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Abstract

Let E be an elliptic curve over Q attached to a newform f of weight two on Γ0(N),

and let K be a real quadratic field in which all the primes dividing N are split. This

note relates the canonical R/Z-valued “circle pairing” on E(K) defined by Mazur and

Tate [MT1] to a period integral I ′(f, K) defined in terms of f and K. The resulting

conjecture can be viewed as an analogue of the classical Birch and Swinnerton-Dyer

conjecture, in which I ′(f, K) replaces the derivative of the complex L-series L(f, K, s),

and the circle pairing replaces the Néron-Tate height. It emerges naturally as an

archimedean fragment of the theory of anticyclotomic p-adic L-functions developed in

[BD1], and has been tested numerically in a variety of situations. The last section

formulates a conjectural variant of a formula of Gross, Kohnen and Zagier [GKZ] for

the Mazur-Tate circle pairing.
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Introduction

Let E be an elliptic curve over Q of conductor N . Fix a real quadratic field
K ⊂ R, and let ε

K
> 1 denote the fundamental unit of K of positive norm.

Write E(K)+ (resp. E(K)−) for the subgroup of the Mordell-Weil group E(K)
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on which the generator of Gal(K/Q) acts as multiplication by 1 (resp. −1), so
that E(K)+ = E(Q).

In [MT1], §3.5, Mazur and Tate define (under the assumption that K has
class number one) a canonical Z-bilinear “circle pairing”

E(K)− × E(Q)−→R/(Z · log ε
K

), (1)

and raise the question of what meaning can be ascribed to this pairing. (Cf.
remark 3.5.3 of [MT1].)

By the results of [W], [TW] and [BCDT], the elliptic curve E is known
to be modular; let f be the associated normalised eigenform of weight 2 on
Γ0(N). This note formulates a conjecture relating the circle pairing of (1) to a
period integral I ′(f,K) defined in terms of f and K. Conjecture 3.1 of section
3 should be viewed as an analogue of the classical Birch and Swinnerton-Dyer
conjecture, in which I ′(f,K) replaces the derivative of the complex L-series
L(f,K, s), and the circle pairing replaces the Néron-Tate height. It emerges
naturally as an archimedean fragment of the theory of anticyclotomic p-adic
L-functions developed in [BD1], and has been tested numerically in a variety of
situations which are described in section 4. Section 5 formulates a conjectural
variant of a formula of Gross, Kohnen and Zagier [GKZ] for the Mazur-Tate
circle pairing whose proof would give strong evidence for conjecture 3.1.

1 The circle pairing

For any place v of K, let Kv denote the completion of K at v and let Ov (if v
is non-archimedean) be the ring of integers of Kv. Let

Uv =
{
O×

v if v is non-archimedean;
{1} if v is real.

Denote by Div0(E(Kv))
·
× Div0(E(Kv)) the set of pairs of degree 0 divisors

on E(Kv) with disjoint supports. The classical Néron-Tate canonical height on
E(K) is defined in terms of the local Néron symbols

[ , ]v : Div0(E(Kv))
·
× Div0(E(Kv))−→K×

v /Uv (2)

characterised uniquely (cf. Theorem 3 and remark (d) following its proof in
[Ne]) by the following properties:

1. The function [ , ]v is biadditive and symmetric;
2. For any principal divisor (f), and any divisor D with support disjoint from

that of (f),
[(f), D]v = f(D) (mod Uv);

3. The symbol [ , ]v is translation-invariant, i.e.,

[Dx
1 , Dx

2 ]v = [D1, D2], for all x ∈ E(Kv),

where Dx
i denotes the translate of the divisor Di by the point x;
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4. For fixed D, the function x 7→ [(x) − (x0), D]v is bounded on bounded
subsets of E(Kv)− supp(D).

The symbol (2) is defined using arithmetic intersection theory on the Néron
model of E over Ov when v is non-archimedean, and using capacity theory
(Green’s functions) on E(Kv) when v is archimedean. (Cf. [Ne] and the discus-
sion in §2 and 3 of [MT1].)

Let A×
K ⊂

∏
v K×

v denote the group of idèles of K. It is convenient to
package the local symbols [ , ]v in the obvious way into an “idèlic symbol”

[ , ] : Div0(E(K))
·
× Div0(E(K))−→A×

K/(
∏
v

Uv).

Consider the quotient CK := A×
K/(

∏
v Uv)K× of the idèle class group of K. If

(f) is a principal divisor on E(K), and D an arbitrary degree 0 divisor with
support disjoint from that of (f), note that

[(f), D] = (f(D)) belongs to K×,

so that [ , ] descends to a CK-valued pairing

〈 , 〉 : E(K)× E(K)−→CK .

If | · | : CK−→(R+)× denotes the homomorphism induced by the idèlic norm
(which is trivial on K× by the product formula) then the classical Néron-Tate
canonical height is given by the formula

〈P,Q〉NT := log(|〈P,Q〉|).

(Cf. prop (2.3.1) of [MT1].)
Let Cl(K) and Cl+(K) denote the class group and narrow class group of K

respectively, and denote by h and h+ their orders, so that

h+ =
{

h if OK has a unit of negative norm;
2h otherwise.

Let C−
K ⊂ CK denote the kernel of the idèlic norm on CK . It is a compact

group, sitting in the middle of an exact sequence

0−→R/(Z · log ε
K

) α−→ C−
K

β−→ Cl+(K)−→0,

where β is the canonical map which assigns to the idèle class c the corresponding
narrow ideal class, and α sends x to the class of the idèle (1, . . . , 1, ex, e−x).

Let τ be the generator of Gal(K/Q), and let η : CK−→C−
K be the homo-

morphism sending x to x/xτ . The information lost in the passage from 〈 , 〉 to
〈 , 〉NT is encoded for the most part in the Mazur-Tate circle pairing

〈 , 〉circle : E(K)× E(K)−→C−
K , defined by 〈P,Q〉circle = η(〈P,Q〉).
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The terminology arises from the fact that 〈 , 〉circle takes its values in C−
K ,

an extension of a finite group by a circle. The Mazur-Tate circle pairing is a
Z-bilinear form on E(K) satisfying the following Galois equivariance property:

〈P τ , Qτ 〉circle = −〈P,Q〉circle.

In fact, the subspaces E(Q) and E(K)− are isotropic for 〈 , 〉circle; for if P and
Q belong to the same eigenspace for τ , then the idèle class 〈P,Q〉 is fixed by τ
and hence is in the kernel of η. For further discussion of the Mazur-Tate circle
pairing, see [MT1], [MT2], [Ca], [Bo], and [Ha].

Let r+ and r− denote the ranks of E(Q) and E(K)− respectively, and let
(P+

1 , . . . , P+
r+) and (P−

1 , . . . , P−
r−) denote bases for E(Q) and for E(K)− respec-

tively, modulo torsion. The pairing matrix attached to the Mazur-Tate circle
pairing and to the basis (P+

1 , . . . , P+
r+ , P−

1 , . . . , P−
r−) of E(K)⊗Q is of the form(

0r+ M
M t 0r−

)
,

where M is an r+ × r− matrix with entries in C−
K given by

Mij = 〈P+
i , P−

j 〉circle.

It would be tempting to define the Mazur-Tate regulator in this context (or
rather, a quantity akin to its square root) by the formula

R
1
2
circle

?=
{

det(M) if r+ = r−;
0 otherwise.

But since the Mazur-Tate pairing matrix has entries in a product of a finite
group by a circle, which is not endowed with a ring structure, one is hard
pressed to define its determinant in a sensible way – the one notable exception
arising when r+ = r− = 1!

Thus we set

R
1
2
circle =

{
〈P+

1 , P−
1 〉 if r+ = r− = 1;

0 otherwise.

This definition (or lack thereof, in the higher-rank case) reflects a difficulty in
our variant of the Birch and Swinnerton-Dyer conjecture which arises on two
levels:

1. On the “arithmetic side”, we are unable to propose an interesting definition
of a regulator for a pairing matrix whose entries take values in a circle
group, when r+ or r− is > 1.

2. On the “analytic side”, as will be seen in the next section, the derived pe-
riod I ′(f,K) defined there and playing the role of L′(f,K, 1) is conjectured
to vanish when r+ or r− is strictly greater than one, and no obvious can-
didate for a “higher derived period” playing the role of higher derivatives
of L-series has emerged from the formalism described in section 2.
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2 Derived periods

Let
ωf := 2πif(z)dz =

∑
n>0

anqn dq

q
, q = e2πiz

denote the Γ0(N)-invariant differential on H associated to f .
Assume in the rest of the article that the real quadratic field K satisfies

the discriminant of K is prime to N . (3)

Definition 2.1 An algebra embedding

Ψ : K−→M2(Q)

is said to be optimal (with respect to N) if

Ψ(K) ∩M0(N) = Ψ(OK),

where M0(N) is the algebra of matrices with entries in Z which are upper-
triangular modulo N .

Lemma 2.2 An optimal embedding of K of level N exists if and only if all the
prime divisors of N are split in K/Q.

Proof: If Ψ is an optimal embedding with respect to N , then the map

oΨ : OK−→Z/NZ

which to x associates the lower right-hand entry of Ψ(x) (taken modulo N)
is a ring homomorphism; such a homomorphism can only exist, in light of as-
sumption (3), if all the primes dividing N are split in K/Q. Conversely, if this
condition is satisfied then there is a cyclic ideal N of OK of norm N . Choose a
Z-basis (e1, e2) of OK in such a way that e1 belongs to N . The action of OK on
itself by left multiplication, expressed in this basis, yields the desired optimal
embedding. More precisely,

Ψ(α) =
(

a b
c d

)
, where

{
αe1 = ae1 + ce2,
αe2 = be1 + de2.

(4)

�
Motivated by lemma 2.2 assume that

all primes dividing N are split in K/Q. (5)

In that case one has
sign(E,K) = 1, (6)

where sign(E,K) denotes the sign in the functional equation for L(E,K, s). In
particular, the Birch and Swinnerton-Dyer conjecture predicts that E(K) has
even rank when assumption (5) holds.

Fix a ring homomorphism o0 : OK−→Z/NZ (or, what amounts to the same
thing, a cyclic ideal ker o0 of OK of norm N , or a choice of square root of
Disc(K) modulo N).
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Definition 2.3 The optimal embedding Ψ is said to be oriented (with respect
to the choice of o0) if the homomorphism oΨ associated to it as in the proof of
lemma 2.2 is equal to o0.

Note that if Ψ is an oriented optimal embedding, then so is the conjugate
embedding αΨα−1 for any α ∈ M0(N)×.

One may attach to an ideal class C of K an oriented optimal embedding ΨC
by choosing a representative ideal c ∈ C of norm prime to N , a Z-basis (e1, e2)
for c such that e1 belongs to c ∩ N , and defining Ψ as in (4). The resulting
embedding is independent of the choice of c and (e1, e2) up to conjugation by
M0(N)×, so that the assignment C 7→ ΨC sets up a bijection{

Ideal classes
of K

}
'−→

{
Oriented optimal embeddings
of OK into M0(N)

}
/M0(N)×.

If C is a narrow ideal class, one may also insist that the basis of c be oriented,
i.e., that

det
(

e1 τe1

e2 τe2

)
> 0.

Then ΨC becomes well defined up to conjugation by Γ0(N), the group of ele-
ments of M0(N)× of positive determinant, and the assignment C 7→ ΨC sets up
a bijection{

Narrow ideal classes
of K

}
'−→

 Oriented optimal
embeddings
of OK into M0(N)

 /Γ0(N).

Thanks to these identifications, the set of oriented optimal embeddings of OK

into M0(N), taken up to conjugation by M0(N)× (resp. Γ0(N)) becomes a prin-
cipal homogeneous space for the action of Cl(K) (resp. Cl+(K)). In particular,
we have:

Lemma 2.4 There are exactly h (resp. h+) distinct oriented optimal embedding
of K of level N , up to conjugation by M0(N)× (resp. Γ0(N)).

We now associate to f and K a canonical derived period I ′(f,K) ∈ C−
K whose

value is conjecturally related to the circle regulator of the previous section. The
description is simpler when K has narrow class number one, so we begin by
treating this case, postponing the general case to the end of the section.

Let Ψ be any optimal embedding of K into M2(Q), which is unique up to
conjugation in Γ0(N), by lemma 2.4. Let

γΨ := Ψ(ε
K

) ∈ Γ0(N).

Choose an arbitrary base point x in the extended Poincaré upper half plane
H∗ = H ∪ P1(Q). To this data is associated the period integral

IΨ,x =
∫ γΨx

x

ωf . (7)
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It follows directly from the Γ0(N)-invariance of ωf that the period IΨ,x is inde-
pendent of the choice of x. Hence one may, when it is convenient, suppress the
base point x from the notation and set IΨ := IΨ,x. A direct computation also
shows that, if α belongs to Γ0(N), then

IαΨα−1 = IαΨα−1,x = IΨ,α−1x = IΨ.

Hence IΨ depends only on the Γ0(N)-conjugacy class of Ψ. Set

I(f,K) = IΨ, (8)

for any choice of optimal embedding Ψ and base point x. By the assumption
that K has narrow class number one, this period does not depend on the choice
of Ψ, thanks to lemma 2.4. Furthermore, this canonical period is related to
special values of L-series as follows:

Lemma 2.5 The period I(f,K) vanishes if and only if L(f,K, 1) = 0.

Sketch of proof. A formula which is spelled out precisely in [Po] (see also chapter
II of [GKZ]) implies that

I(f,K)2 ·= L(f,K, 1),

where the symbol ·= denotes equality up to an explicit non-zero fudge factor.
The result follows from this. �

Assume henceforth that L(f,K, 1) = 0, so that

I(f,K) = 0. (9)

The group Ψ(K×) acting by Möbius transformations on P1(C) has two fixed
points xΨ and yΨ in P1(R). Order these fixed points in such a way that γΨ has
xΨ as a repulsive fixed point, and yΨ as an attractive fixed point.

Under assumption (9) it becomes natural to consider the following “derived
period integral”

I ′Ψ,x =
∫ γΨx

x

log
(

z − xΨ

z − yΨ

)
ωf . (10)

To analyse the dependence of this quantity on the choice of base point x ∈ H∗,
note that

I ′Ψ,x − I ′Ψ,y =
∫ y

x

log
(

z − xΨ

z − yΨ

)
ωf −

∫ γΨy

γΨx

log
(

z − xΨ

z − yΨ

)
ωf .

Performing the change of variable w = γΨ
−1z in the second term, and noting

that (
γΨw − xΨ

γΨw − yΨ

)
= ε2

K
·
(

w − xΨ

w − yΨ

)
yields

I ′Ψ,x − I ′Ψ,y = 2 log ε
K
·
∫ y

x

ωf . (11)
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Thus the value of I ′Ψ,x depends strongly on the choice of x. One resolves this
ambiguity by requiring that

the base point x belongs to P1(Q) ⊂ H∗. (12)

A theorem of Manin and Drinfeld [Man] asserts that the subgroup of C generated
by the expressions of the form

∫ y

x
ωf , where x and y belong to P1(Q), is a lattice

Λf which is commensurable to the Néron lattice of E. This result is crucial in
our definition of the derived period, for it implies

Lemma 2.6 The natural image of I ′Ψ,x in C/2Λf log ε
K

is independent of the
choice of x ∈ P1(Q). Furthermore it depends only on the Γ0(N)-conjugacy class
of Ψ.

Proof. The first assertion follows directly from (11). By a slight abuse of nota-
tion, we may therefore denote by I ′Ψ the natural image of I ′Ψ,x in C/2Λf log ε

K
,

for any choice of base point x ∈ P1(Q). To prove the second assertion, let

α =
(

a b
c d

)
be an element of Γ0(N). Then a direct calculation shows that

I ′αΨα−1,αx − I ′Ψ,x = cα · I(f,K), (13)

where

cα = log
(αz − αxΨ)(z − yΨ)
(αz − αyΨ)(z − xΨ)

= log
(

cyΨ + d

cxΨ + d

)
(14)

is a constant independent of z. It follows from (9) that

I ′αΨα−1 = I ′Ψ (mod 2Λf · log ε
K

). (15)

�
It is useful to supplement (15) by the following equation which describes the
variation of I ′Ψ under conjugation of Ψ by an element α ∈ M0(N)× − Γ0(N) of
determinant −1.

I ′αΨα−1 = Ī ′Ψ (mod 2Λf · log ε
K

). (16)

Lemmas 2.4 and 2.6 make it possible (under the narrow class number one hy-
pothesis) to associate to f and K a canonical “derived period”

I ′(f,K) ∈ C/(Λf · log ε
K

),

defined as the natural image of I ′Ψ,x, for any choice of optimal embedding Ψ of
OK in M0(N) and of base point x ∈ P1(Q).

Let Ω+ be the real period attached to f , defined as the unique positive
generator of the lattice Λf ∩ R.

Lemma 2.7 The period I ′(f,K) is fixed under complex conjugation. Its image
in C/(Λf · log ε

K
) belongs to the subgroup R/(Ω+ · log ε

K
).
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Proof. Let ε ∈ O×
K be a unit of negative norm (which can be chosen for instance

so that ε2 = ε
K

) and let α = Ψ(ε) ∈ M0(N)×. Since α commutes with Ψ(K×),
we have

αΨα−1 = Ψ, hence I ′αΨα−1 = I ′Ψ (mod 2Λf · log ε
K

).

The result now follows from (16). �
Let sign(E, Q) = ±1 denote the sign in the functional equation of the L-

series L(E/Q, s). This sign is known to be the negative of the eigenvalue of the
Atkin-Lehner involution acting on ωf .

Lemma 2.8 If sign(E, Q) = 1, then I ′(f,K) = 0.

Proof. Let αN =
(

0 −1
N 0

)
be the matrix in terms of which the Atkin-Lehner

involution is defined. Since αN normalises Γ0(N), the embedding αNΨα−1
N is

also an optimal embedding of K of level N . A direct computation using the
change of variables formula and the fact that wNf = −f shows that

I ′
αNΨα−1

N

= −I ′Ψ (mod 2Λf · log ε
K

). (17)

Observe that αNΨα−1
N , although it is an optimal embedding, is not oriented;

more precisely its orientation corresponds to the choice of the ideal N̄ = τN
rather thanN . Hence αNΨα−1

N is Γ0(N)-conjugate to the embedding Ψ′ = Ψ◦τ .
Note that γΨ′ = γ−1

Ψ , so that (xΨ′ , yΨ′) = (yΨ, xΨ). Hence

I ′
αNΨα−1

N

= I ′Ψ′ =
∫ γ−1

Ψ x

x

log
(

z − yΨ

z − xΨ

)
ωf (18)

=
∫ γΨx

x

log
(

z − xΨ

z − yΨ

)
ωf = I ′Ψ (mod 2Λf · log ε

K
).

The result follows after comparing (17) and (18). �
Because of lemma 2.8, it is natural to assume that sign(E, Q) = −1. The

Birch and Swinnerton-Dyer conjecture then predicts – in light of assumption
(6) – that both E(Q) and E(K)− have odd rank.

We now turn to the derived period in the general case where h+ is not
necessarily equal to 1. In this case we define an invariant J ′(f,K) ∈ C−

K , which,
when h+ = 1, is simply the class represented by the period I ′(f,K) with the
real period Ω+ factored out. The definition of J ′(f,K) (like the definition of
the group to which it belongs) is best given adelically1.

It is worthwhile to allow more generality by introducing a quadratic character
χ of the narrow ideal class group of K. The character χ is said to be even if
it is trivial on the group of principal ideals (so that it factors through the class

1The reader may wish in a first reading to skip the rest of this section and jump directly to
section 3 where the Birch and Swinnerton-Dyer-type conjecture relating I′(f, K) to the circle
pairing is described.
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group of K) and is said to be odd otherwise (in which case it cuts out, by class
field theory, a totally imaginary quadratic extension of K). We set the local
sign w to be 1 if χ is even, and −1 if χ is odd.

Let C1, . . . , Ch+ be a full set of representatives for the narrow ideal classes
of K, and let Ψ1, . . . ,Ψh+ denote representatives for the corresponding Γ0(N)-
conjugacy classes of oriented optimal embeddings of OK into M0(N). Setting

I(f, χ) =
h+∑
j=1

χ(Cj)IΨj
, (19)

one has (see the references given for lemma 2.5)

Lemma 2.9 The period I(f, χ) vanishes if and only if L(E/K,χ, 1) = 0.

The invariant J ′(f, χ) to be defined below (which we shall seek to interpret
when I(f, χ) = 0) plays the role of L′(E/K,χ, 1) in the conjectures of section
3. It is defined as a weighted linear combination of periods

J ′Ψj
∈ C−

K ,

indexed by the oriented optimal embeddings Ψj of OK into M0(N). Fix such an
embedding Ψ = Ψj , and let xΨ and yΨ ∈ P1(K) be the fixed points of Ψ(K×),
normalised as before. Choose a rational function gΨ ∈ K(x) satisfying

Div(gΨ) = (yΨ)− (xΨ).

Note that this condition makes gΨ well-defined up to multiplication by an ele-
ment of K×.

Let v be a prime of K, let p be the rational prime which lies below it, and let
Kv and kv denote the corresponding completion and residue field. Reduction
modulo v gives a natural map P1(Kv)−→P1(kv), denoted x 7→ x̄. Define a
compact open subset UΨ,v ⊂ P1(Qp) by the rule

UΨ,v =
{

P1(Qp) if p is inert or ramified in K/Q.
{t ∈ P1(Qp) such that t̄ 6= x̄Ψ and t̄ 6= ȳΨ}, otherwise.

The key properties of UΨ,v are summarised in the following two lemmas:

Lemma 2.10 If t1 and t2 belong to UΨ,v, then the cross ratio(
t1 − yΨ

t1 − xΨ

) (
t2 − yΨ

t2 − xΨ

)−1

=
gΨ(t1)
gΨ(t2)

belongs to O×
v .

Proof: If v is inert or ramified in K, then the expression on the left belongs to
K×

v and is of norm one. In any case, the reduction of the expression on the left
modulo a uniformiser πv (i.e., its image in P1(kv) under the reduction map) is
simply the cross-ratio of t̄1, t̄2, x̄Ψ, and ȳΨ. By definition of UΨ,v, the points
t̄1 and t̄2 are different from x̄Ψ and ȳΨ, and hence the lemma follows from the
familiar properties of the cross ratio. �
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Lemma 2.11 For all α ∈ Γ0(N),

UαΨα−1,v = αUΨ,v.

Proof: This follows directly from the fact that Γ0(N) ⊂ SL2(Ov) acts naturally
on P1(Kv) and P1(kv) in a manner which is compatible with the reduction map

P1(Kv)−→P1(kv).

�
For each finite place v of K, fix a choice of “local base points” tv ∈ UΨ,v,

and choose a base point t∞ ∈ P1(Q). Write

t = (. . . , tv, . . . ; t∞) ∈
∏
v

P1(Qv)× P1(Q)

for the infinite tuple corresponding to these choices.
Let Ωw be the unique positive generator of Λf ∩R if w = 1, and of i−1Λf ∩R

if w = −1. We define an element

J ′Ψ,t ∈ CK = A×
K/(

∏
v

Uv)K×

by specifying each of its local components,

(J ′Ψ,t)v ∈ K×
v /O×

v = Z, (J ′Ψ,t)∞i ∈ R×, i = 1, 2.

Each v of K (either finite, or one of the two archimedean places ∞1 or ∞2)
yields an embedding K(z)−→Kv(z) of rational function fields, and in this way
gΨ(z) gives rise to elements denoted gv

Ψ(z) in each Kv(z). The components of
J ′Ψ,t are defined as follows:

(J ′Ψ,t)v =
{

ordvgv
Ψ(tv) · Re(IΨ)Ω−1

+ if w = 1;
ordvgv

Ψ(tv) · Im(IΨ)Ω−1
− if w = −1.

(20)

(J ′Ψ,t)∞j =

 exp
(
Re

(∫ γΨt∞
t∞

log g
∞j

Ψ (z)ωf

)
Ω−1

+

)
if w = 1;

exp
(
Im

(∫ γΨt∞
t∞

log g
∞j

Ψ (z)ωf

)
Ω−1
−

)
if w = −1.

(21)

We note that

1. The idèle class in CK corresponding to J ′Ψ,t does not depend on the choice
of gΨ. This is because multiplying gΨ by a scalar in K× changes J ′Ψ,t by
the corresponding principal idèle.

2. For each non-archimedean place v, the local component (J ′Ψ,t)v does not
depend on the choice of base point tv that was made to define it. This
follows directly from lemma 2.10.

3. The archimedean components (J ′Ψ,t)∞j
do not depend on the choice of base

point t∞ ∈ P1(Q) that was made to define them. This follows from the
same manipulations as were used to derive formula (11).
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Finally we have

Lemma 2.12 The derived period J ′Ψ,t depends only on the Γ0(N)-conjugacy
class of Ψ.

Proof. Let Ψ′ = αΨα−1 be an oriented optimal embedding of OK into M0(N)
which is conjugate to Ψ under a matrix α ∈ Γ0(N). The fixed points for this
embedding are (xΨ′ , yΨ′) = (αxΨ, αyΨ), and we may set

gΨ′(z) = gΨ(α−1z);
γΨ′ = αγΨα−1;

UΨ′,v = αUΨ,v, hence t′v = αtv;
t′∞ = αt∞;
t′ = (. . . , t′v, . . . ; t′∞).

With these choices it follows by a direct computation (using change of variables
for the archimedean component) that

(J ′Ψ,t)v = (J ′Ψ′,t′)v for all v.

The lemma now follows from the fact that J ′Ψ,t does not depend on t. �

By an abuse of notation, let J ′Ψ denote the natural image of J ′Ψ,t in C−
K .

As before, let C1, . . . , Ch+ be a full set of representatives for the narrow ideal
classes of K, and let Ψ1, . . . ,Ψh+ denote representatives for the corresponding
Γ0(N)-conjugacy classes of oriented optimal embeddings of OK into M0(N).
Since J ′Ψj

depends only on Cj and not on the particular choice of representative,
we may define

J ′(f,K) =
h+∑
j=1

J ′Ψj
, (with w = 1).

J ′(f, χ) =
h+∑
j=1

χ(Cj)J ′Ψj
.

Question. In the simpler approach that was described when h+ = 1, the fact
that I ′(f,K) was well-defined depended on the vanishing of I(f,K) (cf. formula
(13)). The adelic approach we adopted in the general case, involving a more
careful integral normalisation of the factor gΨ(t) appearing in the integrand,
makes the derived periods J ′Ψ and J ′(f,K) well-defined in C−

K without any
assumption on the vanishing of the corresponding periods IΨ and I(f,K). What
meaning (if any) can be ascribed to J ′(f,K) when I(f,K) 6= 0?

3 The conjecture

We begin by formulating the main conjecture in the special case where h+ = 1,
following the notations of the previous section that were introduced for this
setting. Let e denote the exponent of the torsion subgroup of E(K).

12



Conjecture 3.1 The derived period I ′(f,K) is non-zero (and, even, of infinite
order) if and only if E(Q) and E(K)− both have rank one. In that case

I ′(f,K) · t = ±〈P+, P−〉circle ·
√

#LLI · Ω+
E ·

∏
p|N

cp (mod Ω+ · 1
e

log ε
K

), (22)

where

1. The points P+ and P− are generators for E(Q) and E(K)− respectively,
modulo torsion;

2. t is the index in E(K) of the group generated by P+ and P−;

3. LLI is the conjecturally finite Shafarevich-Tate group of E over K;

4. Ω+
E is the real Néron period for E/Q;

5. cp is the local Tamagawa factor attached to E/Qp.

Remark:
Note that the right-hand side in conjecture 3.1 can be re-written as

±R
1
2
circle ·

√
#LLI · Ω+

E ·
∏
p|N

cp,

and is analogous to the square root of the kind of expression in the leading term
of L(E/K, s) predicted by the classical Birch and Swinnerton-Dyer conjecture.
This is clear for the Tamagawa factors (since all the primes dividing N are split
in K/Q), for the factor Ω+

E (since K is real quadratic) and for the term involving
the order of the Shafarevich-Tate group. Finally it was explained in section 1
how R

1
2
circle should be thought of as the “square root” of a hypothetical circle

pairing regulator for E(K).
In the case where h+ > 1, let H be the extension of K which is cut out by

χ. Thus H = K if χ is the trivial character, and H is an unramified quadratic
extension of K otherwise.

Let σ be a generator for Gal(H/K), and let

E(H)χ := {P ∈ E(H) such that σP = χ(σ)P for all σ ∈ Gal(H/K)},
LLIχ := {α ∈ LLI(E/H) such that σα = χ(σ)α for all σ ∈ Gal(H/K)}

denote the χ-parts of the Mordell-Weil group E(H) and of the Shafarevich-Tate
group of E over H respectively.

Choose a lift of τ to Gal(H/Q). Since τ commutes with Gal(H/K), it acts
on E(H)χ, and one denotes by E(H)χ,± the eigenspaces for this action, and
by rχ,± the corresponding ranks. Considerations involving the signs on the
functional equation for L(E/K,χ, s) lead to the expectation that E(H)χ has
even rank, so that r+

χ and r−χ should have the same parity.
The adèlic pairing

〈 , 〉 : E(H)× E(H)−→CH

13



gives rise, by its functorial nature, to a pairing on E(H)χ with values in CK .
Composing this pairing with η : CK−→C−

K yields the corresponding circle pair-
ing

〈 , 〉circle : E(H)χ × E(H)χ−→C−
K ,

which satisfies properties similar to the case when χ is the trivial character.
For example, both the submodules E(H)χ,+ and E(H)χ,− are isotropic for this
pairing.

For each rational prime p|N , let p be a prime of K above it and let σp denote
the frobenius element in Gal(H/K) attached to p. One may attach to E and χ
a Tamagawa factor cχ

p by letting cp2 denote the Tamagawa factor attached to
E over the quadratic unramified extension of Qp, and setting

cχ
p =

{
cp if χ(σp) = 1;
cp2/cp if χ(σp) = −1.

Let Ωw
E denote the real (resp. imaginary) Néron period for E/Q if w = 1

(resp. w = −1). The ratio (Ωw
E/Ωw) is known to be a rational number. Let

d0 > 0 be its denominator, and let d = d0e, where e is as before the exponent
of the torsion subgroup of E(K). Let C−

K [d] denote the d-torsion subgroup of
the group C−

K .
Our conjecture can now be formulated as follows:

Conjecture 3.2 The derived period J ′(f,K) is non-zero if and only if E(H)χ,+

and E(H)χ,− both have rank one. In that case

J ′(f, χ) · t ·= ±〈P+
χ , P−

χ 〉circle ·
√

#LLIχ · (Ωw
E/Ωw) ·

∏
p|N

cχ
p in C−

K/C−
K [d],

where

1. The symbol ·= denotes equality up to multiplication by a power of 2;

2. The points P+
χ and P−

χ are generators for E(H)χ,+ and E(H)χ,− respec-
tively, modulo torsion;

3. t is the index of the group generated by P+
χ and P−

χ in E(H)χ.

Remark: Applying the natural projection

C−
K−→Cl+(K)

to conjecture 3.2 yields a variant of the conjectures of [MT2] for real quadratic
fields which is spelled out precisely in conjecture 3.6 of [Da]. Thus conjecture
3.2 can be viewed as a (partial) lift of conjecture 3.6 of [Da] to the full idèle
class group C−

K , including the connected component of the identity of which
class field theory does not provide a Galois-theoretic interpretation.
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4 Numerical evidence

We summarise some of the numerical evidence for conjecture 3.1 that has been
gathered. Since the complexity of the period calculation increases with the size
of the discriminant and fundamental unit of K, the experiments focused on the
real quadratic fields of small discriminant D = 5 and 13.

Calculations with Q(
√

5). Let K = Q(
√

5) be the real quadratic field of
discriminant 5. It has narrow class number one, and its fundamental unit of
norm one is given by

ε
K

=
3 +

√
5

2
.

There are exactly 3 elliptic curves of conductor ≤ 100 with sign(E, Q) = −1, all
of whose prime factors are split in Q(

√
5): the curves denoted 61A, 79A, and

89A in the tables of Cremona. The equations for these curves, the coordinates
for the points P+ and P−, and the circle pairings for these points (with ten
significant digits after the decimal point) are given below:

E Equation P+ P− 〈P+, P−〉circle
61A y2 + xy = x3 − 2x + 1 (1, 0) ( 4

5 , −10+3
√

5
25 ) −0.9723644825

79A y2 + xy + y = x3 + x2 − 2x (0, 0) ( 1
5 , −15+

√
5

25 ) −0.4284370106
89A y2 + xy + y = x3 + x2 − x (0, 0) (−1

5 , −10+7
√

5
25 ) −1.5571998775

(For the explicit formulae allowing the calculation of 〈P+, P−〉circle, see [MT1]
or [Ca] for example.) The values of t are readily calculated from the above table:
one has t = 2, 1 and 2 for E = 61A, 79A and 89A respectively.
To compute the derived period I ′Ψ, we set

F (z) =
∫ z

∞
ωf =

∞∑
n=1

an

n
e2πinz.

The assumption that I(f,K) = 0 implies that F (z) = F (γΨz) for all z ∈ H∗,
so that in particular F (γΨ∞) = 0. Applying integration by parts:∫ γΨ∞

∞
log

(
z − xΨ

z − yΨ

)
ωf = −

∫ γΨ∞

∞
F (z)d log

(
z − xΨ

z − yΨ

)
. (23)

Since the differential appearing on the right hand side of (23) is invariant under
γΨ, one can replace ∞ by any other τ ∈ H∗ in this expression without affecting
its value. The optimal choice of τ is to take a value for which both Im(τ) and
Im(γΨτ) are maximized:

τ =
−d + i

c
, so that γΨτ =

a + i

c
, where γΨ =

(
a b
c d

)
.
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The table below lists the choices of γΨ that were made for the calculation of
I ′Ψ = I ′(f,K), together with the value of the corresponding derived period.

E 61A 79A 89A

γΨ

(
19 −5
61 −16

) (
−28 −11

79 31

) (
−8 −1
89 11

)
I ′Ψ −0.0304845228 −1.2747715571 1.6512851401

Finally, the table below summarises the calculations of the left and right hand
sides occuring in conjecture 3.1. Here

LHS denotes t · I ′(f,K);
#LLI? denotes the putative value of #LLI that makes (22) hold;

RHS denotes ±〈P+, P−〉circle ·
√

#LLI? · Ω+ ·
∏
p|N

cp

δ denotes (LHS −RHS)/(Ω+ · log ε
K

).

E LHS #LLI? RHS δ
61A −0.0609690456 1 −5.9636991823 1
79A −1.2747715571 1 −1.2747715571 0
89A 3.3025702803 1 8.6465494063 −1

The last column in the table indicates that in these three calculations the quan-
tity δ was always found to be an integer to within the calculated degree of
accuracy, lending support for (but of course not proving) conjecture 3.1 in these
examples. Although only 10 digits of numerical acuracy are indicated in the ta-
bles, the calculations were actually carried out to over 20 significant digits. The
pari programs and script used to perform these calculations can be downloaded
from the second author’s web site.

Calculations with Q(
√

13). Let K = Q(
√

13) be the real quadratic field of
discriminant 13. It has narrow class number one, and its fundamental unit of
norm one is given by

ε
K

=
11 + 3

√
13

2
.

There are exactly 4 elliptic curves of conductor N ≤ 100 with sign(E, Q) = −1,
all of whose prime factors are split in Q(

√
13): the curves denoted 43A, 53A,

61A and 79A in the tables of Cremona. The equations for these curves, the
coordinates for the points P+ and P−, and the circle pairings for these points
(with ten significant digits after the decimal point) are given below:
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E Equation P+ P− 〈P+, P−〉circle
43A y2 + y = x3 + x2 (0, 0) ( 61

52 , −676+675
√

13
1352 ) 0.9717293862

53A y2 + xy + y = x3 − x2 (0, 0) ( 1
13 , −91+25

√
13

132 ) −2.4475758590
61A y2 + xy = x3 − 2x + 1 (1, 0) ( 4

13 , −26+31
√

13
132 ) 0.8669460262

79A y2 + xy + y = (0, 0) (−23
13 , 65+53

√
13

132 ) 0.7180776230
x3 + x2 − 2x

From this table it can be checked, by a direct calculation, that t = 2 in all cases,
i.e., the point P++P− is always divisible by two in E(K). The table below lists
the derived period I ′Ψ in each case to ten digits of numerical accuracy, together
with the value of γΨ used to compute it using (23).

E 43A 53A 61A 79A

γΨ

(
40 −9

129 −29

) (
−17 −3
159 28

) (
−65 −27
183 76

) (
−41 −9
237 52

)
I ′Ψ 2.6570431602 5.4645636685 −4.6691398640 2.1365682861

The table below summarises the calculations of the left and right hand sides
occuring in conjecture 3.1, with the same conventions as before:

E LHS #LLI? RHS δ
43A 5.3140863205 1 5.3140863205 0
53A 10.9291273370 1 −11.4733570670 2
61A −9.3382797281 1 5.3171474282 −1
79A 4.2731365722 4 4.2731365722 0

A calculation with the curve of conductor 5077. The elliptic curve E of
smallest conductor with rank 3 is given by the minimal Weierstrass equation

y2 + y = x3 − 7x + 6.

This curve has conductor 5077. The real quadratic field of narrow class number
one with smallest discriminant in which 5077 splits is K = Q(

√
53). It was

checked for this field that the period I ′(f,K) belongs to the lattice Λf log ε
K

.
(In fact, in this computation the value of I ′(f,K) turned out to be 0 to within the
calculated accuracy of roughly 12 decimal digits.) This supports the prediction
of conjecture 3.1 that the derived period I ′(f,K) should be trivial whenever
one of r+ or r− is strictly greater than one.
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5 A Gross-Kohnen-Zagier formula

We begin by recalling a formula proved in [GKZ] which relates the height pair-
ings between Heegner points coming from different imaginary quadratic fields
to special values of certain L-series.

Given any (not necessarily fundamental) discriminant D, let KD = Q(
√

D)
denote the corresponding quadratic field, let HD denote the ring class field
attached to the order of discriminant D, and let hD denote the degree of HD

over KD.
In order to state theorem B of [GKZ] precisely it is useful to recall some of

the notations used in this work. If D < −4 is a negative discriminant satisfying

D ≡ r2 (mod 2N),

then there are exactly hD distinct Γ0(N)-orbits of integral binary quadratic
forms ax2 + bxy + cz2 of discriminant D satisfying

a > 0, a ≡ 0 (mod N), b ≡ r (mod 2N),

the roots of which give representatives in H/Γ0(N) for the distinct Heegner
points in X0(N)(HD) attached to the order of discriminant D, with orientation
corresponding to the choice r of square root of D (modulo N). Let α

D,r
be one

of these points and let

P
D,r

=
∑

σ∈Gal(HD/KD)

σα
D,r

∈ Div(X0(N))(KD) (24)

denote the KD-rational divisor of degree hD on X0(N) formed by taking the
trace of α

D,r
. Finally let

y
D,r

= P
D,r

− hD(∞) (25)

denote both the degree 0 divisor on X0(N), and, by a slight abuse of notation,
its class in J0(N)(KD). We write P ∗

D,r
and y∗

D,r
for the images of P

D,r
and y

D,r

in X∗
0 (N) and J∗0 (N) respectively, where X∗

0 (N) denotes the quotient of X0(N)
by the Atkin-Lehner involution WN and J∗0 (N) denotes its Jacobian.

Lemma 5.1 The element y∗
D,r

belongs to J∗0 (N)(Q).

Proof: We already know that y
D,r

belongs to J0(N)(KD). To analyse the action
of Gal(KD/Q) = 〈τ〉 on y

D,r
, note the equality of divisor classes on X0(N)

τy
D,r

= WNy
D,r

+ hD((0)− (∞)).

It follows immediately from this that the class of y∗
D,r

is fixed by τ and hence
belongs to J∗0 (N)(Q). �

Let T be the subring of End(J∗0 (N)) generated by the Hecke operators Tp

(p 6 |N) and Uq (q|N). Fix a rational multiple tf ∈ T ⊗ Q of the idempotent
attached to f . Such a tf is only well-defined up to multiplication by a non-zero
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rational scalar, but one may choose to normalise tf so that it belongs to T and
is not divisible by any integer in T. Let λf ∈ Z be the integer scalar defined by
the rule

tff = λff,

and set (y∗
D,r

)f := tfy∗
D,r

.
Finally define a number dE by the identity

4π2||f ||2 = dEΩ+
EΩ−

E .

It is known that dE is a rational number. In fact, if E is the strong Weil curve
of conductor N it is equal (up to a possible factor of 2) to the degree of the
minimal modular parametrisation attached to E. (Cf. the last equation in §1 of
[Za].) Furthermore,

Lemma 5.2 The denominator of the rational number λf

2dE
divides 2N i for some

i, and divides 2 if N is prime.

Proof: The integer denoted r in the proof of theorem 3 of [Za] clearly divides
λf . The proof of theorem 3 (note, in particular, the last sentence) shows that
dE divides λfN i for some exponent i which can be taken to be 0 if N is prime.
�

Let D1 and D2 be two negative coprime fundamental discriminants with
Di ≡ ri (mod 4N). The product D = D1D2 is a positive fundamental discrim-
inant, and the factorisation D = D1D2 corresponds, by genus theory, to an odd
genus character

χ
D1,D2

: Gal(HD/KD)−→{±1}.

Recall the period I(f, χ
D1,D2

) associated to D and χ
D1,D2

in equation (19).

Theorem B of [GKZ] states

〈(y∗
D1,r1

)f , y∗
D2,r2

〉 =
λf

2dE

I(f, χ
D1,D2

)

iΩ−
E

L′(E/Q, 1)
Ω+

E

. (26)

Remark.

1. The statement given here differs slightly from theorem B of [GKZ] in the way
that we have grouped the terms, and in our definition of the f -isotypic elements
(y∗

Di,ri
)f . In [GKZ], the element tf is chosen to be an idempotent in T⊗Q, so

that λf = 1. Requiring that tf belong to the integral Hecke algebra T becomes
essential for the analogue we wish to formulate next, in which the Néron-Tate
height is replaced by the Mazur-Tate circle pairing on J∗0 (N)(K) for a suitable
real quadratic field K. This is because the circle pairing, whose value group is
not uniquely divisible, does not extend naturally to J∗0 (N)(K)⊗Q.

2. Note that the first factor in the expression

λf

2dE
·
I(f, χ

D1,D2
)

iΩ−
E

(27)
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on the right in (26) is a rational number which is not far from being an integer,
by lemma 5.2, and that the second factor is in fact an integer if the Manin
constant attached to the modular parametrisation for E is equal to 1.

A circle pairing variant. We wish to express the circle pairing between two
Heegner divisor classes in terms of a derived period integral. As before, we let
D1 and D2 be negative fundamental discriminants, but in our setting are forced
to relinquish the simplifying assumption that D1 and D2 are relatively prime.
Rather, we must assume that D1 divides D2, so that

D2 = d ·D1,

where d is a positive fundamental discriminant. Assume to simplify the discus-
sion that the real quadratic field Kd has narrow class number one.

As in the Gross-Kohnen-Zagier formula, let

D = D1D2 = dD2
1.

This discriminant is not fundamental, but corresponds to the order of conductor
D1 in Q(

√
d). Let HD be the ring class field attached to this order, and let

χ
D1,D2

denote the (generalised) genus character attached to the factorisation
D = D1D2.

We define the Heegner element y∗
D1,r1

as in (25) and the sentence following
it. Turning to the discriminant D2, we let ε be the genus character of KD2

corresponding to the factorisation D2 = dD1, which cuts out the quadratic
extension KD2(

√
d) of KD2 , and set

y
D2,r2,ε

=
∑

σ∈Gal(HD2/KD2 )

ε(σ)σα
D2,r2

∈ Div0(X0(N))(KD2(
√

d)).

By abuse of notation, we let y
D2,r2,ε

(resp. y∗
D2,r2,ε

) denote the corresponding

divisor classes in J0(N)(KD2(
√

d)) (resp. in J∗0 (N)(KD2(
√

d))).

Lemma 5.3 The element y∗D2,r2,ε belongs to J∗0 (Kd)−.

Proof: The proof is similar to that of lemma 5.1 and is left to the reader. �

Having in hand two explicit elements y∗
D1,r1

and y∗
D2,r2,ε

in J∗0 (Q) and J∗0 (Kd)−

respectively, it is natural to ask for a formula for their Mazur-Tate circle pairing,
in the spirit of the Gross-Kohnen-Zagier formula (26). Guided by conjecture 3.1,
the following suggests itself naturally:

Conjecture 5.4 Let m be the denominator of the rational number (27). Then

〈(y∗
D1,r1

)f , y∗
D2,r2,ε

〉circle =
λf

2dE

I(f, χ
D1,D2

)

iΩ−
E

I ′(f,Kd)
Ω+

E

(mod Z
log ε

K

m
).

This conjecture appears to be more tractable than conjecture 3.1. Since it only
involves terms that are explicitly defined, one may hope that it would lend itself
to an assault analogous to what is carried out in [GKZ]. The authors plan to
return to this matter in a future publication.
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