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tal result42 of Yuan, Zhang and Zhang and on an explicit Heegner point in
EM (F ) arising from the modular parametrization X1(N) → E. We formulate

a conjecture relating this Heegner point to Stark-Heegner points8 arising from
ATR cycles of real dimension one on Hilbert modular surfaces, and present
some numerical evidence for this conjecture.

Keywords: Q-curves; Birch and Swinnerton-Dyer conjecture; Oda’s period re-
lations; Heegner points; Stark-Heegner points; ATR cycles; Hilbert modular

forms

∗The research of the second author is financially supported by DGICYT Grant
MTM2009-13060-C02-01 and the Grup de recerca consolidat de Catalunya 2009 SGR
1220.



March 28, 2011 21:14 WSPC - Proceedings Trim Size: 9in x 6in oda

2

1. Introduction

Let E be an elliptic curve over a number field F and let L(E/F, s) denote its

Hasse-Weil L-series. It is widely believed that the Shafarevich-Tate group

LLI(E/F ) is finite and that L(E/F, s) extends to an entire function of the

complex variable s. The order of vanishing of this function at s = 1, denoted

by ran(E/F ), is commonly referred to as the analytic rank of E over F , a

terminology justified by the Birch and Swinnerton-Dyer conjecture which

asserts that

rank(E(F ))
?
= ran(E/F ). (1)

The most convincing evidence for the Birch and Swinnerton-Dyer conjec-

ture is the fact that it is proved when F = Q and L(E, s) := L(E/Q, s) has

at most a simple zero at s = 1:

Theorem 1.1 (Gross-Zagier, Kolyvagin). If ran(E/Q) ≤ 1, then (1)

holds for E/Q, and LLI(E/Q) is finite.

The proof of Theorem 1.1, which is briefly recalled in Section 2.1, rests

on two key ingredients. The first is the modularity of E, in the strong

geometric form which asserts that E is a quotient of the Jacobian of a

modular curve over Q. The second is the collection of Heegner points on

this modular curve, which satisfies the axioms of an “Euler system” and

provides a valuable bridge between the arithmetic of E and the analytic

behaviour of its L-series.

Both these ingredients are available in greater generality, most notably

when F is a totally real field. In this setting, a modular elliptic curve E over

F is said to satisfy the Jacquet-Langlands hypothesis (JL) if either [F : Q]

is odd, or there is at least one prime of F at which the automorphic form

on GL2(AF ) attached to E is not in the principal series. Here, AF stands

for the ring of adèles of F . The meaning of condition (JL), which only fail

to hold for certain elliptic curves of square conductor, is described more

concretely in Section 2.1.

Most importantly for the proof of (1), the Jacquet-Langlands hypoth-

esis implies that E is the quotient of the Jacobian of a suitable Shimura

curve over F . Shimura curves are equipped with a plentiful supply of CM

points, which have been parlayed into the proof of the following number

field generalisation of Theorem 1.1.

Theorem 1.2 (Zhang). Let E be a modular elliptic curve over a totally

real field F satisfying (JL). If ran(E/F ) ≤ 1, then LLI(E/F ) is finite and

(1) holds for E/F .
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Denote by N the conductor of E/F . If either [F : Q] is odd or there exists

a prime p of F for which ordp(N) = 1, this is just [43, Theorem A]. The

full result in which E is only assumed to satisfy (JL) follows from the

subsequent strengthening of the Gross-Zagier formula42 of Yuan, Zhang

and Zhang. Both results are discussed further in Section 2.1.

In analytic rank zero, the Jacquet-Langlands hypothesis can be dis-

pensed with:

Theorem 1.3 (Longo). Let E be a modular elliptic curve over a totally

real field F . If L(E/F, 1) 6= 0, then E(F ) and LLI(E/F ) are finite.

The proof24 of Longo, extending to totally real fields an earlier treatment2

of the case F = Q, exploits the theory of congruences between modu-

lar forms to realise the Galois representation E[pn] in the Jacobian of a

Shimura curve Xn whose level may (and indeed does) depend on n. The

Euler system of CM points on Xn then gives rise to a collection of pn-

torsion cohomology classes which is used to bound the pn-Selmer group of

E over F independently of n, and thereby obtain the finiteness of E(F )

and LLI(E/F ).

The problem of removing the Jacquet-Langlands hypothesis from The-

orem 1.2—or equivalently, of extending Theorem 1.3 to the case where

L(E/F, s) has a simple zero at s = 1—is still very much open.

To better understand the difficulty which arises, it is instructive to ex-

amine the simplest setting where the Jacquet-Langlands hypothesis fails to

hold. Assume for the rest of the introduction that F is a real quadratic field,

and consider for now the case where E/F is an elliptic curve of conductor

1.

Assuming E is modular, the L-series L(E/F, s) is known to have a

functional equation relating its values at s and 2 − s, and the sign wE ∈
{−1, 1} in this functional equation is always equal to 1 in this case.

Let M be any quadratic extension of F , let

χM : GF −→ ±1

be its associated Galois character, and denote by EM the twist of E over

F by χM , so that the L-series L(E/M, s) factors as

L(E/M, s) = L(E/F, s)L(E/F, χM , s) = L(E/F, s)L(EM/F, s).

Since E has conductor 1, the sign wEM
of the twisted L-series is con-

trolled by the local signs attached to the archimedean places ∞1 and ∞2

of F , which are equal to χM (∞1) and χM (∞2) respectively. It follows that
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wEM
= 1 if M is either totally real or CM. In particular, the elliptic curve

E is always of even analytic rank over such M . Since an Euler system of

Heegner points attached to a quadratic CM extension M/F is only expected

to be available when E has odd analytic rank over M , this suggests that

the mathematical objects so crucial in Kolyvagin’s descent method may be

unavailable for elliptic curves of conductor 1.

A similar expectation can be derived more generally for all elliptic curves

which do not satisfy (JL). Indeed, if E/F is an elliptic curve of square

conductor N and M is a quadratic extension of F which is unramified at

the primes dividing N, then the same analysis as above reveals that

ran(E/M) ≡
{

0 (mod 2), if M is CM or totally real;

1 (mod 2) otherwise.
(2)

A quadratic extension M of F which is neither CM nor totally real is called

an ATR extension of F . An ATR extension of F thus has two real places

and one complex place. (The acronym “ATR” stands for “Almost Totally

Real” and is used more generally8 to designate quadratic extensions of a

totally real field having exactly one complex place.)

The present article is motivated by the following specific instance of the

Birch and Swinnerton-Dyer conjecture which emerges naturally from the

discussion above.

Conjecture 1.1. Let E be a (modular) elliptic curve over a real quadratic

field F of square conductor N for which wE = 1, and let M/F be an

ATR extension of F of discriminant prime to N. If L′(EM/F, 1) 6= 0, then

EM (F ) has rank one and LLI(EM/F ) is finite.

Although it seems tantalisingly close to the setting of Theorem 1.2, Con-

jecture 1.1 presents a real mystery and appears to lie beyond the reach

of known methods. The difficulty is that, in the absence of the Jacquet-

Langlands hypothesis, no natural “modular” method presents itself in gen-

eral for constructing the point of infinite order on EM (F ) whose existence

is predicted by the Birch and Swinnerton–Dyer conjecture.

One of the original motivations for singling out Conjecture 1.1 for spe-

cial study lies in the conjectural construction8 of a so-called Stark-Heegner

point P ?
M ∈ E(M). This construction, which is recalled briefly in Section

2.2, involves the images under a complex Abel-Jacobi map attached to the

Hilbert modular form associated to E/F of certain “ATR cycles” indexed

by ideals of M . The ATR cycles are null-homologous cycles of real dimen-

sion one on the corresponding Hilbert modular surface. It is conjectured8
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that the point P ?
M is of infinite order precisely when L′(E/M, 1) 6= 0, and

that P ?
M is part of a norm-coherent collection of points defined over abelian

extensions of M satisfying Euler-System-like properties. However, progress

on Conjecture 1.1 through the theory of ATR cycles is thwarted by our

inability to provide much theoretical evidence for the algebraicity of ATR

points.

The first aim of this note is to study Conjecture 1.1 for the class of

elliptic curves E/F which are isogenous over F to their Galois conjugate.

Following a terminology that was first introduced32 by Ribet, these elliptic

curves are called Q-curves. Their basic properties are reviewed in Section

3. As explained in that section, the case of Q-curves is ultimately made

tractable by the existence of a classical elliptic cusp form f (with non-

trivial nebentypus character in general) satisfying

L(E/F, s) = L(f, s)L(f̄ , s),

leading to a modular parametrisation of E by a classical modular curve

X1(N) for a suitable N ≥ 1. The main theorem of Section 3 is a proof of

Conjecture 1.1 for Q-curves:

Theorem 1.4. Let E/F be a Q-curve of square conductor N, and let M/F

be an ATR extension of F of discriminant prime to N. If L′(EM/F, 1) 6= 0,

then EM (F ) has rank one and LLI(EM/F ) is finite.

The key ingredients in the proof of Theorem 1.4 are a strikingly general

recent extension of the theorem of Gross-Zagier obtained by Xinyi Yuan,

Shouwu Zhang and Wei Zhang42 covering cusp forms with possibly non-

trivial nebentypus characters, and a strengthening of Kolyvagin’s descent

method to cover abelian variety quotients of J1(N), as worked out in the

forthcoming book39 of Ye Tian and Shouwu Zhang. Section 3 explains how

Theorem 1.4 follows from these results and the Artin formalism for certain

Rankin L-series.

The second part of the article focuses on the special case where the

Q-curve E is of conductor 1. Such elliptic curves, which were first system-

atically studied35 by Shimura, are essentially in bijection with newforms f

in S2(Γ0(N), εN ) with quadratic Fourier coefficients, where N is the dis-

criminant of the real quadratic field F , and

εN : (Z/NZ)× −→ ±1

is the corresponding even Dirichlet character.
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Section 4 describes the explicit construction, for all quadratic ATR ex-

tensions M of F , of a canonical point PM ∈ E(M) arising from suitable

CM divisors on X1(N). The trace to E(F ) of PM is shown to vanish, so

that PM can also be viewed as an F -rational point on the twisted curve

EM .

After explaining how the points PM can be computed complex analyt-

ically by integrating the elliptic modular form f , we tabulate these points

for a few ATR extensions M of small discriminant. One expects that the

height of the point PM is related in a simple way to L′(EM/F, 1).

Finally, Conjecture 4.1 spells out a precise conjectural relationship be-

tween the classical Heegner point PM and the Stark-Heegner point P ?
M

arising from ATR cycles on the Hilbert modular variety. This conjecture,

which relates certain complex analytic invariants attached to an elliptic

modular form f and its Doi-Naganuma lift, can be viewed as an analogue

for Abel-Jacobi maps of Oda’s period relations which are studied28 in Oda’s

influential monograph. It is therefore a pleasure to dedicate this article to

Takayuki Oda whose work on periods of Hilbert modular surfaces was a

major source of inspiration for the conjectures8 on ATR points.

It is also a pleasure to thank Xavier Guitart, Ariel Pacetti and David

Rohrlich for their comments on a previous version of this manuscript.

2. Background

2.1. The Birch and Swinnerton-Dyer conjecture in low

analytic rank

We begin by recalling in greater detail the main ideas behind the proofs of

Theorems 1.1 and 1.2. We start with the assumption that F is a number

field and write OF for its ring of integers. Let N ⊂ OF denote the conductor

of the elliptic curve E/F .

The proofs of Theorems 1.1 and 1.2 can be broken up into five steps:

(i) Modularity: When F = Q, the main results of Wiles41 and Tatlor-

Wiles,38 as completed1 by Breuil, Conrad, Diamond and Taylor, imply

that there is a normalised newform f of weight 2 on Γ0(N) satisfying

L(E, s) = L(f, s). In particular, L(E, s) has an analytic continuation to

the left of the half plane Re(s) > 3/2, and its order of vanishing at s = 1

is therefore well defined. For general F , the modularity of E/F is just the

assertion that L(E/F, s) is the L-series attached to an automorphic rep-

resentation of GL2(AF ). Such a property is predicted to hold, as a (very

special) case of the Langlands functoriality conjectures. In spite of the pow-
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erful ideas introduced into the subject building on Wiles’ breakthrough, a

proof in the general number field setting still seems a long way off. When

F is totally real, modularity can be phrased in terms of modular forms

much as in the case F = Q. Namely, E/F is modular whenever there is a

normalised Hilbert modular eigenform f of parallel weight 2 on the congru-

ence group Γ0(N) ⊆ SL2(OF ) satisfying L(E/F, s) = L(f, s). The methods

originating from Wiles’ work seem well suited to yield a proof of modularity

of all elliptic curves over totally real fields. (See for example the works of

Skinner-Wiles,37 Fujiwara,10 Jarvis-Manoharmayum19 and the references

therein for an overview of the significant progress that has been achieved

in this direction.) Currently, the case which offers most difficulties arises

when the residual Galois representation at 3 is reducible.

(ii) Geometric modularity: Thanks to the geometric construction of Eichler-

Shimura and to Faltings’ proof of the Tate conjecture for abelian varieties

over number fields, the modularity of E in the case where F = Q can be

recast as the statement that E is a quotient of the jacobian J0(N) of the

modular curve X0(N) over Q, where N = (N), N ≥ 1. A non-constant

morphism

πE : J0(N) −→ E (3)

of abelian varieties over Q is called a modular parametrisation attached to

E.

When F is a totally real field and E/F is known to be modular, the

modular parametrisation arising from Eichler-Shimura theory admits no

counterpart in general. However, such a modular parametrisation can be

obtained when the Jacquet-Langlands hypothesis formulated in the intro-

duction holds. More precisely, as it is explained in [43, §3], hypothesis (JL)

implies that E is a quotient of the Jacobian of a suitable Shimura curve X

attached to an order in a quaternion algebra over F which splits at exactly

one archimedean place of F . That is, there is a non-constant map

πE : J(X) −→ E (4)

of abelian varieties over F generalising (3). The condition that the auto-

morphic form π = ⊗πv attached to E be a principal series representation

at a place v of F is satisfied precisely when E acquires good reduction over

an abelian extension of Fv. For v ∤ 2, the meanings of various conditions

on the local representations πv in terms of the behaviour of E over Fv are

summarised in the table below.
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πv E/Fv ordv(N)

Unramified

principal series
Good reduction over Fv 0

Principal series
Good reduction over an

abelian extension of Fv
even

Steinberg
Potentially multiplicative

reduction over Fv
1 or 2

Supercuspidal Otherwise ≥ 2

(5)

We refer the reader to Gelbart [12, p. 73], Pacetti,30 and Rohrich [33,

Prop. 2], [34, Prop. 2 and 3] for proofs of these statements. (Note that,

although in the latter article the ground field is assumed to be F = Q,

the results remain valid for arbitrary F as the questions at issue are purely

local). See Pacetti30 for the behaviour at places v above 2.

In particular, an elliptic curve which fails to satisfy hypothesis (JL) is

necessarily of square conductor. The converse is not true, but note that

it also follows from the table that all elliptic curves of conductor 1 over a

totally real number field of even degree fail to satisfy (JL). We will often

restrict our attention to elliptic curves of square conductor, thus encom-

passing all elliptic curves that do not satisfy hypothesis (JL).

(iii) Heegner points and L-series: Suppose first that F = Q and let K

be an imaginary quadratic field of discriminant relatively prime to N and

satisfying the

Heegner hypothesis: OK has an ideal N of norm N satisfying OK/N ≃
Z/NZ.

An ideal N of K with this property is sometimes called a cyclic ideal of

norm N . When the Heegner hypothesis is satisfied, it can be shown that the

L-function L(E/K, s) has sign −1 in its functional equation, and therefore

vanishes at s = 1. The CM points on X0(N) attached to the moduli of ellip-

tic curves with complex multiplication by OK , and their images under πE ,

can be used to construct a canonical point PK ∈ E(K): the so-called Heeg-

ner point on E attached to K. The main result of Gross-Zagier15 expresses

L′(E/K, 1) as a multiple by a simple non-zero scalar of the Néron-Tate

height of PK . In particular, the point PK is of infinite order if and only if

L′(E/K, 1) 6= 0.

In the setting where F is a totally real field, the Shimura curve X is
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equipped with an infinite supply of CM points enjoying properties similar to

their counterparts on modular curves. The auxiliary field K is now a totally

complex quadratic extension of F satisfying a suitable Heegner hypothesis

relative to X. The CM points attached to K can be used to construct a

canonical point PK ∈ E(K) as in the case F = Q. A general extension of

the Gross-Zagier theorem [43, Theorem C] to this context relates the height

of PK to the derivative L′(E/K, 1). In particular, the point PK is of infinite

order precisely when L(E/K, s) has a simple zero at s = 1. We emphasise

that this more general Heegner point construction relies crucially on E/F

satisfying hypothesis (JL).

(iv) The Euler system argument: The Heegner point PK does not come

alone, but can be related to the norms of algebraic points on E defined

over abelian extensions of K. Using this fact, it is shown20 in the case

F = Q that the point PK , when it is of infinite order, necessarily generates

E(K)⊗Q. Koyvagin’s argument extends without essential difficulties to the

context of Shimura curves over totally real fields (cf. Kolyvagin-Logachev,22

Zhang [43, §7.2], or the forthcoming book39 of Tian-Zhang).

(v) Descending from K to F : Assume first that F = Q. If ords=1(L(E, s)) ≤
1, the analytic non-vanishing results of Bump-Friedberg-Hoffstein3 or

Murty-Murty27 produce an imaginary quadratic field K satisfying the Heeg-

ner hypothesis, and for which L(E/K, s) has a simple zero at s = 1. By the

Gross-Zagier theorem, the Heegner point PK generates E(K), and its trace

therefore generates E(Q). The known properties of the Heegner point PK

imply in particular that its trace to Q vanishes when L(E, 1) 6= 0, and is

of infinite order when L(E, 1) = 0. Theorem 1.1 for E/Q follows from this.

The proof of Theorem 1.2 is deduced similarly, by noting that the analytic

non-vanishing results of Bump, Friedberg and Hoffstein3 or Waldspurger40

generalize to any number field and again produce a totally complex imagi-

nary quadratic extension K/F satisfying the Heegner hypothesis for which

ords=1(L(E/K, s)) = 1.

2.2. Oda’s period relations and ATR points

. This section briefly recalls the main construction8 which to any ATR

extension M of F (satisfying a suitable Heegner condition) associates a

point PM ∈ E(C) belonging conjecturally to E(M). The points PM arise

by considering the images of certain non-algebraic cycles on Hilbert modular

varieties under a map which is formally analogous to the Grffiths-Weil Abel-

Jacobi maps on null-homologous algebraic cycles.
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The general setting. We begin by treating a more general context where

F is a totally real field of degree r+1. (This extra generality does not unduly

complicate the notations, and may even clarify some of the key features of

the construction.) Fix an ordering v0, v1, . . . , vr of the r+1 distinct real

embeddings of F . Let E be an elliptic curve over F , and let

Ej := E ⊗vj
R (0 ≤ j ≤ r)

be the r+1 elliptic curves over R obtained by taking the base change of

E to R via the embedding vj . To ease the exposition, we will make the

following inessential assumptions:

(1) The field F has narrow class number one;

(2) the conductor of E/F is equal to 1 (i.e., E has everywhere good reduc-

tion).

(For a more general treatment where these assumptions are significantly

relaxed, see for instance the forthcoming PhD thesis11 of Jérôme Gärtner.)

The Hilbert modular form G on SL2(OF ) attached to E is a holomorphic

function on the product H0 ×H1 × · · · × Hr of r+1 copies of the complex

upper half plane, which is of parallel weight (2, 2, . . . , 2) under the action

of the Hilbert modular group SL2(OF ). The latter group acts discretely on

H0 × · · · × Hr by Möbius transformations via the embedding

(v0, . . . , vr) : SL2(OF ) −→ SL2(R)r+1.

Because of this transformation property, the Hilbert modular form G can

be interpreted geometrically as a holomorphic differential (r+1)-form on

the complex analytic quotient

X(C) := SL2(OF )\(H0 ×H1 × · · · × Hr), (6)

by setting

ωhol
G := (2πi)r+1G(τ0, . . . , τr)dτ0 · · · dτr.

It is important to replace ωhol
G by a closed, but non-holomorphic differential

(r+1)-form ωG on X(C). When r = 1, the differential ωG is defined by

choosing a unit ǫ ∈ O×
F of norm −1 satisfying

ǫ0 := v0(ǫ) > 0, ǫ1 := v1(ǫ) < 0,

and setting

ωG = (2πi)2 (G(τ0, τ1)dτ0dτ1 − G(ǫ0τ0, ǫ1τ̄1)dτ0dτ̄1) .
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For general r, one defines ωG similarly, but this time summing over the

subgroup of O×
F /(O+

F )× of cardinality 2r consisting of units ǫ with v0(ǫ) > 0.

Note that the closed (r+1)-form ωG is holomorphic in τ0, but only harmonic

in the remaining variables τ1, . . . , τr. The justification for working with ωG

rather than ωhol
G lies in the following statement which is a reformulation of

a conjecture of Oda28 in the special case of modular forms with rational

fourier coefficients:

Conjecture 2.1 (Oda). Let

ΛG :=

{
∫

γ

ωG, γ ∈ Hr+1(X(C), Z)

}

.

Then ΛG is a lattice in C and the elliptic curve C/ΛG is isogenous to E0.

This conjecture is shown to hold28 for Hilbert modular forms which are

base change lifts of classical elliptic modular forms, which corresponds to

the case where the associated elliptic curve E is a Q-curve. But it should

be emphasised that no Q-curve hypothesis on E is necessary in Conjecture

2.1.

Let

Zr(X(C)) :=







Null-homologous cycles

of real dimension r

on X(C)







.

Conjecture 2.1 makes it possible to define an “Abel-Jacobi map”

AJG : Zr(X(C)) −→ E0(C), (7)

by choosing an isogeny ι : C/ΛG −→ E0(C), and setting

AJG(∆) := ι

(
∫

∆̃

ωG

)

, (for any ∆̃ with ∂∆̃ = ∆). (8)

Note that the domain Zr(X(C)) of AJG has no natural algebraic structure,

and that the map AJG bears no simple relation (beyond an analogy in its

definition) with the Griffiths-Weil Abel-Jacobi map on the Hilbert modular

variety X.

ATR Cycles. Generalising slightly the definitions given in the Introduction

to the case r > 1, a quadratic extension M of F is called an ATR extension

if

M ⊗F,v0
R ≃ C, M ⊗F,vj

R ≃ R ⊕ R, (1 ≤ j ≤ r).
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The acronym ATR stands for “Almost Totally Real”, since an ATR exten-

sion of F is “as far as possible” from being a CM extension, without being

totally real.

Fix an ATR extension M of F , and let Ψ : M −→ M2(F ) be an F -

algebra embedding. Then

(1) Since M ⊗F,v0
R ≃ C, the torus Ψ(M×) has a unique fixed point τ0 ∈

H0.

(2) For each 1 ≤ j ≤ r, the fact that M⊗F,vj
R ≃ R⊕R shows that Ψ(M×)

has two fixed points τj and τ ′
j on the boundary of Hj . Let Υj ⊂ Hj be

the hyperbolic geodesic joining τj to τ ′
j .

An embedding Ψ : M −→ M2(F ) has a conductor, which is defined to be

the OF -ideal cΨ for which

Ψ(M) ∩ M2(OF ) = Ψ(OF + cΨOM ).

The OF -order OΨ := OF +cΨOM is called the order associated to Ψ. It can

be shown that there are finitely many distinct SL2(OF )-conjugacy classes

of embeddings of M into M2(F ) associated to a fixed order O ⊂ OM , and

that the Picard group (in a narrow sense) of O acts simply transitively on

the set of such conjugacy classes of embeddings.

By the Dirichlet unit theorem, the group

ΓΨ := Ψ((O+
Ψ)×) ⊂ SL2(OF )

is of rank r and preserves the region

RΨ := {τ0} × Υ1 × · · · × Υr.

The ATR cycle associated to the embedding Ψ is defined to be the quotient

∆Ψ := ΓΨ\RΨ.

It is a closed cycle on X(C) which is topologically isomorphic to an r-

dimensional real torus. In many cases, one can show that ∆Ψ is null-

homologous, at least after tensoring with Q to avoid the delicate issues

arising from the possible presence of torsion in integral homology. (The

homological triviality of ∆Ψ always holds, for instance, when r = 1, and

follows from the fact that the group cohomology H1(SL2(OF ), C) is triv-

ial.) Assume from now on that ∆Ψ is homologically trivial, and therefore

that it belongs to Zr(X(C)).

The following conjecture lends arithmetic meaning to the Abel-Jacobi

map AJG and to the ATR cycles ∆Ψ.
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Conjecture 2.2. Let Ψ : M −→ M2(F ) be an F -algebra embedding of

an ATR extension M of F . Then the complex point AJG(∆Ψ) ∈ E0(C) is

algebraic. More precisely, the isogeny ι in the definition (8) of AJG can be

chosen so that, for all Ψ,

AJG(∆Ψ) belongs to E(HcΨ
),

where HcΨ
is the ring class field of M of conductor cΨ. Furthermore,

if Ψ1, . . . ,Ψh is a complete system of representatives for the SL2(OF )-

conjugacy classes of embeddings of M in M2(OF ) of a given conduc-

tor c, then the Galois group Gal(Hc/M) acts (transitively) on the set

{AJG(∆Ψ1
), . . . ,AJG(∆ψh

)}.

Conjecture 2.2 is poorly understood at present. For instance, it is not clear

whether the Tate conjecture sheds any light on it. On the positive side, the

ATR points that are produced by Conjecture 2.2 are “genuinely new” and

go beyond what can be obtained using only CM points on Shimura curves.

Indeed, the former are defined over abelian extensions of ATR extensions

of totally real fields, while the latter are defined over abelian extensions of

CM fields.

Most germane to the concerns of this paper, Conjecture 2.2 can be used

as a basis for the construction of a point P ?
M

?∈ E(M), by letting Ψ1, . . . ,Ψh

be a complete system of representatives for the SL2(OF )-conjugacy classes

of embeddings of M in M2(OF ) of conductor 1 and setting

P ?
M := AJG(∆Ψ1

) + · · · + AJG(∆Ψh
). (9)

3. The Birch and Swinnerton-Dyer conjecture for Q-curves

3.1. Review of Q-curves

The first goal of the present work is to study Conjecture 2.2 for Q-curves,

which are defined as follows:

Definition 3.1. Let F be a number field and fix an algebraic closure Q̄

of Q containing F . We say that an elliptic curve E/F is a Q-curve if it is

isogenous over F to all its Galois conjugates over Q.

In the literature, these curves are sometimes referred as Q-curves completely

defined over F , reserving the term Q-curve for the wider class of elliptic

curves over F which are isogenous over Q̄ to all their Galois conjugates

over Q.
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Q-curves are known to be modular, thanks to the work of Ellenberg and

Skinner [ES] (who proved (geometric) modularity of Q-curves under local

conditions at 3), now vastly superseded by Khare-Wintenberger23 which

implies modularity of all Q-curves as a very particular case. Combining this

with the older work of Ribet (cf. the survey32), it follows that Q-curves E/F

are arithmetically uniformisable over Q̄ by the classical modular curves

X1(N). By this, we mean that there exists a non-constant morphism of

curves

πE : X1(N)Q̄ −→ EQ̄ (10)

over Q̄, for some N ≥ 1.

For simplicity, in this article we shall restrict our attention to Q-curves

over a quadratic field F , which represents the simplest non-trivial scenario.

However, we believe that the ideas present in this note should allow, with

some more effort, to treat more general cases; see the forthcoming Ph.D

thesis45 of the third author.

Let F be a quadratic field with ring of integers OF and write

Gal (F/Q) = {1, τ}. Let E be a Q-curve over F of conductor N ⊂ OF .

Given a Dirichlet character ε of conductor N , let

Γε(N) = {
(

a b
c d

) ∣

∣ N |c, ε(a) = 1} ⊆ SL2(Z)

and let Xε(N) be the modular curve associated to this congruence sub-

group. The curve Xε(N) admits a canonical model over Q, and coarsely

represents the moduli problem of parametrizing triples (A,C, t) where A is

a generalised elliptic curve, C is a cyclic subgroup of order N of A(Q̄) and

t is an orbit in C \ {O} for the action of ker(ε) ⊂ (Z/NZ)×. Note that the

group (Z/NZ)× acts on Xε(N) via the diamond operators, and that the

subgroup ker(ε) fixes it.

As discussed for example in Guitart-Quer14 or Ribet,32 the modular

parametrisation (10) is particularly well-behaved when F is quadratic. More

precisely, there exists a positive integer N ≥ 1, an even Dirichlet character

ε : (Z/NZ)× → {±1} ⊂ C×, and a pair fE , f ′
E ∈ S2(Γε(N)) ⊆ S2(Γ0(N), ε)

of normalised newforms of weight 2, level N and nebentypus ε, such that

L(E/F, s) = L(fE , s) · L(f ′
E , s). (11)

In this case, the uniformisation in (10) factors through a modular parametri-

sation

πE : Xε(N)F −→ EF (12)

defined over F .
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Let Kf denote the field generated by the Fourier coefficients of fE . It

is either Q or a quadratic field. When Kf = Q, the elliptic curve E is in

fact isogenous to the base change of an elliptic curve defined over Q and

question (1) can rather be tackled with the classical techniques reviewed

in §2; we assume throughout that this is not the case. Hence [Kf : Q] = 2

and, letting σ denote the single nontrivial automorphism of Kf , we have

f ′
E = σfE .

Weil’s restriction of scalars A := ResF/Q(E) is an abelian surface of

GL2-type over Q such that

EndQ(A) ⊗ Q ≃ Kf (and thus is simple over Q), (13)

A/F ≃ E × τE, and (14)

L(A/Q, s) = L(E/F, s) = L(fE , s) · L(f ′
E , s). (15)

Moreover, for any field extension L/Q, there is a canonical isomorphism

A(L) ≃ E(F ⊗Q L) (16)

and in particular A(Q) ≃ E(F ). As shown by Carayol, the conductor of

A over Q is N2, and it follows from [25, Prop. 1] (see also [13, Remark 9]

for a more detailed discussion) that the conductor of E/F is N = N0 · OF ,

where N0 ∈ Z satisfies

N = N0 · |disc(F )|. (17)

As we shall now explain, when F is imaginary the problem can be

reduced to the classical setting considered by Gross-Zagier and Kolyvagin-

Logachev, and presents no mysteries. It is the case of F real that deserves

more attention, and to which the main bulk of this note will be devoted.

If ε is trivial, then Kf is real and F can be either real or imaginary

(and indeed both cases occur in examples). As a direct consequence of

(11), (16) and the generalization21 of the work of Kolyvagin to higher

dimensional quotients of J0(N) over Q, (1) also holds for E/F provided

ords=1L(fE , s) ≤ 1.

Assume ε 6= 1 for the rest of this article. Now Kf is an imaginary

quadratic field. Besides, it follows from an observation of Serre (cf. [32,

Proposition 7.2]) that F is necessarily real. In fact, F can be computed

explicitly from fE as F = Q̄ker(ε). In particular it follows that ε is the

quadratic Dirichlet character associated with F .
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Let ωN denote the Fricke involution of Xε(N)F defined on the underly-

ing Riemann surface by the rule τ 7→ − 1
Nτ . It induces an involution on the

jacobian Jε(N)F of Xε(N)F which leaves AF stable. We have

AF ∼ (1 + ωN )AF × (1 − ωN )AF , (18)

where both factors on the right have dimension 1, are isogenous over F

and conjugate one each other over Q (cf. [6, §5]). By replacing E by its

conjugate if necessary, we shall assume throughout that E = (1 + ωN )AF .

It then follows that (12) factors through the following commutative

diagram:

Xε(N)F −→ Jε(N)F −→ AF

↓ πN ↓ ↓
X+

ε (N) −→ J+
ε (N)

ϕE−→ E,

(19)

where we set X+
ε (N) := Xε(N)F /〈ωN 〉 and J+

ε (N) := (1 + ωN )Jε(N)F .

The reader should keep in mind that both are varieties over F , not over Q.

3.2. The main result

The goal of this section is to prove Theorem 1.4 of the Introduction. Let M

be a quadratic ATR extension of F . Since M has two real places and one

complex place, it is not Galois over Q. Let M ′ denote its Galois conjugate

over Q, and let M be the Galois closure of M over Q. It is not hard to see

that M is the compositum over F of M and M ′ and that Gal(M/Q) is iso-

morphic to the dihedral group of order 8. The subgroup VF := Gal(M/F )

is isomorphic to a Klein 4-group. The dihedral group of order 8 contains

two distinct, non-conjugate subgroups which are isomorphic to the Klein

4-group. This is most easily seen by viewing D8 as the symmetry group of

a square, as in the figure below, in which VF is identified with the subgroup

generated by the reflections about the two diagonals. These two reflections

can be labeled as τM and τ ′
M , in such a way that

MVF = F, MτM = M, Mτ ′
M = M ′.

The second Klein four-group, which shall be denoted VK , is generated by

the reflections about the vertical and horizontal axes of symmetry of the
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square. We label these reflections as τL and τ ′
L, as shown in the figure below.

τ ′
M

©

τL

©

τM

ª

• ◦ •

τ ′
Lª◦ ◦

• ◦ •

(20)

Now let

K := MVK , L := MτL , L′ = Mτ ′
L .

These fields fit into the following diagram of field extensions, where each

unbroken line indicates an extension of degree 2:

M

M

mmmmmmmmmmmmmmm
M ′

{{{{{{{{

L′

BBBBBBBB

L

PPPPPPPPPPPPPPP

F

CCCCCCCC

K

~~~~~~~~

Q

CCCCCCCC

}}}}}}}}

(21)

Let

χM , χ′
M : GF −→ {±1}

denote the Galois characters of the real quadratic field F which cut out the

extensions M and M ′, and let

χL, χ′
L : GK −→ {±1}

be the quadratic characters of the imaginary quadratic field K which cut

out the extensions L and L′. We will often view these characters as idèle

class characters defined on A×
F and on A×

K respectively. Finally, let εF and

εK denote the quadratic Dirichlet characters attached to F and K, and let

NF
Q : A×

F −→ A×
Q and NK

Q : A×
K −→ A×

Q denote the norms on adèles.
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Proposition 3.1.

(1) The field K is a quadratic imaginary field.

(2) The characters χM , χ′
M , χL and χ′

L, viewed as idèle class characters

of F and K respectively, satisfy

χMχ′
M = εK ◦ NF

Q ; χLχ′
L = εF ◦ NK

Q .

(3) The central character of χM and χ′
M is εK , and the central character

of χL and χ′
L is εF .

(4) The following two-dimensional representations of GQ are isomorphic:

IndQ
F χM = IndQ

F χ′
M = IndQ

KχL = IndQ
Kχ′

L.

Proof. The quadratic field K is of the form Q(
√
−d), where −d is defined

(modulo squares in Q×) by

−d = NF/Q(α), with M = F (
√

α).

The fact that M is ATR implies that −d is a negative rational number, and

therefore that K is an imaginary quadratic field. The second part follows

directly from the field diagram (21) above. To prove the third part, note

that part (2) implies that the central character of L restricted to the group

of norms from K is equal to εF . (This is because χL(x) = χ′
L(x̄), where

x 7→ x̄ is complex conjugation). Class field theory implies that this central

character differs from εF by a power of εK . But the central character of

χL cannot be εF εK since this is an odd Dirichlet character and the central

character of a finite order Hecke character of an imaginary quadratic field

is necessarily even, because the map from the group of components of R×

to the group of components of C× is trivial. Finally, the proof of part (4) is

a simple exercise in representation theory: the four representations that are

listed in (4) are all isomorphic to the unique irreducible two-dimensional

representation of Gal(M/Q).

As at the end of the previous section §3.1, let E be a Q-curve over a real

quadratic field F and A = ResF/Q(E), let f = fE ∈ S2(Γε(N)) denote the

modular form associated to it and let Kf denote the imaginary quadratic

field generated over Q by the Fourier coefficients of f .

Theorem 3.1 (Tian, Yuan, Zhang and Zhang). Let K be a quadratic

imaginary field satisfying the Heegner hypothesis, and let χ : A×
K −→ C×

be a finite order Hecke character of K satisfying

χ|A×
Q

= ε−1
f . (22)
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Then

(i) The L-function L(f/K, χ, s) vanishes to odd order at s = 1;

(ii) If L′(f/K, χ, 1) 6= 0, then (A(Kab)⊗ C)χ has rank one over Kf ⊗Q C,

and LLI(A/Kab)χ is finite.

Proof. The modular form f gives rise to a cuspidal automorphic represen-

tation π of GL2(AQ) whose central character is ωπ = εf , the nebentypus of

f . Condition (22) ensures that the tensor product of the motives attached

to π and χ is self-dual, and therefore the L-function

L(f/K, χ, s) = L(π, χ, s − 1

2
)

satisfies a functional equation whose central critical point is s = 1; since

the discriminant of K is relatively prime to N , the sign of this functional

equation is (−1)♯Σ, where

Σ = {primes ℓ inert in K such that ordℓ(N) is odd} ∪ {∞}.
The Heegner hypothesis satisfied by K says that Σ = {∞} and thus the

sign is −1; this implies (i).

As a consequence of (13), the complex vector space (A(Kab) ⊗ C)χ

is naturally a Kf ⊗Q C-module. Part (ii) is a theorem of Tian-Zhang39

which follows as a corollary of [42, Theorem 1.3.1] by applying Kolyvagin’s

method. Since the reference39 is not currently available, the reader may

consult [42, Theorem 1.4.1] and, for the precise statement quoted here, [44,

Theorem 4.3.1].

We are now ready to prove Theorem 1.4 of the introduction.

Theorem 3.2. Let E be a Q-curve over F of square conductor N, and

let M/F be an ATR extension of F of discriminant prime to N. If

L′(EM/F, 1) 6= 0, then EM (F ) has rank one and LLI(EM/F ) is finite.

Proof. By (11) and the Artin formalism for L-series,

L(EM/F, s) = L(E,χM , s) = L(f ⊗ χM/F, s) = L(f ⊗ IndQ
F χM , s). (23)

By part 4 of Proposition 3.1,

L(f ⊗ IndQ
F χM , s) = L(f ⊗ IndQ

KχL, s) = L(f ⊗ χL/K, s). (24)

It follows from (23) and (24) that

L′(EM/F, 1) = L′(f ⊗ χL/K, 1) = L′(fσ ⊗ χL/K, 1). (25)
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Therefore the two rightmost expressions in (25) are non-zero by assumption,

so that the product

L(f ⊗ χL/K, s)L(fσ ⊗ χL/K, s) = L(A/K,χL, s)

vanishes to order exactly 2 = [Kf : Q] at s = 1. By Theorem 3.1, it

follows that A(L)− is of rank two, where A(L)− denotes the subgroup

of the Mordell-Weil group of A(L) of points whose trace to K is trivial.

In particular, the Galois representation IndQ
KχL occurs in A(Q) ⊗ C with

multiplicity 2. Hence, invoking once again part 4 of Proposition 3.1, we find

that

rank(A(M)−) = 2.

But since M contains F and since A is isogenous over F to E×E, it follows

that

rank(E(M)−) = rank(EM (F )) = 1.

The result about the ranks follows. The result about the finiteness of

LLI(EM/F ) follows in the same way from part (ii) of Theorem 3.1.

4. Heegner points on Shimura’s elliptic curves

Implicit in the proof of Theorem 3.2 (via the use that is made of it in the

proof of Theorem 3.1) is the construction of a Heegner point PM ∈ EM (F )

arising from the image of certain CM divisors on Xε(M) via the modular

parametrisation (10). We now wish to make this construction explicit in

the case where the Q-curve E has everywhere good reduction over the real

quadratic field F . The Q-curves with this property are sometimes called

Shimura elliptic curves because they were first systematically considered

by Shimura. More precisely, it is shown in Shimura35 how to associate a

Shimura elliptic curve over F = Q(
√

N) to any classical elliptic modular

form f ∈ S2(Γ0(N), εN ) with quadratic fourier coefficients. (Cf. also (17).)

It will be assumed throughout this chapter that E/F is a Shimura el-

liptic curve, and that f is the corresponding elliptic modular form. We also

assume for simplicity that N is odd, and thus square-free.

Remark 4.1. According to calculations performed by the third author

using PARI29 (extending the data gathered in [6, §6], Pinch31 in the range

N ≤ 1000), there exists an eigenform f ∈ S2(Γ0(N), εN ) of prime level

1 < N < 5000, with fourier coefficients in a quadratic imaginary extension

Kf = Q(
√
−d) for precisely the values of N and d listed in the following

table.
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N 29 37 41 109 157 229 257 337 349

d 5 1 2 3 1 5 2 2 5

N 373 397 421 461 509 877 881 997 1069

d 1 1 7 5 5 1 2 3 1

N 1709 1861 2657 4481 4597

d 5 5 2 11 1

Associated to each such eigenform there is a Shimura elliptic curve over

F = Q(
√

N). Furthermore, according to computations due to Cremona,

Dembelé, Elkies and Pinch, there are only four primes N in the range

[1, 1000] for which there exists an elliptic curve with good reduction every-

where over F = Q(
√

N) which is not a Q-curve, namely, N = 509, 853, 929

and 997. It is hard to predict whether the preponderance of Shimura elliptic

curves among elliptic curves of conductor one will persist or is merely an

artefact of the relatively low ranges in which numerical data has been gath-

ered. Note that it is not even known whether there exist infinitely many

Shimura elliptic curves over real quadratic fields, while it is a theorem of S.

Comalada5 that there are infinitely many elliptic curves over real quadratic

fields with good reduction everywhere.

4.1. An explicit Heegner point construction

Let us recall the diagram of field extensions introduced in (21):

M

M

kkkkkkkkkkkkkkkkkkkk
M ′

rrrrrrrrrrrr
Q(

√
N,

√
−d) L′

KKKKKKKKKKKK

L

SSSSSSSSSSSSSSSSSSS

F

?????????

sssssssssss
Q(

√
−Nd) K

JJJJJJJJJJJ

££££££££

Q

LLLLLLLLLLLLL

ssssssssssss

(26)

The following lemma is crucial in constructing the point PM ∈
E(M)− = EM (F ) explicitly.

Lemma 4.1. Let M be an ATR extension of F and let K be the quadratic

imaginary field attached to M as in the diagram (26). Then K has a
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(canonical) ideal N of K of norm N . In particular, all the prime divisors

of N are either split or ramified in K.

Proof. The conductor-discriminant formula combined with part 4 of

Proposition 3.1 show that

disc(F )NmF/Q(disc(M/F )) = disc(K)NmK/Q(disc(L/K)).

Therefore, after setting

Nram = gcd(N,disc(K)), Nsplit = N/Nram,

Nram = (Nram,
√

disc(K)), Nsplit = (Nsplit,disc(L/K)),

we find that N := NramNsplit gives the desired ideal of norm N .

Let AK denote the ring of adèles of K, and let

Ô×
K :=

∏

v

O×
v

denote the maximal compact subgroup of the group A×
K,fin of finite idèles

of K. Given a rational integer c ≥ 1, (c,N) = 1, we define

Uc = Ẑ×(1 + cÔK)C× ⊂ A×
K .

By class field theory, the quotient Gc := A×
K/(K×Uc) is identified with

Gal(Hc/K), where Hc is the ring class field of K of conductor c.

As a piece of notation, we shall write Hc for the ring class field attached

to the order in K of conductor c ≥ 1 and write Ka for the ray class field of

conductor a.

Define

U+
c = {β ∈ Uc such that (β)N ∈ ker(ε) ⊂ (Z/NZ)×},

U−
c = {β ∈ Uc such that (β)N ∈ ker(ε) ⊂ (Z/NZ)×},

and Ũc = U+
c ∩ U−

c . Here (β)N denotes the image of the local term of the

idèle β at N in the quotient O×
N /(1 + N · ON ) ≃ (Z/NZ)×. Similarly for

N . This way we can regard the character ε as having source either O×
N or

O×
N .

Set

G̃c := A×
K/(K×Ũc) = Gal(H̃c/K),

where H̃c is a biquadratic extension of the ring class field Hc. It can be

written as H̃c = LcL
′
c, where Lc (resp. L′

c) is the class field attached to U+
c

(resp. U−
c ).
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Proposition 4.1. The relative discriminant of L/K factors as d(L/K) =

c · N , where c is a positive integer such that L ⊂ Lc and L′ ⊂ L′
c and thus

M ⊂ H̃c.

More precisely, we have c = 2t · c0 where 0 ≤ t ≤ 3 and c0 is odd and

square-free. The proof of this proposition is an exercise in class field theory,

which we relegate to §4.4 for the convenience of the reader.

We now explain how to construct a degree zero divisor on Xε(N) defined

over H̃c. To do this, let Ac be an elliptic curve satisfying

End(Ac) = Oc,

where Oc := Z+ cOK is the order in K of conductor c. Such a curve, along

with its endomorphisms, may be defined over the ring class field Hc. The

module Ac[N ] of N -torsion points is therefore defined over Hc, yielding a

point Pc := [Ac, Ac[N ]] ∈ X0(N)(Hc).

The action of GHc
:= Gal(Q/Hc) on the points of this group scheme

gives a Galois representation

ρN : GHc
−→ (Z/NZ)×.

The composition of ρN with the nebentypus character ε is a quadratic

character of GHc
, which cuts out the quadratic extension Lc of Hc. The

point Pc lifts to two points P+
c and P−

c in Xε(N)(Lc) which are inter-

changed by the action of Gal(Lc/Hc); we do not specify the order in which

these points are to be taken. Similarly, we can replace the module Ac[N ]

by Ac[N ], mimic the above construction and obtain points P ′+
c and P ′−

c

defined over L′
c.

Definition 4.1. Let

CM(c) =
⋃

{P+
c , P−

c , P ′+
c , P ′−

c } ⊂ Xε(N)(H̃c)

be the set of Heegner points on Xε(N) obtained by letting Ac run over all

isomorphism classes of elliptic curves with CM by Oc.

If we let h(Oc) denote the cardinality of the group Pic(Oc) of classes of

locally free ideals of Oc, the cardinality of CM(c) is 4h(Oc). In fact, CM(c)

is naturally the disjoint union of the two subsets CM(c) ∩ Xε(N)(Lc) and

CM(c) ∩ Xε(N)(L′
c), each of cardinality 2h(Oc).

A Heegner point P ∈ CM(c) of conductor c may be described by a triple

([a], n, t), where

• [a] ∈ Pic(Oc) is the class of an invertible Oc-module of K,
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• n is an integral ideal of Oc such that the quotient Oc/n is cyclic of

order N ,

• t is an orbit for the action of ker(ε) of an element of order N in an−1/a ∼=
Z/NZ.

Let C̃ be the quotient of the ray class group of K of conductor cN
for which Artin’s reciprocity map of global class field theory furnishes a

canonical isomorphism

rec : C̃
∼−→ Gal(H̃c/K).

Let O = Oc denote the order of conductor c in K. There are natural

exact sequences, sitting in the commutative diagram

1 // Gal(H̃c/Hc) //

rec

²²

Gal(H̃c/K)

rec

²²

resH̃c/Hc
// Gal(Hc/K) //

rec

²²

1

1 // 〈[β0], [β
′
0]〉 // C̃ // Pic(O) // 1,

where the vertical arrows are isomorphisms. Here, β0 ∈ O×
N and β′

0 ∈ O×
N

are elements such that ε(β0) = −1 and ε(β′
0) = −1. Artin’s reciprocity map

induces an isomorphism

Gal(H̃c/Hc) ≃ O×
N / ker(ε) ×O×

N / ker(ε) ≃ Z/2Z × Z/2Z.

We thus can formally write elements of C̃ as classes of enhanced ideals,

which are defined as elements of the form b := βNβN
∏

℘∤N ℘n℘ , taken up

to principal ideals (b) with b ∈ K×. Here βN and βN belong to K×
N / ker(ε)

and K×
N / ker(ε) respectively, ℘ runs over all prime invertible ideals of O not

dividing N , and the exponents n℘ are integers which are almost all zero.

We say an enhanced ideal is integral if βN and βN have representatives in

O×
N and O×

N respectively, and n℘ ≥ 0 for all ℘. The image of the class b in

Pic(O) is simply the class of the ideal b = N ordN (βN )N ordN (βN ) ∏

℘∤N ℘n℘

generated by it.

By Shimura’s reciprocity law,

rec(b)(D) = b−1 ⋆ D (27)

for all b ∈ C̃ and all divisors D ∈ Jε(N)(H̃c) supported on CM(c).

On the left hand side we make use of the natural Galois action of

Gal(H̃c/K) on Jε(N)(H̃c), via Artin’s reciprocity isomorphism. On the

right hand side, a class [b] ∈ C̃ acts on CM(c) by the rule

b ⋆ P = ([ab−1], n, ϕb(βN t)), (28)
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where P = ([a], n, t) ∈ CM(c), b = βNβN
∏

℘∤N ℘n℘ is an integral represen-

tative of its class and ϕb : C/a → C/ab−1 is the natural projection map.

Writing P = [τ ] ∈ Xε(N)(C) for some τ ∈ H, let γb ∈ GL+
2 (Q) be such

that b ⋆ P = [γbτ ].

Besides this action, there is also the diamond involution Wε, acting on

P = [τ ] ∈ Xε(N)(C) as Wε([τ ]) = [γǫτ ] and on P = ([a], n, t) ∈ CM(c) as

Wε(P ) = ([a], n, dt), for γǫ =
(

a b
Nc d

)

∈ Γ0(N) \ Γε(N). (29)

The cardinality of CM(c) is 4h(O) and it is acted on freely and transitively

by the group 〈WN ,Wε〉 × C̃M, where we let C̃M := rec−1(Gal(H̃c/M)) ⊂
C̃K . Note that the restriction map resH̃c/Hc

induces an isomorphism C̃M ∼=
Pic(O) ∼= Gal(Hc/K).

It is our aim now to define a point PM ∈ E(M) (and thus also, by

conjugation over F , a point PM ′ ∈ E(M ′)) on the elliptic curve E, rational

over the ATR extension M/F . We shall construct PM as a suitable linear

combination of certain points PL ∈ A(L) and PL′ ∈ A(L′) on the abelian

surface A = ResF/Q(E). These points are defined as the trace to L of the

projection of P+
c ∈ Xε(N)(Lc) (respectively of P

′+
c ∈ Xε(N)(L′

c)) on A.

Before doing so, we first observe that choosing P−
c = Wε(P

+
c ) instead of

P+
c (and similarly P ′−

c instead of P ′+
c ) is unimportant for our construction,

as the next lemma shows that both lead to the same point on A up to sign

and torsion. Recall the canonical projection πf : Jε(N) → A defined over Q

and reviewed in (19), which can be composed with the natural embedding

of Xε(N) into its jacobian Jε(N) given by the map P 7→ P − i∞. By an

abuse of notation, we continue to denote by πf this composition.

Lemma 4.2. For any P ∈ Xε(N)(Q), the point πf (P )+πf (Wε(P )) belongs

to A(F )tors.

Proof. There is a natural decomposition S2(Γε(N)) = S2(Γ0(N)) ⊕
S2(Γ0(N), ε) corresponding to the eigenspaces of eigenvalue ±1 with re-

spect to the action of the involution Wε. The rule f(z) 7→ f(z)dz yields

an identification of S2(Γε(N)) with the space of holomorphic differentials

on Xε(N)C. Via this isomorphism, π∗
fH0(Ω1

A) is contained in S2(Γ0(N), ε).

Consequently, πf (P − i∞) = −πf (Wε(P − i∞)) and

πf (P ) + πf (Wε(P )) = πf (P − i∞) + πf (Wε(P ) − i∞)

= πf (P − i∞) + πf (Wε(P ) − Wε(i∞)) + πf (Wε(i∞) − i∞)

= πf (Wε(i∞) − i∞).
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This last expression is a torsion point on A(F ) by the Manin-Drinfeld the-

orem which asserts that degree zero cuspidal divisors on a modular curve

give rise to torsion elements in its Jacobian.

We now set

PL = TrLc/L(πf (P+
c )) ∈ A(L).

Note that τM (P+
L ) is either equal to TrL′

c/L′(πf (P ′
c
+
)) or to

TrL′
c/L′(πf (P ′

c
−

)). Without loss of generality, assume that τM (P+
L ) =

TrL′
c/L′(πf (P ′

c
+
)) and denote it by P ′

L.

Set

u =







2 if K = Q(
√
−1) and c = 1;

3 if K = Q(
√
−3) and c = 1;

1 otherwise,

and define

PA,M :=
1

u
(PL + P ′

L), PA,M ′ :=
1

u
(PL − P ′

L).

The construction of the point PA,M is illustrated in the figure below.

τ ′
M

©

τL

©

τM

ª

•
PA,M′ PA,M

PL

◦ •

−P ′
L

τ ′
Lª

P ′
L

◦ ◦

•
−PA,M −PL −PA,M′

◦ •

This figure suggests–and it is indeed easy to check–that

PA,M ∈ A(M), PA,M ′ ∈ A(M ′).

Recall that the morphism ϕF : AF −→ E introduced in (19) is defined over

F ⊂ M , and therefore that the point

PM := ϕF (PA,M )

belongs to E(M). As a by-product of our explicit construction we obtain

the following analytic formula for calculating the point PM .
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Theorem 4.1. Let τc, τ
′
c ∈ H be elements representing the Heegner points

P+
c , P

′+
c ∈ Xε(N)(H̃c). Set

zM =
∑

b∈C̃M

[

∫ γbτc

i∞
(fE(τ) + fE

∣

∣

WN
(τ)) dτ +

∫ γbτ ′
c

i∞
(fE(τ) + fE

∣

∣

WN
(τ)) dτ

]

.

(30)

Then PM = η(zM ) where η is the Weierstrass parametrization

η : C/ΛE −→ E(C), η(z) = (℘(z), ℘′(z)). (31)

Here, ℘ is the Weierstrass function associated with the lattice of periods

ΛE :=

{
∫

δ

(fE + fE

∣

∣

WN
)dτ

}

where δ ∈ H1(Xε(C), Z) runs over the cycles of Xε(C) such that
∫

δ
(fE −

fE

∣

∣

WN
)dτ = 0.

4.2. Heegner points and ATR cycles

The main conjecture that will be formulated in this section relates the

Heegner point PM with the Stark Heegner point P ?
M arising from ATR

cycles. Recall that Gal(F/Q) = {1, τ} and DF = disc(F ). Let also cE/F

(resp. cEτ /F ) denote either the real period or twice the real period of E/R

(resp. of Eτ/R) depending on whether E(R) (resp. Eτ (R)) is connected or

not.

Conjecture 4.1. The ATR point P ?
M is of infinite order if and only if PM

is of infinite order and L(E/F, 1) 6= 0. More precisely,

P ?
M = 2sℓ · PM (32)

where ℓ ∈ Q×, which depends only on (E,F ) and not on M , satisfies

ℓ2 =
L(E/F, 1)

ΩE/F
, with ΩE/F =

cE/F · cEτ /F

D
1/2
F · |Etor(F )|2

,

and s ∈ Z depends on M .

Below we collect some numerical data in support of conjecture 4.1. Besides

the numerical evidence, Conjecture 4.1 is also motivated by the equality

L′(E/M, 1) = L(E/F, 1)L′(E/F, χM , 1)

as recalled in the proof of Theorem 3.2, and by the facts that
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(1) the Néron-Tate height of the Stark-Heegner point P ?
M is expected8 to

be related in a simple way to L′(E/M, 1).

(2) the extension of the Gross-Zagier formula42 proved by Yuan, Zhang

and Zhang should in principle lead to an analogous relationship be-

tween the Heegner point PM and the derivative L′(f/K, χL, 1) =

L′(f/F, χM , 1) = L′(E/F, χM , 1).

It would be interesting to formulate a precise recipe predicting the power of

2 that arises as a fudge factor in (32). The authors have not made a serious

attempt to do this.

4.3. Numerical examples

For N = 29, 37, 41 it is known (cf. Shiota36 and [6, § 6]) that there is a

unique Shimura elliptic curve defined over F = Q(
√

N) up to isogeny over

F .

The aim of this section is to provide numerical evidence for conjecture

4.1, which we have gathered by explicitly computing the points PM and P ?
M

for several ATR extensions M/F on each of these three elliptic curves. The

computation of the Heegner point PM was performed with the software

package PARI29 by exploiting formula (30) and the material in Shiota36

and [6, § 6] to produce a complex invariant zM ∈ C/ΛE mapping to PM

under the Weierstrass uniformisation. Similarly, the ATR point P ?
M was

computed by following the method explained in [8, Section 3].

In fact, for our experiments it was sufficient to compute the element

z?
M ∈ C/ΛE mapping to P ?

M under the Weierstrass uniformisation. For

several values of M , the invariants zM and z?
M were calculated to roughly

50 digits of decimal accuracy, and the constants s and ℓ in (32) could

then be obtained by picking a basis (e1, e2) for ΛE and searching for a

linear dependence relation with small integer coefficients between the four

complex numbers zM , z?
M , e1 and e2, using Pari’s lindep command.

This approach represents a dramatic improvement over the one that

had to be followed in [8, Section 3] in which only the point P ?
M was com-

puted. In practice, recognizing P ?
M as an algebraic point using standard

rational recognition programs is difficult once the height of P ?
M becomes

large. The strategy followed in [8, Section 3] consists in performing an in-

dependent search for a generator of E(M)–a computationally difficult and

time-consuming task–in order to check that P ?
M indeed agreed with a point

of small height on E(M) to within the calculated decimal accuracy. The

new approach based on the Heegner point PM makes the experimental ver-
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ifications of the conjectures of [8, §2] much more systematic and efficient,

and allows them to be carried out for much further ranges.

In the tables below, we have followed almost the same notations as

in [8, §3]. In particular, we have written M = F (β) with β2 ∈ F , and

denoted by DM = NmF/Q(disc(M/F )) the absolute discriminant. (Note

that K is used in Darmon-Logan8 to denote the field that we call M in

the present work.) As before, L/K denotes the quadratic extension sitting

in the Galois closure of M as in the field diagram (26), and we denote

DK = disc(K/Q) and DL = NmK/Q(disc(L/K)) and ℓ2 ∈ Q× is the value

we found numerically for the constant alluded to in Conjecture 4.1. Finally

note that ℓ and s uniquely determine PM up to sign and E(M)tor.

The case N = 29. Let δ = 2 + ω = (5 +
√

29)/2. Shiota’s Weierstrass

equation for EN is given by

E29 : y2 + xy + δ2y = x3,

whose discriminant is ∆29 = −δ10. Our calculations convincingly suggest

that

ℓ2 =
L(E29/F, 1)

ΩE29/F
= 1

and that the point P ?
M and s are given in the following table. The table sug-

gests that s = −2 in all cases that have been calculated for this particular

curve.

DM = DK · c2 β2 DL |Pic(Oc)| P?
M s

−7 = −7 · 1 −1 + ω 29 1 (β2 + 3, − 5
2

β3 − 3β2 − 8β − 19
2

) −2

−16 = −4 · 22 2 + ω 22 · 29 1 (
β2

2
, − 5

4
β3 − 11

4
β2 − β

4
− 1

2
) −2

−23 = −23 · 1 17 + 8ω 29 3 ( 1
8
(11β2 + 5), − 13

8
β3 − β2 − 7

8
β − 1

2
) −2

−351 = −35 · 1 19 + 9ω 29 2 ( 1
5
(2β2 + 1), − 59

225
β3 − 43

90
β2 − 89

450
β − 29

90
) −2

−352 = −35 · 1 4 + 3ω 29 2 (− 1
15

(4β2 + 11), − 1
150

(17β3 + 105β2 + 43β + 270)) −2

−59 = −59 · 1 61 + 28ω 29 3 (− 1
9

, − 11
1512

β3 − 5
56

β2 − 1
1512

β + 1
504

) −2

−63 = −7 · 32 3ω 32 · 29 4 ( 7
9

β2 + 5, 26
27

β3 − 11
9

β2 + 57
9

β − 8) −2

−64 = −4 · 42 4 + 2ω 24 · 29 2 (− 1
4

, − 3
8

β3 − 5
4

β2 − β
4

− 3
8
) −2

−80 = −20 · 22 1 + ω 22 · 29 4 ( 1
10

(43β2 + 51), − 517
50

β3 − 93
20

β2 − 1233
100

β − 111
20

) −2

−91 = −91 · 1 7 + 5ω 29 2 ( 1
13

(98β2 + 387), − 18939
845

β3 − 111
26

β2 − 150109
1690

β − 439
26

) −2

−175 = −7 · 52 −5 + 5ω 52 · 29 6 (− 6
50

β2 − 2, 1
10

β3 − 11
25

β2 + 98
100

β − 45
10

) −2

Table 2: ATR extensions of Q(
√

29) and ATR points on E29

The case N = 37. Letting ω = 1+
√

37
2 , Shiota’s Weierstrass equation for



March 28, 2011 21:14 WSPC - Proceedings Trim Size: 9in x 6in oda

30

E37 is given by

E37 : y2 + y = x3 + 2x2 − (19 + 8ω)x + (28 + 11ω),

and its discriminant is ∆37 = (5 + 2ω)6. Note that 5 + 2ω is a fundamental

unit of F . Our calculations are consistent with the fact that

ℓ2 =
L(E37/F, 1)

ΩE37/F
= 1.

More precisely, the Stark-Heegner point P ?
M and s are given in the tables

below.

DM = DK · c2 β2 DL |Pic(Oc)| P?
M s

−3 = −3 · 1 −3 + ω 37 1 (− 2
3

β − 13
3

, − 61
18

β3 − 169
9

β − 1
2
) −1

−7 = −7 · 1 1 + ω 37 1 ( 2
7

β − 3
7

, − 57
98

β3 − 44
49

β − 1
2
) −1

−11 = −11 · 1 38 + 15ω 37 1 (− 2
165

β2 − 104
165

, − 17
1210

β3 − 2
605

β − 1
2
) −1

−16 = −4 · 22 5 + 2ω 22 · 37 1 (
β2

8
− 5

8
,

β3

8
− 1

2
) −2

−48 = −3 · 42 2 + ω 42 · 37 3 ( 115
588

β2 − 80
147

, − 11225
24696

β3 − 1529
6174

β − 1
2
) −1

−64 = −4 · 42 10 + 4ω 42 · 37 2 (− β2

8
− 3

4
, − β3

8
− 1

2
) −2

−67 = −67 · 1 193 + 76ω 67 1 (−1, − 1
2

+ 1
2

β) −2

−75 = −3 · 52 −15 + 5ω 52 · 37 3 ( 196
775

β2 + 136
27

, − 1559
12150

β3 − 25732
6075

β − 1/2) −1

−192 = −3 · 82 18 + 8ω 82 · 37 6 ( 7
3

+ 7
6

ω, − 1
2

+ 1
36

( 85
3

+ 14
3

√
37)β) −2

−275 = −11 · 52 445 + 180ω 52 · 37 4 ( 2
11

+ 4
11

ω, − 1
2

+ 1
242

( 62
7

+ 9
7

√
37)β) −2

−448 = −7 · 82 2 + 2ω 82 · 37 4 ( 45
7

+ 39
14

ω, − 1
2

+ 1
196

( 689
2

√
37 + 4191

2
)β) −2

Table 3: ATR extensions of Q(
√

37) and ATR points on E37

The case N = 41. Shiota’s Weierstrass equation for E41 is

E41 : y2 = x3 − 17

48
x +

(

− 5

32
+

1

27

√
41

)

The computations in [8, Section 3] used instead curve E′
41 : y2 + xy =

x3 − (32 + 5
√

41)x. This Weierstrass equation was first found by Oort,

and there is an explicit isogeny ψ : E′
41 → E41 of degree 2. Following

the approach in [8, Section 3], points P ?
M listed below are points on E′

41.

Since the isogeny ψ is explicit, it is an easy task to transfer them to points

on E41, and this is what we did in order to compare the Heegner points

PM ∈ E41(M) with the Stark-Heegner points ψ(P ?
M ) ∈ E41(C). In this

case, calculations suggest once again that

ℓ2 =
L(E41/F, 1)

ΩE41/F
= 1,
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while the values of the exponent s also appear in the table below.

DM = DK · c2 β2 DL |Pic(Oc)| P?
M s

−4 = −4 · 1 27 + 10ω 41 1 (− 1
4

, − β
2

+ 1
8
) 1

−8 = −8 · 1 −248 + 67ω 41 1
`

− 1
268

(3β2 + 1481), 1
536

(−254β3 + 3β2 − 108954β + 1481)
´

0

−20 = −20 · 1 697 + 258ω 41 2 ( 1
43

(β2 − 9), 1
258

(−β3 − 3β2 + 181β + 27)) 0

−23 = −23 · 1 398 + 144ω 41 3
` −71027β2−1271153

9884736
,

−1095348β3+9304537β2+16459332β+166521043
2589800832

´

0

−32 = −8 · 22 1 + ω 22 · 41 2
` 29β2+49

4
, 1

16
(−359β3 − 58β2 − 611β − 98)

´

0

−36 = −4 · 32 6 + 3ω 32 · 41 4
`

−8 + 2ω, ( 7
2

− 1
2

√
41)(1 + 5β)

´

−1

−40 = −40 · 1 35 + 13ω 41 2
`

9 + 27
8

ω, − 171
32

− 27
32

√
41 + 3

32
( 109

2
+ 17

2

√
41)β

´

−1

−100 = −4 · 52 10 + 5ω 52 · 41 2
` 9
2

+ 7
4

ω, − 43
16

− 7
16

√
41 + ( 3

8

√
41 + 19

8
)β

´

−2

−115 = −115 · 1 177 + 68ω 41 2 (− 31
9

− 11
9

ω, 73
36

+ 11
36

√
41 + 1

108
( 59

5
+ 9

5

√
41)β) −1

−160 = −40 · 22 4ω 22 · 41 4 (32 + 12ω, −19 − 3
√

41 + ( 173
2

+ 27
2

√
41)β) −2

−368 = −23 · 42 43 + 16ω 42 · 41 6 ( 29
4

+ 11
4

ω, − 69
16

− 11
16

√
41 + ( 13

4
+ 1

2

√
41)β) −2

Table 4: ATR extensions of Q(
√

41) and ATR points on E′
41

4.4. Proof of Proposition 4.1.

The aim of this section is proving Proposition 4.1, which was left un-

proved in §4.1 and asserts that the relative discriminant of L/K factors

as d(L/K) = c · N , where c is a positive integer such that L ⊂ Lc (and

similarly L′ ⊂ L′
c).

Recall our assumption on N = disc(F ) to be odd, and thus square-

free. Here we shall assume for notational simplicity that K 6= Q(
√
−1) and

Q(
√
−3), so that O×

K = {±1}; we leave to the reader the task of filling the

details for the two excluded fields.

Let us recall first the following classical lemma ( [16, §38-39]; cf. also

Daberkow7) on Kummer extensions of local fields, which applies in partic-

ular to our quadratic extension L/K.

Lemma 4.3. Let k be a local field containing all p-th roots of unity for some

prime p and let vk : k× → Z denote the valuation map of k, normalized

so that vk(k×) = Z. Let K/k be a Kummer extension of degree p with

discriminant dK/k. Then K = k( p
√

ϑ) for some ϑ ∈ k such that vk(ϑ) ∈
{0, 1}. Moreover,

(i) If vk(ϑ) = 1, vk(dK/k) = pvk(p) + (p − 1).

(ii) Assume vk(ϑ) = 0. If vk(p) = 0, then vk(dK/k) = 0. Otherwise, write

pk for the unique maximal ideal in k. We have:

(a) If equation xp ≡ ϑ(mod p
pvk(p)/(p−1)
k ) can be solved in k, then

vk(dK/k) = 0.

(b) If not, vk(dK/k) = pvk(p) + (p − 1)(1 − η), where η = max
ℓ

{0 ≤
ℓ < pvk(p)/(p − 1)

∣

∣ xp ≡ ϑ(mod pℓ
k) can be solved in Ok}.
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We use the above result in order to deduce several lemmas which shall

allow us to reduce the proof of Proposition 4.1 to the case in which L/K is

unramified at dyadic primes.

Lemma 4.4. Let p ∤ disc(K) be a prime and put p∗ = 8 if p = 2, p∗ = p if

p ≡ 1(mod 4) and p∗ = −p if p ≡ −1(mod 4). Then K(
√

p∗) is contained in

the ring class field Hc of K associated to the order Oc of conductor c = |p∗|.

Proof. Suppose first that p is split in K and fix a prime p|p in K. Let

U = K×
p

⋂

K× ∏

v

O×
c,v,

where the intersection is computed by regarding K×
p as a subgroup of

∏

v K×
v by means of the usual embedding xp 7→ (1, ..., 1, xp, 1, ..., 1).

Since the map K×
p /U → IK/

(

K× ∏

v O×
c,v

)

is injective by [26, p. 173,

Prop. 5.2], it follows that U ⊂ K×
p ≃ Q×

p corresponds to Hc,P/Kp by local

class field theory for any prime P of Hc above p.

Write c = pr with r = 3 if p = 2, r = 1 if p is odd. Since 1 + prZp ⊆ U ,

1 + pr−1Zp 6⊂ U by [4, p. 197], an easy calculation shows that

U = {α

α

∣

∣ α ∈ V } · (1 + pr),

where V = {α ∈ K× ∣

∣ordv(α) = 0 ∀v 6= p}. Note that V = {±αn
0 , n ∈ Z} for

some α0 ∈ K× such that ordv(α0) = 0 for all v 6= p and ordp(α0) = n0 ≥ 1

is minimal. With this notation we have

U = {
(α0

α0

)n
, n ∈ Z} · (1 + pr). (33)

Suppose now that p remains inert in OK . Arguing similarly as before

we obtain that the open subgroup U ⊂ K×
p corresponding to Hpr,P/Kp by

local class field theory is U = K×
p ∩

(

K× ∏

v O×
pr,v

)

, i.e.

U = {α
∣

∣ α ∈ K×, ordv(α) = 0, ∀v 6= p} · (1 + prOKp
)

= {(±α0)
n

∣

∣ n ∈ Z} · (1 + prOKp
),

(34)

where α0 ∈ K× is chosen such that ordv(α0) = 0 for all v 6= p and

ordp(α0) ≥ 1 is minimal. We can thus take α0 = pn0 for some n0 ≥ 1.

Put K ′ = K(
√

p∗). Any prime p in K above p ramifies in K ′. Fix one

such prime p and put p = ℘2 in K ′ so that K ′
℘ = Kp(

√
p∗). By class

field theory, in order to prove that K ′ ⊂ Hc it is enough to show that

U ⊂ NmK′
p/Kp

(K
′×
p ). Since d(K ′/K) = p∗ by Lemma 4.3, K ′ is contained

in the ray class field Kc of conductor c of K and it thus suffices to verify
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that α0α0 (resp. ±α0) lies in NmK′
p/Kp

(K
′×
p ) if p splits (resp. remains inert)

in K.

Assume p = 2. Then ±1,±2 ∈ NmK′
℘/Kp

(K
′×
℘ ) because −1 = Nm(1 +√

2) and −2 = Nm(
√

2). The lemma thus follows automatically if 2 is inert

in K, while if 2 splits, it follows because α0α0 is a power of 2, hence α0α0

lies in either ±Q×2

2 or ±2Q×2

2 .

Assume p is odd. Then −p∗ = Nm(
√

p∗) ∈ NmK′
p/Kp

(K
′×
p ). Suppose

first p splits in K: as before, it is enough to show that p ∈ NmK′
p/Kp

(K
′×),

which we already did if p∗ = −p. That the same holds when p∗ = p follows

because p ≡ 1(mod 4) implies that −1 ∈ NmK′
p/Kp

(K
′×
p ). Suppose now p

remains inert in K; we must show that ±p ∈ NmK′
p/Kp

(K
′×
p ). If p∗ = p

this follows by the same reason as above; if p∗ = −p, then p ≡ 3 (mod 4),

Kp = Qp(
√
−1) and thus −1 ∈ K×2

p , which allows us to conclude.

Note that a direct consequence of the previous lemma is that for any

odd square free integer m relatively coprime with disc(K) either K(
√

m)

or K(
√−m) is contained in Hm.

Lemma 4.5. d(L/K) = 2tc0N for some integer 0 ≤ t ≤ 3 and some

positive integer c0 ≥ 1 relatively coprime to 2 and N . If further 2 is ramified

in K, 0 ≤ t ≤ 2.

Proof.

Write K = Q(
√
−d0) for some square free integer d0 > 0 and L =

K(
√

β) for some β ∈ Z + Z
√
−d0 and square free in K. Without loss of

generality, N can be written as NN where N divides the square free part

B of (β) in K and N is relatively coprime to B.

Write B2 for the largest ideal which divides B and is relatively coprime

to any prime of K above 2. Since vKp′ (2) = 0 and vKp′ (B2) = 1 for any

prime p′ | B2, Lemma 4.3 shows that vKp′ (dLP′/Kp′ ) = 1, where P′ is the

prime in L above p′, thus the prime-to-2 part of d(L/K) is B2. Besides,

B2 = N ·C with (C,N ) = 1. Since NmK/Q(β)/N is a perfect square in Z, C

is principal and can be written as C = (c0) for some integer c0 > 0. Hence

N c0 | d(L/K) | 2tN c0 for some integer t ≥ 0.

If 2 is unramified in K we have vKp
(2) = 1 for any prime p | 2 in K and

it follows from Lemma 4.3 that d(L/K) = N c02
t with 0 ≤ t ≤ 3.

Suppose now that 2 ramifies in K with (2) = p2 in K. Then, since

vKp
(2) = 2 and NmK/Q(β)/N is a perfect square in Z, we fall into case (ii)

of Lemma 4.3: for any prime P in L above p, LP can be written as Kp(
√

ϑ)
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for some ϑ ∈ K×
p such that vkp

(ϑ) = 0. Suppose vKp
(dLP/Kp

) 6= 0. Then

Lemma 4.3 (b) asserts that

vKp
(dLP/Kp

) = 5 − η,

where

η = max{0 ≤ ℓ < 4
∣

∣ ∃ι ∈ OKp
, ι2 ≡ ϑ(mod pℓ)}.

A classical result18,17 of Hilbert implies that vKp
(dLP/Kp

) is even. Hence

d(L/K) = N2tc0 with 0 ≤ t ≤ 2.

Lemma 4.6. It is enough to prove Proposition 4.1 when d(L/K) = 2tN
and 0 ≤ t ≤ 2.

Proof. Lemma 4.5 shows in general d(L/K) = 2tc0N , where 0 ≤ t ≤ 3

and c0 ≥ 1. Suppose first that t = 3, then 2 is unramified in K by the

same lemma. Let P and p be prime ideals in L and K respectively such

that P|p|2. Then LP can be written as Kp(
√

ϑ) for some ϑ ∈ K with

vKp
(ϑ) ∈ {0, 1}. Define L′ = K(

√
ϑ′), where ϑ′ is defined as

ϑ′ =

{

ϑ/2 if vKp
(ϑ) = 1;

ϑ if vKp
(ϑ) = 0.

Hence vKp
(ϑ′) = 0. Let P′ be a prime in L′ above p. Then either case

(a) or (b) of Lemma 4.3 applies. In case (a), vKp
(dL′

P′/Kp
) = 0. In case

(b), vKp
(dL′

P′/Kp
) = 3 − η, where 0 ≤ η ≤ 2, hence p is ramified in L′,

so residue field of L′
P′ is equal to that of Kp and consequently η ≥ 1. We

conclude that vKp
(dL′

P′/Kp
) ≤ 2. By Lemma 4.4, L ⊂ K(

√
2)L′ ⊂ H8L

′

with d(L′/K) = 2t′c0N for some integer 0 ≤ t′ ≤ 2.

Suppose now c0 > 1. Setting L′′ = K(
√

δϑ′/c0) we have d(L′′/K) =

2t′N , where δ ∈ {±1} such that K(
√

δc0) ⊂ Hc0
as described in Lemma

4.4. By the same lemma, L′ ⊂ K(
√

δc0)L
′′ ⊂ Hc0

L′′.
So L ⊂ H8L

′ ⊂ H8Hc0
L′′ = H8c0

L′′ such that L′′/K is a quadratic

extension and d(L′′/K) = 2t′N for some integer 0 ≤ t′ ≤ 2. This justifies

the claim that we only need to prove proposition 4.1 when 0 ≤ t ≤ 2 and

d(L/K) = 2tN .

Thanks to Lemma 4.6 we can assume in what follows that c0 = 1 and

0 ≤ t ≤ 2.
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Lemma 4.7. There is a unique quadratic extension L2t/K2t contained in

K2tN such that the set of primes in K2t which ramify in L2t is the set of

primes above N . We have L ⊂ L2t .

Proof. Assume first t = 0 or 1. Then Gal(K2tN /K2t) ∼=
(
∏

p|N (OK/p)×)/{±1} ∼= (Z/NZ)×/{±1}. This is obvious for t = 0, and

holds for t = 1 because K2KN = K2N . Extension L2t/K2t corresponds by

Galois theory to the unique primitive even quadratic Dirichlet character ε

of conductor N .

Suppose now t = 2. Then

Gal(K2tN /K2t) ∼= G :=
(

{±1} × (Z/NZ)×
)

/{±1},

where 1 = (1,1) is the identity element of {±1} × (Z/NZ)× . Again, any

extension L2t/K2t as in the statement corresponds to a non-trivial character

ε′ : G → {±1} which is trivial on {±1} × {1} and is even and primitive on

{1} × (Z/NZ)×. As above, the only such character is ε′ = 1 × ε.

Finally, note that LK2t/K2t is a quadratic extension contained in K2tN .

Since disc(LK2t/K2t) = N it follows that L2t = LK2t and thus L ⊂ L2t .

Recall the quadratic extension Lc of the ring class field Hc introduced

in §4.1, over which the Heegner points P+
c and P−

c ∈ CM(c) are rational.

Lemma 4.7 reduces the proof of Proposition 4.1 to showing that Lc = Lc.

Since Lc was defined as the quadratic extension of Hc cut out by the kernel

of the single even primitive character ε of conductor N , it suffices to show

that H2t = K2t for 0 ≤ t ≤ 2.

When t = 0 and we obviously have H1 = K1. If t = 1 or 2, the ratio of

the ray class number h2t by the ring class number h(O2t) is (cf. [26, p.154]

for this and the remaining notations):

h2t

h(O2t)
=

[U : U2t,1]
−1Nm(2t)

∏

p|2t(1 − 1
Nm(p) )

2t

[O×
K :O×

2t ]

∏

p|2t(1 −
(

dK

p

)

1
p )

=































[O×
K :O×

2t ]

[U :U2t,1]
· 22t

(

1− 1
4

)

2t
(

1−
(

dK
2

)

1
2

) if 2 is inert in K,

[O×
K :O×

2t ]

[U :U2t,1]
· 22t

(

1− 1
2

)2

2t
(

1−
(

dK
2

)

1
2

) if 2 is split in K,

[O×
K :O×

2t ]

[U :U2t,1]
· 22t

(

1− 1
2

)

2t if 2 is ramified in K.

=
[O×

K : O×
2t ]

[U : U2t,1]
· 2t−1.

(35)
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Since K 6= Q(
√
−1) and Q(

√
−3), [O×

K : O×
2t ] = 1. If t = 1, then U = U2t,1,

so K2 = H2. If t = 2, then [U : U2t,1] = 2, and therefore K22 = H22 .
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11. J. Gärtner. Points de Darmon et variétés de Shimura. Thèse de Doctorat,
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Princeton Univ. Press, Princeton, NJ (1975).
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33. D.E. Rohrlich. Nonvanishing of L-functions and structure of Mordell-Weil

groups. Journal für di Reine und Angewand. Math. 417 (1991), 1–26.
34. D.E. Rohrlich. Variation of the root number in families of elliptic curves.

Compositio Math. 87 (1993) 119–151.
35. G. Shimura. Introduction to the arithmetic theory of automorphic functions.

Reprint of the 1971 original. Publications of the Mathematical Society of
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