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Introduction. Historically, two approaches have been followed to study the clas-
sical Fermat equation” + y" = z". The first, based on cyclotomic fields, leads to
guestions about abelian extensions and class numbets=0fQ(¢,) and values of
the Dedekind zeta-functiotk (s) at s = 0. Many open questions remain, such as
Vandiver’s conjecture thatdoes not divide the class number@f{¢,)". The second
approach is based on modular forms and the study of 2-dimensional representations of
Gal(Q/Q). Even though 2-dimensional representations are more subtle than abelian
ones, itis by this route that Fermat’s last theorem was finally proved (cf. [Fre], [SeZ2],
[Ri2], [W3], and [TW]; or [DDT] for a general overview).

This article examines the equation

@

Certain 2-dimensional representations of &alK), where K is the real subfield
of a cyclotomic field, emerge naturally in the study of equation (1), giving rise to a
blend of the cyclotomic and modular approaches. The special vajuesl), which
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in certain cases are related to the class numbers of totally definite quaternion algebras
over K, appear asbstructionsto proving that (1) has no solutions. The condition
thatr is a regular prime also plays a key role in the analysis leading to one of our
main results about the equatiefi + y” = z" (see Theorem 3.22).

One is interested iprimitive solutions(a, b, ¢) to equation (1), that is, those sat-
isfying gcda, b, ¢) = 1. (Such a condition is natural in light of tlec conjecture,
for example; see also [Da2].) A solution is calledntrivial if abc # 0. It is assumed
from now on that the exponengs ¢, andr are prime and thap is odd.

Let (a, b, ¢) be a nontrivial primitive solution to equation (1). One wishes to show
that it does not exist. The program for obtaining the desired contradiction, following
the argument initiated by Frey and brought to a successful conclusion by Wiles in the
case ofc? + y? = z”, can be divided into four steps.

Step 1 (Frey, Serre).Associate tda, b, c) a modp Galois representation
p:Gal(K/K) — GL2(F)

having “very little ramification,” that is, whose ramification can be bounded precisely
and a priori independently of the solutida, b, ¢). Here K is a number field and

is a finite field. For the Fermat equatiaf + y” = z”, one may take&k = Q and

[ =Z/pZ: the representatiop is then obtained by considering the actiontaf, on

the p-division points of the Frey elliptic curve? = x(x —a”)(x +b?). As explained

in Section 1, one is essentially forced to take= Q(¢,, ¢)* andF, the residue field

of K at a prime above, in studying equation (1).

Step 2 (Wiles). Prove thaf is modular, that is, arises from a Hilbert modular form
on GL2(Ak). In the setting of Fermat's equation, Wiles proves that all semistable
elliptic curves ovefQ arise from a modular form, which implies the modularitygof

Step 3 (Ribet). Assuming step 2, show that comes from a modular form of
small level, and deduce (in favorable circumstances) that its imagmmadl that is,
contained in a Borel subgroup or in the normalizer of a Cartan subgraBp £(F). In
the setting of Fermat’s equation, Ribet showed ghhgas to beeducible for reasons
that are explained in Section 3, one cannot rule out the case where the imagge of
contained in the normalizer of a Cartan subgroup when dealing with equation (1).

Step 4 (Mazur). Show that the image of is large; for example, that it contains
SL,(FF). Historically, this is the step in the proof of Fermat's last theorem that was
carried out first, in the seminal papers [Mal] and [Ma2], which also introduced many
of the tools used in steps 2 and 3.

In the classical setting, combining the conclusions of steps 3 and 4 leads to a con-
tradiction and shows thdt, b, c) does not exist, thus proving Fermat'’s last theorem.
In [Dal] and [DMr], it was observed that the program above can be used to show that
xP +yP = 7" has no nontrivial primitive solutions when= 2,3 andp > 6—r (the
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result forr = 3 being conditional on the Shimura-Taniyama conjecture, which is still
unproved for certain elliptic curves whose conductor is divisible by 27). The purpose
of this article is to generalize the analysis to the general case of equation (1).
Sections 1, 2, 3, and 4 describe the generalizations of steps 1, 2, 3, and 4, re-
spectively. As a concrete application, the main results of Section 3 relate solutions to
x?+yP = 7" to questions aboyt-division points of certain abelian varieties with real
multiplications byQ (cos2z/r)). Alas, our understanding of these questions (and of
the arithmetic of Hilbert modular forms over totally real fields) is too poor to yield
unconditional statements. For the time being, the methods of this paper should be en-
visaged as a way of tying equation (1) to questions that are more central, concerning
Galois representations, modular forms, and division points of abelian varieties.
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and K. Ribet for their helpful comments, and to N. Katz and J.-F. Mestre for pointing
out a key construction used in Section 1. The author greatly benefitted from the support
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the work on this paper was started, and of the Eidgendssische Technische Hochschule
(ETH) in Zarich, where it was completed.

1. Frey representations

1.1. Definitions. If K is any field of characteristic zero, writéx := Gal(K /K)
for its absolute Galois group. Typicalli is a number field; leK (¢) be the function
field overK in an indeterminate. The groupGk () fits into the exact sequence

1— GIE'(t) —> GK(t) —> G[( — 1
Let [F be a finite field, embedded in a fixed algebraic closure of its prime field.

Definition 1.1. A Frey representatioassociated to the equatiefi+ y? = z" over
K is a Galois representation

o0=0@1):Ggu — GL2(F)

satisfying the following conditions.
(1) The restriction op to G has trivial determinant and is irreducible. Let

égeom: Gk(t) — PSLy(F)

be the projectivization of this representation.

(2) The homomorphisma%€°™Mis unramified outsid¢0, 1, co}.

(3) It maps the inertia groups at 0, 1, amdto subgroups oPSL,(F) of order p,
q, andr, respectively.
The characteristic of is also called theharacteristicof the Frey representation.

One should think ob = ¢(¢) as a 1-parameter family of Galois representations of
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G g indexed by the parameterCondition (1) in Definition 1.1 ensures that this family
has constant determinant but is otherwise “truly varying” witifthe motivation for
the definition ofo(z) is the following.

Lemma 1.2 There exists a finite set of primesof K depending orp in an
explicit way, such that, for all primitive solutiong, b, ¢) to the generalized Fermat
equationx? + y? = 7", the representatiop := o(a”/c”") has a quadratic twist that
is unramified outside.

Sketch of proof. Let
é : GK(,) —> PGL2(|]:)

be the projective representation deduced fronThe field fixed by the kernel é
is a finite extension oK (¢), whose Galois group is identified with a subgraGipf
PGL2([F) by g; in other words, it is the function field of &-covering ofP; over
K. This covering is unramified outsidé@, 1, oo} and its ramification indices arg,
¢, andr above those three points: it is@covering of “signaturep, g, r)” in the
sense of [Se3, Sec. 6.4]. The lemma now follows from a variant of the Chevalley-Well
theorem for branched coverings (see, e.g., [Be] or [Da2]). O

Definition 1.3. Two Frey representations; and 2 attached to equation (1) are
said to beequivalentf their corresponding projective representatigagsndo; differ
by an inner automorphism &fGL,(F), that is, ifo1 is conjugate (oveF) to a central
twist of o2.

To a Frey representatignwe assign a tripléog, 01, o) Of elements irPSL,(F)
of ordersp, ¢, andr satisfyingogoi10~ = 1 as follows (cf. [Se3, Ch. 6]). The element
o; is defined as the image [@¢°°" of a generator of the inertia subgroup®f ,, at
t = j. The elementsy, o1, ando, are well defined up to conjugation, once primitive
p, q, andrth roots of unity have been chosen. One can choose the decomposition
groups in such a way that the relatiegoi10, = 1 is satisfied (cf. [Se3, Th. 6.3.2]).
The triple (00, 01, 00) is then well defined up to conjugation.

If C; is the conjugacy class of; in PSL,([F), one says that the Frey representation
o is of type (Co, C1, Coo)-

For the following definition, assume that the expongntg, andr are odd, so that
00, 01, ando lift to unique elementsy, 61, andé, of SL»([F) of ordersp, ¢, and
r, respectively.

Definition 1.4. The Frey representation attachedtb+ y? = 7" is said to beodd
if 606105 = —1, and is said to bevenif 606165 = 1.

1.2. Classification: The rigidity methodlf » is an integer, let,, denote a prim-
itive nth root of unity. Given an odd prime, write p* := (=1)?»=Y/2)p, so that
Q(/p*) is the quadratic subfield d®(z,). We now turn to the classification of Frey
representations, beginning with the classical Fermat equation.
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The equationx? + y?P = zP

THEOREM 1.5 Let p be an odd prime. There is a unique Frey representapian
of characteristicp (up to equivalence) associated to the Fermat equation y? =
zP. One may tak&k = Q andF = [F,, and the representation(r) is odd.

Remark. This theorem is originally due to Hecke [He], where it is expressed as a
characterization of a certain field of modular functions of lgvel

Proof of Theorem 1.5.SetlF = [F,,. We begin by classifying conjugacy classes of
triples og, 01, andoy, Of elements of ordep in PSLy([F) satisfyingogo10o = 1.
There are two conjugacy classes of elements of opdar PSLy([F), denotedp A
and p B, respectively. The clagsA (resp.,pB) is represented by an upper-triangular
unipotent matrix whose upper right-hand entry is a square (resp., a nonsquare). These
two classes areational over Q(4/p*) in the sense of [Se3, Sec. 7.1], and they
are interchanged by the nontrivial element in @l./p*)/Q) as well as by the
nontrivial outer automorphism &SLy([F). Lift og, 01, ando, to elementssg, o1,
andé ., of orderp in SLo(F). The groupSLo([F) acts on the spacé = F? of column
vectors with entries ifi. Sinces; is unipotent, there are nonzero vectofsandv; in
V which are fixed bysg anda1, respectively. Becausg ando; do not commute, the
vectorsv; andv; form a basis forV. Scalevs so thatoy is expressed by the matrix
(3 1) in this basis; le{ ! ?) be the matrix representiniy. Sinced has trace 2, the
relationcoo, = 6 —1 forcesx = 0, which is impossible since; is of orderp. Hence
there are no even Frey representations of charactepisiibe relationsgo; = — o—ol
givesx = —4. Note that the resulting elements, o1, ando,, belong to the same
conjugacy class iflPSLy([F). It is well known that they generateSL,(F). Hence
there are exactly two distinct conjugacy classes of surjective homomorphisms

—geom geom

QA ) B GQ([) —> PSLZ([F),

oftype(pA, pA, pA) and(pB, pB, pB), respectively, which are interchanged by the
outer automorphism d?SL([F). By the rigidity theorem of Bell Fried, Thompson,
and Matzat (cf. [Se3, Sec. 7h5 " anday - extend uniquely to homomorphisms

04,08 : Gouy —> PGLa(F) = Aut (PSLa(F)),

which are conjugate to each other. Thus there is at most one Frey represeptation
attached toc? + y” = z”, whose corresponding projective representagias con-
jugate top4 andgp. To prove the existence f, it is necessary to show thaty

(say) lifts to a linear representati@hg ) — GL2([F). Choose a set-theoretic lifting

s of o4 to GL2(F) satisfying dets(x)) = x(x), wherey is the mody cyclotomic
character, and note that such a lifting satisfi@gs(y) = +s(xy). Hence, the obstruc-
tion to lifting g4 to a homomorphism int&L () is given by a cohomology class
c(x,y) :i=sx)s(y)s(xy)~tin H2(Q(r), £1). We note that (forj = 0, 1, andco) the
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homomorphisnp 4 maps the decompaosition groupzat j to the normalizer ob ;,
which is the image ifPGL»([F ,) of a Borel subgroug of upper-triangular matrices.
Since the inclusioft ; — B splits, it follows that the restrictions), c1, andcs of the
cohomology class in H2(Q((1)), £1), H*(Q((r —1)), £1), andH?(Q((1/1)), +1)
vanish. In particular¢ has trivial “residues” at = 0, 1, oo in the sense of [Se4,
Ch. Il, Annexe, Sec. 2]. Hence,is “constant,” that is, comes fro/2(Q, +1) by
inflation (see [Se4, Ch. II, Annexe, Sec. 4]). But note th#(Q, +1) injects into
H2(Q((r)), £1), since a nontrivial conic ove® cannot acquire a rational point over
Q((1)). Therefore, the classvanishes, and the result follows. (For an alternate and,
perhaps, less roundabout argument, see [By].) 0

The equationx? + y? = z". Let us now turn to the equatior? 4+ y? = 7", where
r and p are distinct primes. One is faced here with the choice of considering Frey
representations either of characterigticor of characteristio. From now on, we
adopt the convention that the prinpeis always used to denote the characteristic of
the Frey representation, so that the equatiohs y” = z" andx” + y" = z? require
seperate consideration.

The following theorem is inspired from the proof given in [Se3, Prop. 7.4.3 and
7.4.4] for the case = 2 andr = 3; the general case follows from an identical
argument (see also [DMs]).

THEOREM 1.6, Suppose that and p are distinct primes and thap # 2. There
exists a Frey representation of characteristiover K associated ta? + y” = 7" if
and only if

(1) the fieldFF contains the residue field @(¢,)™ at a primep abovep, and

(2) the fieldk containsQ(¢,)™.

When these two conditions are satisfied, there are exaetly Frey representations
up to equivalence. When# 2, exactly(r — 1)/2 of these are odd an¢- — 1)/2
are even.

Proof. for condition (3) in Definition 1.1 to be satisfied, it is necessary that
PSL,(F) contain an element of order This is the reason for condition (1) in The-
orem 1.6. Condition (2) arises from the fact that (fog 2) the (r — 1)/2 distinct
conjugacy classes of elements of orden PSL,([F) are rational ovefQ(z,)™ (in
the sense of [Se3, Sec. 7.1]) and are not rational over any smaller extension. Assume
conversely that conditions (1) and (2) are satisfied.dget1, ando, be chosen as
in the proof of Theorem 1.5, and 18t be the lift ofo; to SL2([F) of order p when
j =0, 1. Finally, let6,, be a lift of o, to an element of order if r is odd and to an
element of order 4 if = 2. Letw € [F be the trace of .. Whenr = 2, one hag = 0,
and wherr is odd,® is of the formg(¢, +¢,~1) whereg is a homomorphism from
Vile -1-4;1]+ to F. Note that there are exactly —1)/2 suchg’s. One now finds, as
in the proof of Theorem 1.5, th&6o, 61,6 ) iS conjugate to one of the following
two triples:
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((é D (—(21+5)) 2) (-2_—15) 1jw>)
(0 1) (oo ) (2a —12a))

Whenr = 2, these triples are equal PSL,(F). Whenr is odd, they are distinct.

An argument based on rigidity as in the proof of Theorem 1.5 prodgcesl)
inequivalent homomorphisms froli g ;) to GL2([F), yielding the desired odd and
even Frey representations. These Frey representations are constructed explicitly in
Section 1.3 (cf. Lemma 1.9 and Theorem 1.10). O

The equationx” +y" = zP

THEOREM 1.7. Suppose that and p are distinct odd primes. There exists a Frey
representation of characteristig over K associated ta” + y" = z? if and only if

(1) the field[F contains the residue field & ()™ at a primep abovep, and

(2) the fieldK containsQ(¢, ).
When these two conditions are satisfied, there are exécthyl) (r —2)/2 inequiva-
lent Frey representationsr — 1)2/4 odd representations ant — 1)(r — 3)/4 even
representations.

Although the conclusion is somewhat different, the proof of Theorem 1.7 follows
the same ideas as the proof of Theorem 1.6. Each tfigteC1, pA), where Co
and C1 each range over thé — 1)/2 possible conjugacy classes of elements of
orderr in PSLy([F), gives rise to a unique odd and even projective representation of
Gk of type (Co, C1, pA), with one caveat: There is no even representation of type
(Co, C1, pA) whenCo = Cj.

The equatiorx? + y? = z". We finally come to the general case of equation (1).
Assume that the exponengs g, andr are distinct primes and thatis odd.

THEOREM 1.8 There exists a Frey representation of characterigtiover K as-
sociated tax” + y? = 7" if and only if

(1) the fieldF contains the residue fields @ (z,)™ and of Q(¢,)™ at a primep

abovep, and

(2) the fieldk containsQ(¢,)* andQ(¢,)*.
When these two conditions are satisfied, there(arel)(¢ — 1)/2 inequivalent Frey
representations ove®(¢,. ;). If g, r # 2, then(r —1)(¢ — 1)/4 of these are odd
and(r —1)(g —1)/4 are even.

The proof is the same as for Theorems 1.5, 1.6, and 1.7.
1.3. Construction: Hypergeometric abelian varieties

The equationk? 4+ y? = zP. One can construct the Frey representatgrn of
Theorem 1.5 explicitly, by considering the Legendre family of elliptic curves
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J=J@): > =x(x=D(x—1).

It is an elliptic curve overQ(¢) which has multiplicative reduction at= 0 and

1 and has potentially multiplicative reduction mt= co. The moduleJ[p] of its

p-division points is a 2-dimensiondl-vector space on whiclzg() acts linearly.
The corresponding representatio(r) is the Frey representation of characterigtic
attached toc? 4 y? = 77,

The equationc” + y? = z". Whenr = 2, letC»(¢) be the elliptic curve ove®(r)
given by the equation

Co(t) : y> =x3+2x% +1x. (2)

LemMma 1.9 Themodp Galois representation associated @ is the Frey repre-

sentation associated to? + y? = z2.

The proof of this lemma is omitted. It follows the same ideas but is simpler than
the proof of Theorem 1.10 for the case of oddor which all the details are given.
Suppose now that is an odd prime. Letr; = & +¢77, and writew for w1, o
that K = Q(w) is the real subfield of the cyclotomic fiel@(¢,). Let Ox denote its
ring of integers, and lef = (r — 1) /2 be the degree ot overQ.
Letg(x) = ]'[?zl(erwj) be the characteristic polynomial efw, and letf (x) be
an antiderivative oftrg(x)g(—x); for example, we take

F) =xg(x2—2) = g(—1)?(x —2)+2 = g(1)?(x +2) — 2.
Following [TTV], consider the following hyperelliptic curves ov&(r) of genusd:
Cr(t):y? = f(x)+2—4r, 3)
CH(t) i y? = (x +2)(f(x) +2—41). (4)

Let J~ = J(r) andJ;" = J"(r) be their Jacobians ovéd(z).
In [TTV], Tautz, Top, and Verberkmoes show that these families of hyperelliptic
curves have real multiplications by, that is, that

Endg,, (JF) =~ 0k. (5)

Their proof shows that the endomorphisms/gf are in fact defined ovek , and that
the natural action of Gak/Q) on Endg(,)(J,i) and onOk are compatible with the
identification of equation (5), which is canonical (see also [DMs]).

Fix a residue fieldF of K at a prime abovep, and letp be a homomorphism
of Ok to F. The module/*[p]®, F is a 2-dimensionaF-vector space on which
Gk actsl-linearly. By choosing affr-basis for this vector space, one obtains Galois
representations (depending on the choice,adlthough this dependence is supressed
from the notation)

o (1) : Ggy — GLa(P).
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THeEorREM 1.10 The representations; (1) and o, (r) (as¢ varies over ther —
1)/2 possible homomorphisms fraby to ) are ther — 1 distinct Frey representa-
tions of characteristipp associated ta” +y” = z". The representations, are odd,
and the representations™ are even.

Proof. (See also [DMs, Prop. 2.2 and 2.3].) Observe the following.

(1) Outside ofr = 0,1, oo, the curvesC,i(t) have good reduction. Hen@(t)
satisfies condition (2) in Definition 1.1 of a Frey representation.

2) TheCri(r) areMumford curve®ver Spe¢K [[¢]]) and Spe€K [[r —1]]), that is,
the special fiber o€ £(r) over these bases is a union of projective lines intersecting
transversally at ordinary double points. For example, replagiog 2y + (x +2)g(x)
yields the following equation fo€;" () over Spe¢K [[]]), whose special fiber is the
union of two projective lines crossing at thle+- 1 ordinary double pointgx, y) =
(=2,0), (—wj,0):

Y2+ (x+2)gx)y+t(x+2) =0. (6)

Likewise, replacingy by 2y +xg(—x) gives the following equation fo€*(¢) over
SpecK|[[r —1]]):

Y24 xg(—x)y+g(—x)2+ (x+2(t—1) =0, )

Its special fiber is a projective line with tlaeordinary double pointgx, y) = (»;, 0).

A similar analysis can be carried out f6] (t). By Mumford’s theory, the Jacobians
JE(t) have purely toric reduction at= 0 andz = 1, and hence;* maps the inertia
at these points to unipotent elementssab (F).

(3) The curveC, (¢r) has a quadratic twist that acquires good reduction over
K[[(1/)Y/"]], while C;F () acquires good reduction over this base. For example,
settingf = (1/1)Y" and replacingr by 1/x andy by (2y +1)/x"*Y/2 in equation
(4) for C (1) gives the model

Y24y =x"+h(x,y,7/2), (8)

whereh is a polynomial with coefficients i@. Thereforeo. (resp.,o;") maps the
inertia atr = oo to an element of orderr2(resp.,r) of SLo(F) whose image in
PSL,([F) is of orderr.

It follows from (2) and (3) thap:*(¢) satisfies condition (3) in Definition 1.1.

(4) A strong version of condition (1) in Definition 1.1 now follows from the fol-
lowing group-theoretic lemma. O

LemMMA 1.11 Letog, o1, ando be elements dPSLy(F) of order p, p, andr
satisfyingogo10. = 1. Thenoy, o1, ando, generatePSLy(F) unless(p, r) = (3,5)
andé6o616.0 = —1, in which case they generate an exceptional subgroup isomorphic
to As C PSLy([Fg).

Proof. Let G be the subgroup d?SL,(F) generated by the images&j, o1, and
0s0. The proper maximal subgroups BELy([F) are conjugate to one of the groups
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in the following list (cf., e.g., [Hu, Ch. I.8, Th. 8.27]):

(1) the Borel subgroup of upper-triangular matrices;

(2) the normalizer of a Cartan subgroup;

(3) a group isomorphic t@SLy(F') or PGLy([F) for somelF’ C F;

(4) one of the exceptional subgroups, Ss, or As.
The fact thatG contains two unipotent elements that do not commute rules out
the possibility thatG is contained in a Borel subgroup or in the normalizer of a
Cartan subgroup, and the fact that it contains an element of erdgles out the
groups isomorphic tdPSLy(F’) or PGL»([F'). Obviously, G can be contained in
one of the exceptional subgroups only if bgthand r are less than or equal to
5, that is, if (r, p) = (2,3), (2,5), (3,5), or (5,3). In the first three cases; is
isomorphic toPSLy(F,). (Note thatPSLy([F3) ~ A4 and thatPSLy(Fs) >~ As.)
When(r, p) = (5, 3) andcpo16. = —1, one checks directly that is isomorphic to
the exceptional subgroups C PSLy([Fg). O

The equationr” +y" = z”. Choose a parametgre {1, 3,5, ...,r—2}, and define
curves over the function fiel@(z) by the equations

: x—1\/*?
0o (22

X—U

. x—1\/*? t
X @)y =ulxi 2= , U= ——.
rr(0)y X—u t—1

A role is played in our construction by the Legendre family) of elliptic curves,
whose equation we write in the more convenient form:

) -1 j+2
J(@t): y> =u?xi7? (;CTM) .

These curves are equipped with the following structures.
(1) A canonical action ofi, on X, and X", defined by

P
§(X’)’)=(X7§)’), CE,U,r.
(2) An involutionz on X, X;'., andJ defined by

t(x,y)=(u/x,1/y).

This involution has two fixed points ok, and has no fixed points o, and on/J.
(3) Mapsr : X, — J andx, : X, — X, are defined by

w(x,y)=(x,y"); 7 (x, y) = (x, ¥?).
These maps obey the rules

T¢ = g‘_lr, nf =m, ¢ = gznr, TT=T7T, T, =T, 7.
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Let
Cr=X5/tr, J=J/t

W

The mapsr andxr, commute withr and hence induce maps frafr, to J’/ andC;f,,
respectively, which are denoted by the same letters by abuse of notation./\/rite
andx;* for the maps between the Jacobians/6fC,f,, andC;, induced byz and

7, respectively, by contravariant functoriality. Finally IEJ); denote the Jacobian of
C, ., and letJ, be the quotient of the Jacobian J&g,) of C,, defined by

Jrri=32dC,) [ (7 (D +7 (J,7).

ProrosiTION 1.12  The abelian varietied,?, (resp.,J,,) have dimension equal to
(r—21)/2whenj € {1,3,5,...,r —4} (resp.,j € {1,3,5,...,r — 2}). In these cases
there is a natural identification

EndK (Jr:,tr) =0k,

which is compatible with the action &al(K /Q) on each side.

Proof. The computation of the dimension aif’tr is a direct calculation based on
the Riemann-Hurwitz formula. To study the endomorphism ringsrfbf let

.y + +
N¢ - Xr,r - Cr,r X Cr,r

be the correspondence froﬁfr to C;'f, given byn, := (pr,pro¢), where pr is the
natural projection of(;,. to C:5.. The resulting endomorphism, of Pic(Cy.) is
defined (on effective divisors) by the equation

n¢ (prP) = pr(¢ P)+pr(c 'P).
The commutation relations betweenrz, andz, show that
TN = 2m, TTrlg = 1g27r

Hence, the subvarieties® (J) andnr*(Jrf;) of Ja¢C,,) are preserved by these corre-
spondences, which induce endomorphismg,gfas well as ofJ,Jf,. The assignment
¢+ n¢ yields an inclusion ofx into EnctJnﬂEr). It is an isomorphism sincérﬁ has
multiplicative reduction at = co and hence is not of complex multiplication (CM)
type. The result follows. O

Choose as before a homomorphigmOx — [F, and Ietgf, be the Galois repre-
sentations obtained from the action@k ) on the modulesl,ﬁ[p] ®, F. Note that
the representations;”. depend on the choice of the parametess well as on the
choice ofgp. ’
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Tueorem 1.13 (1) The representations; ., as;j ranges ovefl,3,...,r—2} and
¢ over the different homomorphisrig — [, are the(r — 1)2/4 distinct odd Frey
representations attached 4 + y" = z”.

(2) The representation@;f,, as j ranges over{l1,3,...,r — 4} and ¢ over the
different homomorphisn&g — [, are the(r — 1) (r — 3) /4 distinct even Frey repre-
sentations attached to' + y" = z?.

Proof. See, for example, [Ka, Th. 5.4.4] or [CW]. O

Remarks. (1) The periods of the abelian varietié,é,, as functions of the variable
t, are values of certain classical hypergeometric functions. These functions arise as
solutions of a second-order differential equation having only regular singularities
att = 0, 1, andoo and monodromies of order at 0 and 1 and quasi-unipotent
monodromy (with eigenvalue 1 for the odd Frey representation and 1 for the even
Frey representation) at= co.

(2) Katz’s proof, which is based on his analysis of the behaviour of the local mon-
odromy of sheaves under the operation of “convolutiorGgn” is significantly more
general than the rank 2 case used in our application. It also gives a motivic construc-
tion of rigid local systems oveP® — {0, 1, oo} of any rank. Katz’s “hypergeometric
motives” suggest the possibility of connecting equation (1) to higher-dimensional
Galois representations, for which questions of modularity are less well understood.

(3) In computing finer information such as the conductors of the Frey representa-
tions Q;'f, (a" /cP) at the “bad primes,” it may be desirable to have a direct proof of
Theorem 1.13 along the lines of the proof of Theorem 1.10. The details, which are
omitted, will be given in [DK].

The equationv? 4+ y? = z". The notion of “hypergeometric abelian variety” ex-
plained in [Ka, Th. 5.4.4] and [CW, Sec. 3.3] also yields a construction of the
(r —1)(g — 1)/2 Frey representations of characteristiover K = Q(¢,, &)t as-
sociated tac? 4+ y? = 77, whenp, g, r are distinct primes ang is odd. We do not
describe the construction here, referring instead to [Ka, Sec. 5.4] for the details. All
that is used in the sequel is the following theorem.

Tueorem 1.14 If g, r # 2 (resp.,q = 2), there exist abelian varietieg, ", and
Jq"jr (resp.,J2.,) overQ(z) of dimension(r — 1)(g — 1)/2 satisfying

Endy (J;,) =0k (resp.End(Jz,) = Ok),

whoseamodp representations give rise to all the Frey representations in characteristic
p associated toc” + y? = z". More precisely, fix a residue fiel of K at p, and

let ¢ be a homomorphism @(¢,)*Q(¢-)" to F. There are(r —1)(g —1)/4 (resp.,

(r —1)/2) suchg’s. Extendinge to a homomorphisntx — [, let Q;r (resp.,
02,r) be the Galois representation obtained from the actio gf;) on Jq:'f,[p] ®y F
(resp.,J2, [ p1®, [). Then the representatiomz;f, (resp.,02,,) are the distinct Frey
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representations of characteristjeattached tor” +y? = z". The representations, ,
(resp.,Q;f,) are odd (resp., even).

Frey abelian varieties.We may now assign to each solutign b, ¢) of equation
(1) aFrey abelian varietyobtained as a suitable quadratic twist of the abelian variety
J(aP /bP) for xP + yP = 7P, Jri(ap/cr) for x? +yP =", Jr’ir(ar/cp) for x"+y" =
z?P, and quf,(al’/c’) for x? + y9 = 7". These twists are chosen in such a way as to
make the corresponding maqal representations as ‘little ramified” as possible, in
accord with Lemma 1.2.

The equationx? 4+ y? = zP. If (a, b, c) is a solution to the Fermat equatiof +
y? = 7", the elliptic curveJ (a” /c?) has equationy? = x(x —1)(x —a? /cP), which
is a quadratic twist (ove®(,/c)) of the familiar Frey curve

Ja,b,c):y> =x(x+aP)(x—bP).

Let p be the associated mqdrepresentation oz .
The equatiorx” +y” = 7z". Whenr = 2, we associate to a solutidn, b, ¢) of
equation (1) the following twist o€ (a? /c?):
Caa,b,c): y?> = x3+2cx?+aPx. 9

Whenr is odd, the Frey hyperelliptic curves; (a, b, c) andC;'(a, b, c) are given
by the equations
Cr (a,b,0): y? =c f(x/c)—2(a” —bP), (10)
CH(a,b,c) 1 y% = (x+20)(c" f(x/c) —2(aP —bP)). (11)
Note thatC; (a, b, c) is a nontrivial quadratic twist o€~ (a?/c") (over the field
Q(4/¢)), while C;} (a, b, ¢) is isomorphic taC," (a? /c") over Q.
Here are the equations 6% (a, b, c¢) for the first few values of:
3: y?=x3-3c%x—2(a” —bP).
5: y2=x2—5c2x34+5c% —2(a” — bP).
7:

y2 =x" —7c%x®+14c*x3 — 78 — 2(a? — bP).

r
7
r

Let J*(a, b, c) be the Jacobian & * (a, b, ¢), and leto* be the corresponding mqg
Galois representations (which depend, as always, on the choice of a homomorphism
¢ from Ok to ). The representatiop” is a quadratic twist 0b* (a” /c").

We do not write down the equations fdf'; (a,b,c) or qu’,(a, b, c), as we have no
further use for them in this paper. A more careful study of the Frey abelian varieties
J,jfr (a,b, c) associated ta” + y" = z? will be carried out in [DK].
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Conductors. We say that a Galois representation G ¢ — GL»([F) is finite at a
prime A if its restriction to a decomposition group atomes from the Galois action
on the points of a finite flat group scheme o@ar,. When¢ # p, this is equivalent
to p being unramified. LelV(p) denote theeonductorof p, as defined, for example,
in [DDT]. In particular, N(p) is divisible precisely by the primes for which is
not finite.

The equationx” 4+ y? = zP. By interchanginga, b, andc and changing their
signs if necessary so thatis even and = 3 (mod 4, one finds that the conductor of
o :=o(a,b,c)is equalto 2 (cf. [Se2]). The presence of the extraneous prime 2 in the
conductor (in spite of the fact that all the exponents involved in the Fermat equation
are odd) can be explained by the fact that the Frey representation used to cgnstruct
is odd, so that one of the monodromies@(f) is necessarily of order/2 In contrast,
we will see that the Galois representations obtained from even Frey representations
are unramified at 2.

The equationx? 4+ y? = z". Lett = (2— w) be the (unique) prime ideal &
abover.

ProposiTION 1.15 (1) The representatiop,” is finite away from: and the primes
above2.
(2) The representatiop,” is finite away from.

Proof. The discriminantsA®* of the polynomials used in equations (10) and (11)
to defineC*(a, b, c) are

A~ = (_1)(’*1)/2 22(r=1) rr(ab)((rfl)/z)l?’

AT = (—1) D2 204D (4320 (=D

If ¢ is a prime that does not divida*, thenC;t(a,b,c) has good reduction &t
hencep is finite at all primes abové. So it is enough to consider the primes that
divide 2zb. Suppose first that # 2 dividesa, and leth denote any prime ok above

{. Let K, be the completion oK at A and 0, its ring of integers, and denote by
prﬁ the restriction otorjE to an inertia groug, C Gal(K,/K,) atx. We observe that
prﬁ =o0F(a”/c")|y,, sincet does not divide. To studyprﬁ, we consider the abelian
variety],i overKk; ((t)). Let M be the finite extension &, ((¢)) cut out by the Galois
representatiop on thep-division points of/*. From the proof of Theorem 1.10,
one knows thaC is a Mumford curve overk, [[¢]]. Hence, its Jacobiad® is
equipped with &r)-adic analytic uniformization

1— Q0 — T — JE(Ku((1)) — 1,

whereT ~ (K, (())*)¢ is a torus andQ is the sublattice of multiplicative periods.
HenceM is contained inL((tY/?)), whereL is a finite extension oK. Because
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JF extends to an abelian scheme over the local €ingr)), the extensiorL /K is
unramified wherf # p and comes from a finite flat group scheme dugwhené = p.
But the extension ok; cut out byp;fA is contained irL (+/7), wherer = a? /¢” . Since
ord; (r) = 0 (modp), this extension is unramified atwhen¢ # p and comes from a
finite flat group scheme ovéy, whent = p. The proof whert # 2 dividesh proceeds
in an identical manner, considering this tinﬁé(z) overK, ((¢t—1)) and using the fact
that ord ((a”/c") — 1) = ord,(—b?/c") = 0 (modp) to conclude. Consider finally
the case wheré = 2. If 2 does not divide:b, thenc is even. Making the substitution
(x,y) = (L/u, Qu+1)/u+D/2), the equation ot} (a, b, c) becomes
(@? —bP)
2
The coefficients involved in this equation are integral at 2, @fd—57)/2 is odd;
hence,C," (a, b, c) has good reduction at 2, and therefosg, is unramified at.. If
2 dividesab, suppose without loss of generality that it dividesand note that the
equation (6) forC;t () also shows thaf’;" (a, b, ) is a Mumford curve ovek;,. The
result follows. O

V2 +v=A4c(a? —bPyu’ 1 — u” + (lower-order terms im).

Remark. The reader will find in [Ell] a more general criterion for the Galois
representations arising from division points of Hilbert-Blumenthal abelian varieties
to be unramified, which relies on Mumford’s theory in an analogous way.

Proposition 1.15 implies that the conductor @f is a power oft and that the
conductor ofp,~ is divisible only byt and by primes above 2. We now study the
exponent of that appears in these conductors.

ProposiTION 1.16 (1) If r dividesab, then the conductor op, and p;" at ¢
dividest.
(2) If r does not divide:b, then the conductor gf,~ and p;* at ¢ dividest®.

Proof. We treat the case of,", since the calculations fop,” are similar. By
making the change of variable= (2—w)u — 2, y = (2— w)?*t1v in equation (6),
one finds the new equation far':

2—w; t
Cj_:v2+u1_[(u— 2_62)]>v+(2_w)du=0. (12)

J

Setting? = t/(2—w)“, one sees that;} (7) is a Mumford curve over SpéE.[[71]).
(The singular points in the special fiber have coordinates givei by = (0, 0) and
((2—wj)/(2—w),0), which are distinct sinc€2—w;)/2—w) = j2 (modkr).) One
concludes that when ogt) > d, the representation;' (¢) is ordinary atr, and its
conductor divides. Whenr dividesa one has orda?/c") > pd > d. A similar
reasoning works whendividesb, and so part (1) of Proposition 1.16 follows.
Part (2) is proved by analyzing*(¢) over Spe.[t, 1/(1—t), 1/t]). The conduc-
tor of J* over this base is constant, and one finds that the conducigf @ equal
to 3. O
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By combining the analysis of Propositions 1.15 and 1.16, we have shown the
following theorem.

THEOREM 1.17. (1) The conductor op,” is of the form2“t”, wherey = 1if ab is
even. One has = 1 if r dividesab, andv < 3 otherwise.
(2) The conductor op;" dividest if » dividesab, andt® otherwise.

2. Modularity

2.1. Hilbert modular forms.Let K be a totally real field of degreé > 1, and
let ¥r1, ..., ¥4 be the distinct real embeddings &f They determine an embedding
of the groupI’ = SLo(K) into SL2(R)¢ by sending a matriX¢ %) to the d-tuple

@ bi ‘.1_ , Wherea; = ¢;(a) and likewise forb ;, c¢;, andd;. Through this embed-
¢i di))i=1 J J VER J

ding, the grougd™ acts on the produét? of d copies of the complex upper half-plane
by Mébius transformations. More preciselyzit= (11, ..., 7;) belongs to#<, then

Mz (ai‘fi-i-b,')d .
¢iti+di )i
If £ is a holomorphic function ofit? andy € GL2(K), we define

(fl2v)(x) = det) [ [(citi +d) "2 f (y D).
LetT" be a discrete subgroup GfL2(K).

Definition 2.1. A modular form of weight 2 oT" is a holomorphic function on
%< which satisfies the transformation rule

flay = f.
forall y inT.

A function that vanishes at the cusps is calledusp formon I"'. The space of
modular forms of weight 2 o is denotedM»(T"), and the space of cusp forms is
denotedSy(T).

Let n be an ideal ofK. We now introduce the spacg&(n) of cusp forms of
weight 2 and leveh, as in [W1, Sec. 1.1]. For this, choose a systems, ..., ¢, of
representative ideals for the narrow ideal classek ofet 0 denote the different of
K, and assume that the have been chosen relatively primerii Define

[i(n):= {M: (i z) € GL;(K) |a,d €Ok, be (c,‘b)fl,
c € c;om, ad—bce@lx(}.

Definition 2.2. A cusp form of weight 2 and level is anz-tuple of functions
(f1,.--. fn), where fi € S2(I'i(n)).
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Denote byS»(n) the space of cusp forms of weight 2 and lerel

To the reader acquainted with the case= Q, the definition ofS2(n) may ap-
pear somewhat contrived. It becomes more natural when one considers the adelic
interpretation of modular forms of level as a space of functions on the coset
spaceGL2(Ak)/GL2(K). As in the case wher& = Q, the spacey(n) is a finite-
dimensional vector space and is endowed with an action of the commuting self-adjoint
Hecke operatord}, for all prime idealsp of K which do not dividen (cf. [W1,
Sec. 1.2)).

A modular formf € S2(n) is called areigenfornif it is a simultaneous eigenvector
for these operators. In that case one denotes,by) the eigenvalue of}, acting on
f. Let K be the field generated by the coefficientg f). It is a finite totally real
extension ofQ. If A is any prime ofK r, let K r; be the completion ok ; at and
let O, be its ring of integers.

Eigenforms are related to Galois representations gf thanks to the following
theorem.

THEOREM 2.3 Let f be an eigenform irS2(n). There is a compatible system of
A-adic representations
pfi: Gk —> GL2(0f;)

for each primex of K r, satisfying

trace(py(frobg)) =aqr),  det(py(frobg)) = Norm(q),

for all primesq of K which do not dividei.

Sketch of proof. WhenK is of odd degree or wheK is of even degree and there
is at least one finite place whelgis either special or supercuspidal, this follows
from work of Shimura, Jacquet and Langlands, and Carayol (cf. [Ca]). In this case,
the representatiopy;, can be realized on thieadic Tate module of an abelian variety
over K. (It is a factor of the Jacobian of a Shimura curve associated to a quaternion
algebra overk which is split at exactly one infinite place.) In the general case, the
theorem is due to Wiles [W2] (for ordinary forms) and to Taylor [Tay] for AllThe
constructions of [W2] and [Tay] are more indirect than those of [Ca]: They exploit
congruences between modular forms to reduce to the situation that is already dealt
with in [Ca], but they do not realizg; on the division points of an abelian variety
(or even on the étale cohomology of an algebraic variety). A different construction,
by Blasius and Rogawski [BR], exhibits the Galois representations in the cohomology
of Shimura varieties associated to an inner forni/g8). O

Let A be an abelian variety ovet with real multiplications by a fieldz. More
precisely, one requires thatis a finite extension of) whose degree is equal to the
dimension ofA, and one also requires thatis equipped with an inclusion:

E— Endk(A)®Q.
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Following the terminology of Ribet, calt an abelian variety o6GL >-typeover K .

It gives rise to a compatible system ; of 2-dimensionah-adic representations of
G for each primer of E by considering the action @ g on (7;(A) @ Q) ®f E,.

The conductorof A is defined to be the Artin conductor @f; , for any primea

of good reduction ford. (One can show that this does not depend on the choice of
A.) The following conjecture is the natural generalization of the Shimura-Taniyama
conjecture in the setting of abelian varietiesGif >-type.

CoNJECTURE 2.4 (Shimura and Taniyama)lf A is an abelian variety oGL o-type
over K of conductom, then there exists a Hilbert modular forghover K of weight
2 and leveln such that

Pfa = PA,A
for all primesx of E.
If A satisfies the conclusion of Conjecture 2.4, one saysAtiaimodular.

Remark. To prove thatA is modular, it is enough to show that it satisfies the
conclusion of Conjecture 2.4 for a single prihef E.

Conjecture 2.4 appears to be difficult in general, even with the powerful new tech-
niques introduced by Wiles in [W3]. In connection with equation (1), one is particu-
larly interested in Conjecture 2.4 for hypergeometric abelian varieties.

ConJEcTURE 2.5, For all + € Q, the hypergeometric abelian variefi(t) (resp.,
JE@®), J5@), JFE, (1) attached to the equation” + y?” =z (resp.,x? +y” = 7',
x"+y" =2zP, xP+y7 =7") is modular oveQ (resp.,Q(¢) ", Q) T, Q4. ¢ 7T).

2.2. Modularity of hypergeometric abelian varieties

The modularity of/. The modularity of the curves in the Legendre familyol-
lows from Wiles’s proof of the Shimura-Taniyama conjecture for semistable elliptic
curves. To prove thaf is modular, Wiles begins with the fact that the mod 3 rep-
resentation/[3] is modular. This follows from results of Langlands and Tunnell on
base change; the key fact being tk&to([F3) is solvable Wiles then shows (at least
when the representation3] is irreducible and semistable) that every “sufficiently
well-behaved” lift of J[3] is also modular. This includes the representation arising
from the 3-adic Tate module of, and hence itself is modular.

The modularity o/ and J%.. Whenr = 2, the abelian variety- is an elliptic
curve (which arises from the universal family afy(2)) and its modularity follows
from the work of Wiles and its extensions [Dil].

Likewise, whernr = 3, the abelian varieties* andJ,_, are elliptic curves, so that
their modularity follows from the Shimura-Taniyama conjecture. It is still conjectural
in this case, in spite of the progress made toward the Shimura-Taniyama conjecture
in [Dil] and [CDT]: For many values of, the conductors Of:;t(t) and J33(1) are
divisible by 27.
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For » > 3, the prime 3 is never split i®Q(¢,)™, so that the image of the Galois
representation acting aff"[3] or Jni, [3] is contained in a product of groups isomor-
phic toGL 2(F3s) with s > 1. Becaus&L »([F3s) is not solvable wher > 1, it seems
difficult to directly prove the modularity ofri[3] or J,ﬂ; [3] and use the prime 3 as
in Wiles’s original strategy.

Consider instead the primeof normr. SinceGq fixesr, it acts naturally on
the modules/;“[¢] and JZ; [x] of r-torsion points of/* and JZ.. Furthermore, these
modules are 2-dimension&}.-vector spaces, and the action@g on them isfF, -
linear.

TueoreM 2.6, (1) The moduled,”[t] and J,_,[t] are isomorphic to a quadratic
twist of themodr representation associated to the Legendre fanjily
(2) The moduled,"[x] and J;j, [t] are reducible Galois representations.

Proof. By the same arguments as in the proof of Theorem 1.10, one shows that the
representations attachedJg [r] andJ,_, [t] (resp.,J [x] and J,Jj, []), if irreducible,
are Frey representations associated to the Fermat equdtibny” = z" which are
odd (resp., even). By Theorem 1.5, there is a unique odd Frey representation (up
to twisting by a quadratic character) associated'te- y" = z", which is the one
associated to thetorsion points on the Legendre family(z). Part (1) follows. Since
there are no even Frey representations associatetltoy” = z”, the reducibility
of J[t] and J%,[¢] follows as well. (Alternately, in [DMs, Prop. 2.3], an explicit
t-isogeny fromJ*(¢) to JF(—t) defined overk is constructed, which shows that
the corresponding representation is reducible and, in factthatas aK -rational
torsion point of order.) O

Let N and N7 be the conductors of the o-representations*[r] and J % [«].

COROLLARY 2.7. TheGQ—representationsIri [*] and Jﬁ; [x] arise from a classical
modular form fo on T'o(N) and Io(N;5).

Proof. Since the elliptic curvel : y2 = x(x — 1)(x — ) is modular for allr € Q,
it is associated to a cusp form adipy(N;) where N, is the conductor of/ (¢). The
lowering-the-level result of Ribet [Ri2] ensures that there is a fgsnof level N~
(resp.,N,,) attached ta/," [t] (resp.,J, . [t]). In the case of the even Frey represen-
tations, the appropriate modular forfp can be constructed directly from Eisenstein
series. O

Consider now the restriction of the Galois representatjljﬁs] andJ,jf, [x]to Gk,
which we denote with the same symbol by abuse of notation.

TueoreEM 2.8 There are Hilbert modular formg over K giving rise tOJr:t[t] or
JE [x].

Proof. Thisis a consequence of cyclic base change, takitabe the base change
lift of fo from Q to K. O
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In light of Theorem 2.8, what is needed now is a “lifting theorem” in the spirit

of [TW] and [W3] for Hilbert modular forms ovelk, which would allow us to

conclude the modularity of theadic Tate module of * and JjE The methods of
[TW] are quite flexible and have recently been partlally extended to the context of
Hilbert modular forms over totally real fields by a number of mathematicians, notably
Fujiwara [Fu] and Skinner and Wiles [SW1]-[SW3]. Certain technical difficulties
prevent one from concluding the modularity 5 and Jf, in full generality.

(1) Whenr does not dividezb, the t-adic Tate module of* is neither flat nor
ordinary atrt. One needs lifting theorems that take this into account. The work of
Conrad, Diamond, and Taylor [CDT] is a promising step in this direction, but many
technical difficulties remain to be resolved. Even whea 3, one cannot yet prove
that the elliptic curveslff(t) and J33(1) are modular for alt € Q.

(2) The reducibility of the representatioit [r] may cause some technical difficul-
ties, although the recent results of Skinner and Wiles [SW1]-[SW3] go a long way
toward resolving these difficulties in tlredinary case

As an application of the results of Skinner and Wiles, we have the following
theorem.

Tueorem 2.9, (1) If r divides ab, then the abelian varietied*(a,b,c) are
modular.
(2) If r dividesc, then the abelian varietie@ﬁ(a, b, c) are modular.

Proof. The abelian varietied*(a, b, c) and J (a, b, c) have multiplicative re-
duction atr, by the proof of Proposition 1.16. Hence thadic Tate modulegri
andTi of these varieties, viewed as a representatioﬁ pf areordinary att. Since
the residual representations attachedtoand 7. are reducible, the modularity of
the associateetadic representations foIIows from [SW3, Sec. 4.5, Th. A]. (Note that
the five hypotheses listed in this theorem are satisfied in our settingkwitl and

= 1, since the field denoted there BY(x1/x2) is equal to the cyclotomic field
Q(;,)) In the case off,~ andT,,, the associated residual representationeser
reducible whenr > 5 by the work of Mazur, and the modularity of the associated
v-adic representations follows from [SW2, Sec. 5, Th. 5.1]. O

The modularity otl;'f,. Let K = Q(g,, &)™, and letq be a prime ofk abovey.
This prime is totally ramified ink /Q(¢,)T. Denote byg also the unique prime of
Q(¢)T belowgq, and letF be the common residue field @(¢,)™ andK atq.

As in the previous section, one notes that the actio@ gfon the module];f,[q]
extends to arft-linear action ofGq,, )+

TueOREM 2.1Q  The module/;f, [q] is isomorphic to a quadratic twist of*[q]
as aGq,)+-module.

Proof. The proof is exactly the same as the proof of Theorem 2.6. O

CorOLLARY 2.11 If J* is modular, then so islqﬁfr[q].
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Proof. The proof is the same as for Corollary 2.7 and Theorem 2.8; this time
applying cyclic base change fro@(¢,)™ to K.
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Corollaries 2.7 and 2.11 suggest an inductive strategy for establishing the modu-

larity of J, J*, J£

r,r?

and J;f,: combining a series of base changes with successive
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applications of Wiles-type lifting theorems (at the last step, for Hilbert modular forms
over Q(¢,.¢)T). This strategy, and its connections with Fermat's equation and its
variants, is summarized in Figure 1.

3. Lowering the level

3.1. Ribet’'s theorem.Let p : Gx — GL2(FF) be a Galois representation Gfx
with values inGL »([F), whereF is a finite field. If f is a Hilbert modular form that
is an eigenform for the Hecke operators, denoteObythe ring generated by the
associated eigenvalues.

Definition 3.1. We say thato is modularif there exists a Hilbert modular form
f over K and a homomorphismi : 0y — [ such that, for all primeg that are
unramified forp,

trace(p(frobg)) = j(aq(f))-

If f can be chosen to be of weightand leveln, we say thap is modular of weight
k and leveln.

The following is a generalization of Serre’s conjectures [Se2] to totally real fields,
in a simple special case.

CoNJECTURE 3.2 Suppose that
p:Gg —> GL2(F)

is an absolutely irreducible Galois representation, where a finite field of charac-
teristic p. Suppose also that

(1) p is odd, and its determinant is the cyclotomic character;

(2) p is finite at all primesp dividing p;

(3) the conductor op in the sense of [Se2] is equal to
Thenp is modular of weighf and leven.

This conjecture also seems quite difficult. (For example, the argument in [Se2,
Sec. 4, Th. 4] shows that Conjecture 3.2 implies the generalized Shimura-Taniyama
Conjecture 2.4.) The following conjecture, which extends a result of Ribet [Ri2] to
totally real fields, should be more approachable.

ConJeEcTURE 3.3 Suppose thap satisfies the assumptions of Conjecture 3.2 and
that it is modular of weigh2 and some level. Then is modular of weigh2 and
leveln.

The following partial result is proved in [Ja] and [Ra], building on the methods
of [Ri2].

THEOREM 3.4 Letp : Gk —> GL2(F) be an irreduciblemodp representation
associated to a Hilbert cuspidal eigenforfnof weight2 and levelni, wheren, A,
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and p are mutually relatively prime anal is a prime ofK . If [K : Q] is even, assume
that f is either special or supercuspidal at a finite primenot dividing p and A. If
p is unramified atx, thenp comes from a Hilbert cuspidal eigenforgnof weight2
and leveln.

3.2. Application tox? 4+ y? = z". In the remainder of this paper, we focus our
attention on the equatiar? + y? = z" and attack it by studying the representations
o =0t (a?/c") (and, toward the engh") attached to the-torsion of J*(a, b, ¢).

TueEorREM 3.5, (1) If r dividesab, thenp;" (resp.,p;”) comes from a modular form
of weight2 and level dividing: (resp.,2"t, for someu).

(2) If r does not divide:b, assume further thalrjE (r) is modular and that Conjec-
ture 3.3 holds for Hilbert modular forms ovéf. Thenp," (resp.,p,”) comes from a
modular form of weigh® and level dividing® (resp.,2“t3, for someu).

Proof. The modularity ofJ,i(a,b,c) (which, whenr dividesab, follows from
Theorem 2.9) implies thap* is modular of weight 2 and some level. By Theo-
rem 1.17,0; has conductor dividing whenr | ab and dividingt® in general, and it
satisfies all the other hypotheses in Conjecture 3.2; a similar statement hofgs. for
Conjecture 3.3 implies the conclusion. Note that, whdn:b, the Hilbert modular
form f associated td" (a, b, ¢) is special or supercuspidal gtso that the hypothe-
ses of Theorem 3.4 are satisfied. Hence, Theorem 3.4 can be applied to remove all
the unramified primes from the level of the associated modular form, proving part (1)
of Theorem 3.5 unconditionally. O

Remark. Theorem 3.5 suggests that the analysis of the solutiois c¢) to x? +
yP = 7" splits naturally into two cases, depending on whether orrrdividesab.
The following definition is inspired by Sophie Germain’s classical terminology.

Definition 3.6. A primitive solution(a, b, ¢) of x? +y? = 7" is called dfirst case
solutionif » dividesab, and asecond case solutiastherwise.

Remark. As with Fermat’s last theorem, the first case seems easier to deal with
than the second case (cf. Theorem 3.22).

Our hope is that Theorem 3.5 forces the imagg;dto be small (at least for some
values ofr). Before pursuing this matter further, observe that equation (1) has (up to
sign) three trivial solutions(0, 1, 1), (1,0, 1), and(1, —1, 0).

ProposiTION 3.7. (1) If (a,b,c) = (0,1,1) or (1,0,1), thenJ;* and J~ have
degenerate reduction, and the representatipfisare therefore reducible.

) If (a,b,c) = (1,-1,0), then J,i have complex multiplication b§)(¢,), and
hence the image o,a‘)rjE is contained in the normalizer of a Cartan subgroup of
GL([F).

Proof. This can be shown by a direct calculation. For example, the curve
C(1,-1,0) has equation
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y2 = x"t1 4.
Making the substitutiorix, y) = (—1/u, (2v+1)/u"*+1/2) one obtains the equation
v2+v=u",

and one recognizes this as the equation for the hyperelliptic quotient of the Fermat
curvex” +y" = z" that has complex multiplication b§(¢,). O

Proposition 3.7 suggests the following question.

QuesTtioN 3.8 Can one show that the image pf(a,b,c) is necessarily con-
tained in a Borel subgroup or in the normalizer of a Cartan subgrou@bb([F)?

The case =2and3. Forr =2 (resp.; = 3) one can answer this question in the
affirmative, by noting thapz(a, b, c) (resp.,p;(a, b, ¢)) is modular of level dividing
32 (resp., 27). (One needs to assume the Shimura-Taniyama conjeciuse 3oy The
space of classical cusp forms of weight 2 and level 32 (resp., 27) is 1-dimensional. In
fact, Xo(32) (resp.,Xo(27)) is an elliptic curve with complex multiplication b§ (i)
(resp.,Q(¢3)). (It is also a quotient of the Fermat curvé + y* = z* (resp.,x3 +
y® = z3).) So the Galois representations arising from nontrivial primitive solutions
of x? +yP = z? andx” 4 y? = z2 are either reducible or of dihedral type. This was
proved in [Dal] (see also [DMr])).

Answering Question 3.8, for specific values-of 3 andp, requires a computation
of all the Hilbert modular forms ovek of weight 2 and level dividing2. We limit
ourselves to the simpler case whefenas narrow class number 1.

Remark. It is known thatK has narrow class number 1 for all< 100 except
r = 29, when the narrow class number is equal to 8. (The author is grateful to
Cornelius Greither for pointing out these facts.)

We now give a formula for the dimension 8%(1) and So(tk), withk =1,...,3
under the narrow class number 1 assumption. To do this we need to introduce some
notation.

e Recall thatd = (r — 1)/2 denotes the degree &f over Q.

e Setdr, =2 if r =1 (mod4 ands, =0 if r = 3 (mod 4. Likewise letéz = 2 if
r=1(mod3 andsz3=0if r =2 (mod3.

e Let ¢x(s) be the Dedekind zeta-function &. The main contribution to the
dimension ofS»(t¥) is given by the special valug (—1), a rational number that can
be computed from the formula:

(=14 4 Bay

1 r
{K( ) 12 : 2 ’ 2,X r azlx(a)a ’

where the product is taken over all nontrivial even Dirichlet charagter&? /rZ)* /
(+1) — C* of conductorr.
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e Let ™ be the minus part of class number@f¢, ). This number can be evaluated
also as a product of generalized Bernoulli numbers:

_ B1 1<
=055 Bi=2) x(@a,
X a=1

where the product this time is taken over the odd Dirichlet characters of conductor
e Let h(a) be the class number of the quadratic extensi@R/a), and (ford < 0)

let g (a) be the index oﬁ;Ga(ﬁ) inOk (v/a)™. One hagj(a) =1 or 2, andy(a) = 1

if r =3 (mod4. Only the ratiogi(—1)/q(—1) andh(—3)/q(—3) are involved in the

formula for the dimension of»(t¥). Let x4 and x3 denote the nontrivial Dirichlet

character mod 4 and 3, respectively. WHeémas narrow class humber 1, these ratios

are given by the formulae

h(=1) d+177 Bl h(=3) d+177 BLxxs
_— —l . = _1 A
PTESTi 1:[ 2 a3 1:[ 2

where the products are taken over the nontrivial even Dirichlet characters of conductor

r. Recall that

1 4r 1 3r
Bl,)(x4 = E ZaXX4(a)a Bl,x)(g = 5261)()(3(0)-
a=1

a=1

Table 1 lists these invariants for the first few values of

TABLE 1
rid| ¢k(=1) |h™ | h(=1)/q(=1) | h(=3)/q(=3)
512 1/30 1 1 1
7 13 -1/21 1 1 1
11| 5 —20/33 1 1 1
13| 6 152/39 1 3 2
17| 8| 1868851 | 1 8 5
19| 9| —9350419| 1 19 9

Let
x () =14 (=D?dim(S2(n)).

Under the assumption that has narrow class number 1, this is the arithmetic genus
of the Hilbert modular varietg¢? / To(n); cf. [Fr, Ch. I, Sec. 4, Th. 4.8].

THEOREM 3.9, Assume thak has narrow class numbdr Theny (t%) (and hence,
the dimension of>(t¥)) is given by the formulae
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k(=D r=1 k(=1  h(=3
HO=Sm P Yy Ty
_ k(=) r—1 _ h(=1) h(=3)
x®=+1 T + > h +824q(—1)+833q(—3)’
K\ k=1 k(=1 h(-1) h(=3)
x( &) =r"""r+D 21 +824q(—1)+533q(_3)'

Proof. The formula fory (1) is given in [We, Th. 1.14 and 1.15]. A routine cal-
culation then yields the formula for(c%), after noting that
(1) an elliptic fixed point of order 2 (resp., 3) 6t for the action ofSL,(0k)
lifts to 8, (resp.,83) elliptic fixed points orf?/ To(c) for k > 1;
(2) an elliptic fixed point of order lifts to a unique elliptic fixed point modulo
I'o(v), and there are no elliptic fixed points of ordeon %¢/ 'o(tk) when
k>1. O

Noting thatK has narrow class number 1 wher: 23, Theorem 3.9 allows us to
compute the dimensions for the relevant spaces of cusp forms (see Table 2).

TABLE 2
r | dim(S2(D) | dim(S2(v)) | dim(S2(x?)) | dim(S2(x3))
5 0 0 0 2
7 0 0 1 5
11 0 1 6 56
13 1 4 24 290
17 6 55 879 14895
19 12 379 7300 138790

The case = 5and7. Whenr =5, the action of the Hecke operators on the spaces
So(n) over K = Q(+/5) can be calculated numerically by exploiting the Jacquet-
Langlands correspondence between formsGup(K) and on certain quaternion
algebras. LeB be the (unique, up to isomorphism) totally definite quaternion algebra
over K which is split at all finite places. The algebBacan be identified with the
standard Hamilton quaternions ovEr since 2 is inert ink':

B={x+yi+zj+wk, x,y,z,w e Q(v5)}.

The class number aB is equal to 1: The maximal orders B are all conjugate to
the ring oficosians

1 1
R= Z[w,i,j,k, (i), 5(i+wj+cbk)],
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whose unit grouR ™ is isomorphic to the binary icosahedral group of order 120 (cf.,
e.g., [CS, Ch. 8, Sec. 2.1]). L&, be an Eichler order of level in R, and write

Rn::Rn®2, é:B®2.

The Jacquet-Langlands correspondence showsStiiaj is isomorphic as a Hecke
module to the space

L?(Rx\B*/BX),
on which the Hecke operators act in the standard way.

Table 3 lists the eigenvalues of the Hecke operalracting onS»(x3), for all the
primesp of K of norm less than or equal to 50. It turns out that the two eigenforms
in S>(x3) are conjugate to each other ov@1(+/5), so we have only displayed the
eigenvalues of one of the two eigenforms.

TABLE 3
P @ O B-w) (4+w) 4-w) | Gt+o) |G-
ap(H)| 0] 0 |(=1-5V5)/2|(=14+5V5)/2 0 0 0
P |6+w)| (T+20) (5—2w) T+w) | 6-0) | (D
ap(f) 0 |(-11+5V5)/2/(-11-5v5)/2|(9+5v5)/2/(9-5v5)/2, 0

Observe that, (/) = O for all the primes that are inert in the quadratic extension
Q(¢5)/Q(w). This suggests thaf is actually of CM type, and it corresponds to an
abelian variety of dimension 2 with complex multiplication @(¢s).

In fact, this can be proved: The abelian variety

J&(1,-1,0) = Jaqy® +y = x°)

has complex multiplication b¥)(¢5), and its Hasse-WeiL-function is a product
of Hecke L-series attached to Gréssen character€afs) of conductor(1 — 5)2.

A direct calculation shows thals+(1, —1,0) is associated to the two eigenforms in
S2(+/5") overGL2(Q(v/5)).

Whenr = 7, we did not carry out a numerical investigation of the Hecke eigenforms
of levelt? ande®, but this turns out to be unnecessary in identifying the modular forms
that arise in these levels. Ldt be the (unique, up to isogeny) elliptic curve o@r
of conductor 49, which has complex multiplication (+/—7). It corresponds to
a cusp form oveQ of level 49. Its base change lift t§ = Q(cog27/7)) is the
unique modular form of levef?. The spaces,(x3) contains a 2-dimensional space of
old forms, and hence there are three eigenforms of kévdlhese must consist of the
Hilbert modular forms associated to the Fermat quotient

J7+(1, -1,0) :y2+y =x'.
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So whenr = 5 and 7, the space$y(+3) contain only eigenforms of CM type
associated to hyperelliptic Fermat quotients or CM elliptic curves. Hence, we have
the following theorem.

THeoreM 3.10 Letr =5or 7, and let(a, b, ¢) be a nontrivial primitive solution
to the equationc” + y? = 7", wherep # r is an odd prime. Lep be any prime of
K = Q(cog2x/r)) abovep, and writelF := Ok /p. Then we have the following.

(1) If (a,b,c) is a first case solution, thenodp representation associated to
Jt(a,b,c) is reducible.

(2) If (a, b, c) is a second case solution, assume further thata, b, ) is modular
and that Ribet's lowering-the-level theorem (see Conjecture 3.3) holds for Hilbert
modular forms ovelk . Then themodp representation associated th" (a, b, c) is
either reducible or its image is contained in the normalizer of a Cartan subgroup of
GL([F).

Following [Sel], one can use the fact tht is semistable to obtain more precise
information in the first case.

ProrosiTioN 3.11 If r=50r 7and(a, b, c¢) is a first case solution te? + y” =
7", thenJt(a, b, c) is Q-isogenous to an abelian variety having a rational point of
order p.

Proof. Choose a prime of K abovep, and lety; : Gk —> [F* be the character
giving the action ofGg on the K-rational 1-dimensionaF-vector subspacé. of
J¥[pl. Let x2 be the character ofix describing its action o " [p]/L. The local
analysis in [Sel, Sec. 5.4., Lem. 6] shows thatind x> are unramified outside the
primes abovep. Also, the set of restriction{>7(1|1p,, X1|1p,} to an inertia groupy at
a primep’ abovep is equal to{x, 1}, wherey is the cyclotomic character giving the
action of/,y on the pth roots of unity. (Use the corollary to Proposition 13 of [Sel].)
Hence, one of or x2 is everywhere unramified. (When there is a single prim& of
abovep, this is immediate. Ifp is split in K, one observes, by analyzing the image
of the map0y — (0x ® F,)* and using class field theory, that the inertia groups at
the various’, in the Galois group of the maximal tamely ramified abelian extension
of K unramified outsidep, have nontrivial intersection and, in fact, are equal for
all but finitely manyp.) SinceK has class number 1, one @f or x2 is trivial. If
x1 = 1, thenJF[p] has aK -rational point whose trace gives a point of orgemn
Jt(a,b,c). If x2=1, the modulel generated by th€x[Gg]-translates of is a
Q-rational subgroup of [ p] which is of rank 1 ovefix ® F,. The quotient/." /L
has a rational point of order. O

CoroLLARY 3.12 If ¢ is a prime satisfyingt < p%4 —2p1/2 1 1, then ¢
dividesab.

Proof. If ¢ does not divide:b, thenJ™ has good reduction @and #/+(F;) <
(14-+/€)% by the Weil bounds. Hence,> #J,* ([F,). This contradicts Proposition 3.11,
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since the prime-td-part of the torsion subgroup oft (Q) injects intoJ, (F,) (and
likewise for any abelian variety isogenoustg). O

THEOREM 3.13 Suppose =5 or 7. There exists a constadt. depending only
onr such that, ifp > C and (a, b, c) is a first case solution ta” + y” = 7", the
Galois representatiop, is reducible. (In this case, there is a quotient/of(a, b, ¢)
over Q which has a rational point of ordep.)

Proof. By Corollary 3.12, if p is large enough, then 2 divides, so that the
abelian variety/,” (a, b, ¢) is semistable at 2 and, hence, everywhere (see the proof of
Proposition 1.15). The mogrepresentation associatedo (a, b, ¢), if irreducible,
is therefore equal to the madrepresentation associated to a Hilbert modular form
f over K in S2(2v), by Theorem 3.5. Corollary 3.12 further implies thattif<
pYd —2p1/24 1 1 is a rational prime, ther divides ab, so thatJ (a,b,c) has
multiplicative reduction at any primeof K abovet. By using the Tate uniformization
of J7 (a,b,c) ati, we find that

a,(f) =norm(x)+1 (modp), forall ¢ < pY/d —2pY/2 11,

For eachf, there is a constar, such that this statement fails wheneyer Cs
since the modg representations attached foare irreducible for almost aji. Now
takeC,” to be the maximum of the‘; as f runs over the normalized eigenforms in
S2(2v). The statement in parentheses follows by applying,tathe same arguments
used in the proof of Proposition 3.11. O

Remark. Although the statement of Theorem 3.13 involves oply, note the
crucial role played in its proof by the representatjgh via Corollary 3.12. This
illustrates how information gleaned from one Frey representation may sometimes be
used to yield insights into a second a priori unrelated Frey representation associated
to the same generalized Fermat equation.

The case = 11. Whenr = 11, there is a 44-dimensional space of newforms of
levelt3, and studying the equatiarf 4+ y” = z** would require computing the Fourier
coefficients associated to these newforms. We content ourselves with the following
result, which requires only dealing wit»(v).

THeOREM 3.14 Let(a, b, ¢) be a first case solution to the equatieh+ y? = z11,

wherep > 19is prime, and lep be any prime oK = Q(cog2r/11)) abovep. Then
themodp representation associated yq*l(a, b, c) is reducible, and in facfl’“l(a, b,c)
has a rational point of ordep.

Proof. Letp be any ideal ok abovep, and letp, denote the mog representation
associated tdﬂ(a,b, ¢). Suppose that it is irreducible. By exploiting the action of
Gal(K/Q), it follows that py, is irreducible for all choices ai. Theorem 3.5 implies
that p, is modular of level dividing. Table 2 shows that the space of cusp forms of
this level is 1-dimensional. In fact, the unique normalized eigenfbohlevel ¢ is
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the base change lift t& = Q(cog27/11)) of the modular formf = 5(z)%n(11z)?
of level 11 associated to the elliptic cur¥@(11). Consider the prime ided®) of K
above 2, of norm 32. Then

ap)(f) =asz2(f) =8.

This implies that
ap) = a(z)(Jﬂ(a, b, c)) = 8 (modp)

for all primesp abovep. Taking norms, one finds
p> divides norny g (a2 —8).

By the Weil bounds, we have
Inormg g (a2 —8)| < (2v/32+8)°.

Sincep > 20> 8(1++/2), we must haver ;) = 8. But this leads to a contradiction.
For, if 2 dividesab, thenJﬂ(a, b, c¢) has purely toric reduction at 2 aag) = +1. If
ab is odd, then]fl(a,b, ¢) has good reduction &), and 11 divides norii32+ 1 —
a@) =25 sinceJﬂ(a, b, ¢) has aK -rational point of order 11 (by Theorem 2.6). It
follows that the modp representations associated.ﬁg are reducible. The proof of
Proposition 3.11 now shows thafl(Q) has a point of ordep, sinceQ (cog2r7/11))
has class number 1. O

CoroLLARY 3.15 If ¢ is a prime satisfyingt < p1/®> — 2p%/10 4+ 1, then ¢
dividesab.

The proof of this corollary is the same as for Corollary 3.12. Finally, we record the
following theorem.

Tueorem 3.16 There exists a constandt;; such that, ifp > C;; and (a,b,¢)
is a first case solution ta? + y? = z1%, the Galois representatiop;; is reducible.
(In this case, there is a quotient @f,(a, b, c) over Q which has a rational point of
order p.)

The proof is the same as for Theorem 3.13.

The case = 13. Whenr = 13 there is a unique normalized cusp form of level 1,
which is the base change lift of the cusp form associated to the elliptic iri4S).
(Note that this curve acquires good reduction ofgicog27/13)).) This modular
form does not pose any obstructions to studying first case solutiorfsta? = z13,
since the representation attached to a solution of the equation is ramified at

On the other hand, the 2-dimensional space of newforms of tewelld have to
be studied more carefully in order to understand the (first case) solutiefisHe” =
z13. The numerical calculation of eigenformsSs(r) becomes increasingly difficult as
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r gets larger, and it has not been carried out even fo113. One can go further without
such explicit numerical calculations (cf. Theorem 3.22) by studying congruences
(modulor) for modular forms.

Generalr. Let? be a rational prime. Thé-adic Tate moduld"g(J,i(t))@)Qg is
a 2-dimensionak; := K ® Q,-vector space. Whenis rational, the linear action
of Gk on this vector space extends t@g-action that isG x -semilinear; that is, it
satisfies
o(av)=a’0(v), forallaeKy, o€Gq.

Letting aq(J,i) := tracgpy ¢(froby)), it follows that
aq(Jr:t)a = aqo' (Jr:t). (13)
This motivates the following definition.

Definition 3.17. A Hilbert modular form overkK of leveln is called aQ-form if
for all idealsq of K which are prime ta, it satisfies the relation

ag(f)? =aqg (f), foraloeGq.

(In particular, this implies that the Fourier coefficientg /) belong tok.)

Equation (13) implies the following lemma, which reflects the fact that the abelian
varietieeri(t) with + € Q are defined ovefQ (even though their endomorphism
rings are only defined oveX).

Lemma 3.18 Forall r € Q, if the abelian varietied,~ (r) and J* (r) are modular,
then they are associated to a moduf@rform overk.

Let f be an eigenform if2(n), and leth be a prime in the ring of Fourier coeffi-
cientsOs. Denote byp , the A-adic representation associatedftdy Theorem 2.3
and letV be the underlying 7, -vector space. Choose -stable0 s, -lattice A in
V. The space\ := A /LA gives a 2-dimensional representatjg, for G ¢ over the
residue fieldk s, := 0, /A. In general, this representation depends on the choice of
lattice, but its semisimplification does not. One says thatis residually irreducible
if oz, is irreducible for some (and hence all) choices of latficéOtherwise one says
thatp, is residually reducible. In the latter case, the semisimplification,gf is a
direct sum of two 1-dimensional characters

X1, x2: Gg —> k}f‘x,
whose product is the cyclotomic character
x:Gx — (Z/eD)* C k;,x

giving the action ofG ¢ on thefth roots of unity.
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Let f be aQ-form overK in the sense of Definition 3.17, so that in particular its
Fourier coefficients are defined ovkr We say thatf is r-Eisenstein if its associated
t-adic representatiopy,. is residually reducible.

ProposiTION 3.19 There exists a constagt” depending only on such that, for
any first case solutiotia, b, ¢) to equation (1) withp > C;*, one of the following
holds:

(1) the representatiop,” is reducible, or

(2) itis isomorphic to thenodp representation attached to arEisenstei)-form

in S>(v).

Proof. Let g be any eigenform irf2(v). If g is not aQ-form, then there exists a
primeq of 0, and ao € G such thatug(g)? # aqe (). If ¢ is aQ-form but is not
t-Eisenstein, then there is a primef K such that does not divider,(g) — Nq— 1.
In either case, one has

aq(g) 7 aq(f)7

for all modular formsf that correspond to & (r) with € Q. Indeed, such arf
is aQ-form and ist-Eisenstein by Theorem 2.6. ff = ¢ for some primep of 0, K
abovep, then taking norms gives

p divides Nornx x q (aq(g) —aq(f)) #0.
Letd, :=[K, : Q]. Applying the Weil bounds, one finds

|Normg, x /q (aq(8) —aq(f))| < (L6Normy g (@) P4/,

so that

p < Cg := (16Normy g (@) P/,
In particular, if p > C,, the representatiop,” is not equivalent tas, ,, for any
prime of 0, K abovep. Now setC;" := max, C,, where the maximum is taken over
all eigenformsg in S>(xr) which are either nofQ-forms or are not-Eisenstein. If
p > Ct and(a,b,c) is a first case solution te? + y? = z" and if the associated
representation,” is irreducible, then it is associated by Theorem 3.5 to a Hilbert
modular eigenform irf2(x). This form must be ags-EisensteirQ-form by the choice
of C;t. O

In light of Proposition 3.19, it becomes important to understand whether there exist
t-EisensteinQ-forms in Sz ().

ProposiTION 3.20 Suppose that is a regular prime. Then there are ne
EisensteinQ-forms overK of levell or «.

Proof. Suppose on the contrary thgt is a Q-form in Sx(v) and thatpy . is
residually reducible._ Letr1 and x» be the characters off ¢ which occur in the
semisimplification ofA, for some (and hence alfj ¢ -stable lattices\ in V. Because
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f isaQ-form, it follows thaty1 andy, are powers of the cyclotomic characgewith
values in(£1) c F. Furthermorex1x2 = x. Hence, we may assume without loss
of generality thatys = 1 andx2 = x. By [Ril, Prop. 2.1], there exists @k-stable

lattice A for which
_ (X1 Yo\ _ 1 Yy

and it is not semisimple. This implies thdt := ¥p/x is a nontrivial cocycle in
HY(K,Z/rZ(-1)). Proposition 3.20 now follows from the next lemma.

Lemma 3.21 The cocyclel is unramified.

Proof. The cocycle¥ is unramified at all places # © because does not divide
the level of f. Itis also unramified at: If f is of level 1, this is becausey,. comes
from a finite flat group scheme ovéf. If f is of levelr, then, by [W2, Th. 2], the
restriction of the representatigiy,. to a decomposition group. atr is of the form

_ W
pf,t|D[2<)0( l>

But the restriction ofy to D, is nontrivial. Comparing the equation above to equation
(14), it follows that the local representatign .| p, splits. Therefore, the cocychke
is locally trivial atc. This completes the proof of Lemma 3.21. O

Proposition 3.20 now follows directly: The cocyalecuts out an unramified cyclic
extension ofQ(¢,) of degree-, which does not exist if is a regular prime. O

THEOREM 3.22 Letr be a regular prime. Then there exists a constéyit (de-
pending only on) such that, for allp > C;* and all first case solutionéa, b, ¢) to
xP +yP = 7", themodp representation associated %" (a, b, ¢) is reducible.

Proof. Combine Propositions 3.19 and 3.20. O

Remarks. (1) The value of the constaat" depends on the structure of the space of
Hilbert modular forms ove€) (cog2r/r)) of levelr. It would be possible in principle
to write down a crude estimate fa" by using the Chebotarev density theorem and
known estimates for the size of fourier coefficients of Hilbert modular eigenforms,
but we have not attempted to do this.

(2) The consideration afEisensteinQ-forms so crucial for the proof of Theorem
3.22 is only likely to be of use in studying first case solutions. Indeed, there typically
existr-EisensteinQ-forms onSx(t3); for example, the base change lifts frdinto K
of certainr-Eisenstein forms oXo(r2) or (more germane to the present discussion)
the form inS»(x3) associated to the CM abelian variety (1, —1,0).

(3) The arguments based erEisensteinQ-forms yield no a priori information
about the Galois representatiops, since the mod- representation attached to
J~(a,b,c) is irreducible. (It is isomorphic to a twist of the representation coming
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from the r-torsion of the Frey curve? = x(x — a”)(x + b?), by Theorem 2.6.)
Nonetheless, one can still show the following theorem.

THEOREM 3.23 Assume further thak has class numbet. Then

(1) J(a,b,c) is isogenous to an abelian variety having a rational point of
order p;

(2) there exists a further constarf such that ifp > C,, the abelian vari-
ety J7(a,b,c) is isogenous to an abelian variety having a rational point of
order p.

Proof. The proof of (1) is the same as for Proposition 3.11, and (2) follows from
the same reasoning as for Theorem 3.13. O

4. Torsion points on abelian varieties. Ultimately, one wishes to extract a con-
tradiction from theorems like Theorems 3.10, 3.13, 3.14, 3.16, 3.22, and 3.23 hy
proving that wherp is large enough (relative toperhaps), the image of” is large;
for example, that this image contaiBdo(F) or, at the very least, that the abelian
varieties/*(a, b, c), when semistable, cannot contain a rational point of opddine
following folklore conjecture can be viewed as a direct generalization of a conjecture
of Mazur for elliptic curves.

CoNJECTURE 4.1 Let E be a totally real field and a number field. There exists
a constantC (K, E) depending only oK and E, such that for any abelian variety
A of GL>-type withEndg (A) ® Q = Endg (A) @ Q ~ E, and all primesp of E of
norm greater tharC (K, E), the image of thenodp representation associated t
containsSL([F).

This conjecture seems difficult. The set of abelian varietie§Sbh-type with
End(A) ® Q ~ E is parametrized by d-dimensional Hilbert modular variety, and
very little is known about the Diophantine properties of these varieties.

Whenr = 2 andr = 3, one hask = E = Q since the representatiomét arise
from elliptic curves. Much of Conjecture 4.1 can be proved thanks to the ideas of
Mazur [Mal], [MaZ2].

e Theorem 8 of [Mal] implies that the image p,F is not contained in a Borel
subgroup ofGL »(F,) whenp > 5.

e A result of Momose [Mo] building on the ideas in [Mal] implies that this image
is not contained in the normalizer of a split Cartan subgroyp=f 17.

o Finally, a result of Merel and the author [DMr] implies that the imagebfis
not contained in the normalizer of a nonsplit Cartan subgroup. (We were unable to
prove a similar result fop,~.)

Combining these results with an ad hoc study (carried out by Bjorn Poonen [P0],
using traditional descent methods) of the equatiohs y? = z" (r = 2, 3) for small
values ofp yields the desired contradiction. Thus, the main result of [DMr] provides
an (essentially) complete analogue of Fermat's last theorem for equation (1) when
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r =2 or 3, which one would like to emulate for higher values- of

TuEOREM 4.2 [DMr]. (1) The equationc” 4+ y? = z2 has no nontrivial primitive
solutions wherp > 4.

(2) Assume the Shimura-Taniyama conjecture. Then the equétien? = z° has
no nontrivial primitive solutions whep > 3.

Return now to the case> 3. The following special case of Conjecture 4.1, which
is sufficient for the applications to equation (1), seems more tractable.

CoNJECTURE 4.3 There exists a constat, depending only om, such that for
anyt € Q and all primesp of K = Q(¢,)* of norm greater thanB,, the image of
the modp representation o5 ¢ associated tol,i(t) is neither contained in a Borel
subgroup nor in the normalizer of a Cartan subgroupGifa(F).

A natural approach to this conjecture is to study the cuwésp), XE(p), and
X (p) which classify the abelian varietiek"(r) with a rational subgroup, a “nor-
malizer of split Cartan subgroup structure,” and a “normalizer of nonsplit Cartan
subgroup structure” on thedivision points, wherg is an ideal of the fieldK .

For the moment, we know very little about the arithmetic of these curves, except
whenr = 2 andr = 3 when they are closely related to classical modular curves.
Whenr > 3, they appear as quotients of the upper half-plane by certain nonarithmetic
Fuchsian groups described in [CW]. We content ourselves here with giving a formula
for the genus of these curves. leet +1 be defined by the conditiddp = ¢ (modr).

Lemma 4.4 (1) The genus ok (p) is equal to

1 1 2
it 2y £()
2 r op 2 r

(2) The genus OXSi (p) is equal to

1/ 1 2 1/ 1
-(1—-——)Np(Npﬂ)—i(l—-)H.
4 rop 4 r

(3) The genus ok £ (p) is equal to

1 1 2 -1 1

(1= Z)Np(Np—D+ (21— ) +1

4 r p 4 r

Proof. The curves above are branched coverings of the projective line with known

degrees and ramification structure. The calculation of the genus follows by a direct
application of the Riemann-Hurwitz genus formula. O

Example. Whenr =5 andp = (3), one finds that the curveg; (3) andXSr(S) are
of genus 1; that is, they are elliptic curves o@r A direct calculation reveals that
Xa“(3) is an elliptic curve of conductor 15, denoted byFlfh Cremona’s tables.

By looking up the curve 15 twisted by Q(+/5), one finds that 15 has finite
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Mordell-Weil group overQ(+/5). DoesJJ(p) always have a nonzero quotient with
finite Mordell-Weil group overQ(¢,) ™, at least whem is large enough?
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