is suggested by the proof of
Prop. 2.1.7 in [Se]. Let ® := Gal(Hy/K) and let ¥ : Gx—® be the homomorphism attached to the
extension Hy. Since H is everywhere unramified over K, the restriction ¥, of ¥ to a decomposition group
at any prime v of K maps the inertia subgroup I, to € := Gal(Hy/H). After viewing € as a module of
finite cardinality endowed with the trivial action of Gk, let HL(K, €) := Hom(Gk,s,€) denote the group
of homomorphisms from Gk to € which are unramified outside a given finite set S of primes of K, and let

[S] (K, €*) denote the dual Selmer group attached to H& (K, €) in the sense of Theorem 2.18 of [DDT] for
example. Here €* := Hom(¢, G,,) is the Kummer dual of €, which is isomorphic to u, when € = Z/nZ
is cyclic of order n. Kummer theory (along with the non-degeneracy of the local Tate pairing) identifies
H[ls] (K, p,) with the subgroup of K* /(K*)™ consisting of elements « for which

ord,(a) =0 (mod n) for all v, res,(a) € (K0)" for allv € S.
Let S be any finite set of primes of K at which ¥ is unramified, satisfying the further conditions
(3.36) veS=1v¢S5, and Hig (K,€") =0.

The existence of such a set S follows from the statement that for any o € K* — (K*)", there is a set of
primes v of K of positive Dirichlet density for which the image of o in K¢ is not an n-th power. (This
statement follows in turn from the Chebotarev density theorem applied to the extension K (j,,a'/™).)
Now let T" be any finite set of places which is disjoint from S. Comparing the statement of Theorem 2.18
of [DDT] in the case M = € and . = S and .£ = S UT respectively, and noting that both H[S] (K,e*)

and (a fortiori) H [lsuT] (K, €*) are trivial, gives

#H (K, Q) #H KU,C
#;I:TK ) H H#Hom L, ).

It follows that the rightmost arrow in the tautologlcal exact sequence

0—H§(K, €)— HY p (K, €)— [ [ Hom(1,, €)
ceT
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is surjective. Letting T" be the set of places at which ¥ is ramified, it follows that there is a homomorphism
€ : Gg—¢ satisfying

€& =%, onl, for allv ¢ S.
After possibly enlarging the set S satisfying (3.36) and translating e by a suitable homomorphism unram-
ified outside S, we may further assume that the homomorphism We ! maps G surjectively onto ®; the
field H{, can then be obtained as the fixed field of the kernel of the homomorphism e~ 1.

With the extension Hj in hand, let o : Gal(Hy/K)——FE be the finite order Hecke character given by

a(o) = xo(u(0)) ™,

and set (1, x) = (Yoa, xoa). By construction, (¢, x) belongs to S,. We claim that y and 1 take values in
E,. Since v* = ¢ 'xNg, it is enough to prove this statement for y. Observe that, for all integral ideals
a prime to the conductors of xq, X, and v, we have

x(a) = x0(0a)/x0(w(04)) = x0(0au(oa) ).
But the element oqu(o,)~! belongs to Gal(Hy/H) by construction, and hence xo(o, 'u(o,)) belongs to
E, by (3.34). It follows that 7 and x are E,—valued, and therefore £, , = E,, as claimed in (3.33). O

3.6. Elliptic curves with complex multiplication. Theorem 2 of the Introduction admits an alternate
formulation involving algebraic points on elliptic curves with complex multiplication rather than K-rational
points on the CM abelian varieties B, of Theorem 2.5. The goal of this section is to describe this variant.
As in the introduction, we just write .Z, for the p-adic L-function .}, ., where ¢ is the conductor of v.

We begin by reviewing the explicit construction of B, in terms of CM elliptic curves. The reader is
referred to §4 of [GS], whose treatment we largely follow, for a more detailed exposition. Let F be any
abelian extension of K for which
(3.37) vp:=voNp/g
becomes K-valued. There exists an elliptic curve A/ F with complex multiplication by O whose associated
Grossencharacter is vp. (Cf. Thm. 6 of [Shi] and its corollary on p. 512.) Let

B := Resp/x(A).

It is an abelian variety over K of dimension d := [F' : K|. Let G := Gal(F/K) = Homg (F, Q),iwhere the
natural identification between these two sets arises from the distinguished embedding of F' into QQ that was
fixed from the outset. By definition of the restriction of scalars functor, there are natural isomorphisms

Bir=]] A%, B(K)=AK®exF) =[] A(K)
oeG ceG

of algebraic groups over ' and abelian groups respectively. In particular, a point of B (K) is described by
a d-tuple (Pr)req, with Pr € AT(K). Relative to this identification, the Galois group Gx acts on B(K)
on the left by the rule

E(Pr)r = ({Pr)¢r, forall £ € Gk.
Consider the “twisted group ring”

(3.38) T := ®rec Homp(A, A7) = {Z a,0, with a, € Homp(A, A”)} ,
occG

with multiplication given by

(3.39) (ap0)(ar7) = agaloT,

where the isogeny aZ belongs to Homp (A%, A°7) and the composition of isogenies in (3.39) is to be taken

from left to right. The right action of 7" on B(K) defined by
(3.40) (Pr)r * (ag0) := (ag(Pr))ro

commutes with the Galois action described in (3.6), and corresponds to a natural inclusion T <— End g (B).
The K-algebra E :=T ®z Q is isomorphic to a finite product

E=]]E:
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of CM fields, and dimg (E) = dim(B). Therefore, the pair (B, F) is a CM abelian variety in the sense of
Definition 2.4. The compatible system of ¢-adic Galois representations attached to (B, E) corresponds to
an F-valued algebraic Hecke character 7 in the sense of Definition 2.3, satisfying the relation

(3.41) 0qa(P)=P=xv(a), forallaelyand P e B(K)p~,
where o, € G2 denotes as before the Artin symbol attached to a € Ij.

The element ©(a) € T is of the form pq0,, where

(3.42) Ya: A— A%,
is an isogeny of degree Na satisfying
(3.43) pa(P) = P,

for any P € Alg] with (g,a) = 1. Note that the isogenies ¢, satisfy the following cocycle condition:
(344) Pab = Wg" © Pa-

The following proposition relates the Hecke characters  and v.

Proposition 3.28. Given any homomorphism j € Homg (E,C), let v; := j oD be the corresponding
C-valued Hecke character of K of infinity type (1,0). The assignment j — v; gives a bijection from
Homg (E,C) to the set ¥, p of Hecke characters v' of K (of infinity type (1,0)) satisfying

V/ONF/K = VONF/K-

Proposition 3.28 implies that there is a unique homomorphism 5, € Homg (F, C) satisfying j, o7 = v.
In particular, j, maps F to E, and T to a finite index subring of T;,. The abelian variety B, attached to
v in Theorem 2.5 can now be defined as the quotient B @7 ;, T,. In subsequent constructions, it turns
out to be more useful to realise B, as a subvariety of B, which can be done by setting
(3.45) B, := Blkeryj,].

The natural action of T on B, factors through the quotient 7'/ ker(j,), an integral domain having F, as
field of fractions.

Consider the inclusion
(3.46) iy : By(K) — B(K) = A(F),
where the last identification arises from the functorial property of the restriction of scalars. The following
Proposition gives an explicit description of the image of (B,(K) ® E,)T in A(F) ®0, FE, under the
inclusion 4, obtained from (3.46).

Proposition 3.29. Let E be any field containing E,. The inclusion i, of (8.46) identifies (B, (K) ®E)T"
with

(A(F) ®0, BE) = {P € A(F) ®o, E such that pa(P) = v(a)P°*, for all a € Jf} .

Proof. Tt follows from the definitions that B(K) is identified with the set of (P;) with P, € A7(K)
satisfying
(3.47) EP; = Py, forall £ € Gk.
Furthermore, if such a (P;) belongs to (B,(K) ® E,)Tv, then after setting 7(a) = pq0, as in (3.42), we
also have
(3.48) (pa(Pr))ros = (Pr)r xD(a) = (v(a)Pr);.
Equating the o4-components of these two vectors gives
wa(P1) =v(a)Py, =v(a)oa P,

where 1 is the identity embedding of F' and the last equality follows from (3.47). The Proposition follows
directly from this, after noting that the identification of B(K) with A(F) is simply the one sending (P;),
to Pl. O

Given a global field F as in (3.37), let F,, denote the subfield of Q generated by F' and E,. Recall that
wa € QY(A/F) is a non-zero differential and that Q,(A) is the associated p-adic period.
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Theorem 3.30. There exists a point Py, € (A(F) Qp, E,)" such that
Z,(v*) = Qu(A) ! logiA (Pa,) (mod F)).
The point P, is non-zero if and only if L'(v,1) # 0.

Proof. Theorem 2 of the Introduction asserts that

(3.49) Z,(v") = Qp(v") " log2, (),

for some point P, € B,(K) ® Q which is non-trivial if and only if L'(v,1) # 0. By Lemma 2.14, we find
(3.50) Q) =Q,(A)7 (mod E)).

Furthermore, by Prop. 3.29, we can view P, as a point P4, € (A(F) ®o, E,)", and we have

(3.51) log,,,(P,) = log,, (Pa,) (mod FJ).

Theorem 3.33 now follows by rewriting (3.49) using (3.50) and (3.51). O

3.7. A special case. This section is devoted to a more detailed and precise treatment of Theorem 3.30
under the following special assumptions:

(1) The quadratic imaginary field K has class number one, odd discriminant, and unit group of order
two. This implies that K = Q(v/—D) where D := — Disc(K) belongs to the finite set

S:={7,11,19,43,67,163}.
(2) 1y is the Hecke character of K of infinity type (1,0) given by the formula
(3.52) Yo((a)) = ex(a mod vk )a.
The character ¢y determines (uniquely, up to an isogeny) an elliptic curve A/Q satisfying
Endg(A4) = Ok, L(A/Q,s) = L(vo, ).

After fixing A, we will also write 14 instead of 4. It can be checked that the conductor of ¥4 is
equal to 0k, and that

Vi =a, Yy = N, Epas = EK-
Remark 3.31. The rather stringent assumptions on K that we have imposed exclude the arithmetically
interesting, but somewhat idiosyncratic, cases where K = Q(v/—3), Q(4), and Q(+/—2).
With the above assumptions, the character 14 can be used to give an explicit description of the set

Esd(CDK):

Lemma 3.32. Let ¢ be an integer prime to D, and let v be a Hecke character in Ysq(cdg). Then v is of

the form

v=1yax" ",

where x is a finite order Ting class character of K of conductor c.

Proof. The fact that v and ¥4 both have central character € implies that y is a ring class character that
is unramified at 0x, hence has conductor exactly c. O

Given a ring class character x of conductor ¢ as above with values in a field F,, let
(3.53) (A(H.) ®o, Ey)X :={P € A(H.) ®o, E, such that cP = x(0)P, Vo € Gal(H./K)}.

Finally, choose a nonzero differential wsy € Q'(A/K), and write Q,(A) for the p-adic period attached
to this choice as in Section 3.1. Since A = By, is the abelian variety attached to vy, it follows that

Qp (V) = Qp(A).
The following theorem is a more precise variant of Theorem 3.30.

Theorem 3.33. Let x be a ring class character of K of conductor prime to 0. Then there exists a point
Pa(x) € (A(Hy) @0y Ey)X such that

Zy(Wax) = Qp(A) " 'g(x) logl, (Pa(x))  (mod EY).
The point Pa(x) is non-zero if and only if L' (ax~',1) # 0.
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Proof. By Theorem 2 of the Introduction,
(3.54) ZLy(Whx) = L) = Q) ! logiu (P,) (mod E)),

for some point P, € B,(K) ® Q which is non-trivial if and only if L'(14x~1,1) # 0. Since x*~! = x and
E, = FE,, we find from Lemma 2.14 that

(3.55) Q)™ = QpWiax )T = Q(A) g0 (mod EY).

After noting that (as in equation (2.7)) B, = By, = (A Q0 TX)W1 as abelian varieties over K, we
observe that w, = wy , and that the point P, € B, (K) can be written as

P,=Y P @x (o),
oceG

for some P € A(H.) ® Q. Letting P4, be the corresponding element in A(H.) ®o, FE, given by

Payx =Y x'(o)P’,

ceG
we have
(3.56) log?,, (P,) =logl, (P) =a(x)*logly (P) = g(x)*logl, (Pay) (mod EY).
where the second equality follows from Lemma 2.8 and the last from Lemma 3.22. Theorem 3.33 now
follows by rewriting (3.54) using (3.55) and (3.56). O

In the special case where  is a quadratic ring class character of K, cutting out an extension L = K (y/a)
of K, we obtain

(3.57) 2, (Wax) = Qp(A)"Walog, (Py ;) (mod K*),

where P, ; is a K-vector space generator of the trace 0 elements in A(L) ® Q. Since in this case ¥4 is
the Hecke character attached to a CM elliptic curve over Q, from (3.57) one recovers Rubin’s Theorem 1
of the Introduction.
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