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1 The result

Let E/Q be a modular elliptic curve of conductor N, and let K be an imaginary
quadratic field of discriminant prime to N. Assume that E is semistable at all
the prime divisors of N which are inert in K, and that the Hasse-Weil L-function
L(E/K, s) vanishes to even order at s = 1. Since the sign of the functional equation
of L(E/K,s) is —e(N), where € is the Dirichlet character attached to K (see [GZ],
p. 71), it follows that the number of primes dividing N and inert in K is odd. Fix
such a prime, say p, throughout the paper.

Let Ko be the anticyclotomic Zy-extension of K, and let I' >~ Z,, be its Galois
group over K. Write A for the Iwasawa algebra Z,[I']. The field K is a Galois
extension of Q, and the generator 7 of Gal(K/Q) acts on I by the rule 7y = v~ for
all v € I'. This property characterizes K, among the Z,-extensions of K. Denote
by Sel,~(E/Ks) the p-primary Selmer group of E over K. It is a cofinitely
generated A-module (i.e., its Pontryagin dual is a finitely generated A-module). It
sits in the descent exact sequence

0— E(Ko) ® Qp/Zp — Selp (E/Kog) — HI(E/ Koo )poe — 0,

where III(E /K ) denotes the Shafarevich-Tate group of E over K.
This note combines the results of [BD2] with techniques of Iwasawa theory to
prove the following theorem.

Theorem 1.1

If L(E/K,1) is non-zero, then the A-corank of Sel,~(E/K) is equal to 1. More
precisely, E(K)®Q,/Z, has A-corank equal to 1, and III(E /K )= is a cotorsion
A-module.

Remark 1.2

1. If x : I' — C* is a complex character of finite order which is ramified at p,
the sign of the functional equation of L(E /K, x,s) is —¢(N/p) = —1. One expects
that L'(E/K, x, s) is non-zero for almost all characters x as above. Assuming this,
theorem 1.1 is predicted by the Birch and Swinnerton-Dyer conjecture applied to
the finite layers of the extension K.

2. As explained in section 3, the proof of theorem 1.1 is achieved by showing
along the way a non-triviality result for the family of Heegner points defined over
K. See theorem 3.2 for the precise statement. The proof of theorem 3.2 rests on
one of the main results of [BD2].
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2 An upper bound for the corank of Sel,~(E/K..)
This section is devoted to the proof of the following:

Proposition 2.1
If L(E/K,1) is non-zero, then the A-corank of Selye (E /K ) is < 1.

Proposition 2.1 is a consequence of the next two propositions.

Proposition 2.2
If L(E/K,1) is non-zero, then corankyz_ Sel,-(E/K) = 0.

Proof. If L(FE/K,1) is non-zero, a theorem of Kolyvagin (see [K], Theorem A)
shows that E(K') and the Shafarevich-Tate group III(E/K) of E over K are finite.
In particular, the Z,-corank of Sely~(E/K) is zero.

The next proposition does not depend on the assumption that L(E/K, 1) is non-
Z€ro.

Proposition 2.3
corankyz, Selo (E/Kx)" < corankz_ Selp~ (E/K) + 1.

Proof of Proposition 2.1
The structure theory of discrete A-modules shows that

coranky Sel e (E/ K+ ) < corankz Selpe (E/K)".

(See [M], ch. 1, or also [L], ch. 5, sec. 3, for details.) But the propositions 2.2 and
2.3 imply that the Z,-corank of Sely (B/Ko)" is < 1.

It remains to prove proposition 2.3. Write K, for the subfield of K., having degree
p" over K, and G,, for the Galois group Gal(K,,/K). Let K,,, with ng > 0 be
the maximal unramified extension of K contained in K. Thus, K,, = K N H,
where H is the Hilbert class field of K. Note that p is inert in K, totally split in
the extension K, /K and, for n > ng, all the primes of K, above p are totally
ramified in K,,/K,,,. Denote by ¢q € pZ, Tate’s p-adic period of E, and by ®,, the
group of connected components of E over K, ® Q,. By Tate’s theory of p-adic
uniformization, the group ®,, is a G,,-module, isomorphic to (Z/c,p" ™ Z)[Gp,],
where ¢, := ord,(q).

Lemma 2.4
The torsion subgroup E(K s )tors of F(K o) is finite.

Proof. Let q; and gy be primes of good reduction for F which are inert in K. Then
¢1 and ¢o are totally split in Ko /K, and E(K)tors injects in the finite group
E(F(ﬁ) D E(Fqg).

Proof of Proposition 2.3
The proof is an application of the inflation-restriction sequence. First, note the
exact sequence

H1<F7EP°O(KOO)) - HI(K7 Ep“’) - H1<K007 EPO")F - HQ(F7EP°° (KOO))
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The first term is finite, by lemma 2.4, and the fourth one is zero, since I' has
cohomological dimension equal to 1. If / is a rational prime, there are also the local
exact sequences

HYT, E(Koo0))poe — H' (Ky, E)pee — H (Koo 0, E) oo,
where K, denotes K ® Q; and K ¢ denotes |, (K, ® Q). If £ # p, the cohomol-
ogy group H'(I', E(K¢)) is finite, since K, is unramified outside p. Moreover,
if £ N, H(I',E(Kx)) is zero, since E has good reduction at £. (See [Mil,
ch. 1.) The theory of p-adic uniformization can be used to prove that the group
HY(T, E(Kwp))p= has Z,-corank < 1. One starts from the exact sequence of

I-modules
0—Qr — KL, E(Kygy)—0,

where Qi denotes the lattice of p-adic periods of E. The action of I' on Qg factors
through G,,,, and Qg is isomorphic to Z[G,,]. Taking cohomology of the above
sequence shows that H'(T', E(K ,)) injects in H?(T', Qg). Combining the exact
sequence in cohomology induced by

0-Qr—Qe®Q—-Qr®Q/Z—0

with an inflation-restriction argument identifies H?(I', Q) with the group of homo-
morphisms Hom(Gal(Ko /K, ), (Qr ® Q/Z)%0), which is isomorphic to Q,/Z,.
Proposition 2.3 now follows from the snake lemma applied to the commutative
diagram

0 —— Selp=(E/K) —— HYEK Ep~) —— [, H (K, E)p=

! J J

0 —— Sely= (E/Koo)' —— HY (Koo, Epe)t —— [, H (Koo, E)Y

P

where the vertical maps are restriction maps.

Remark 2.5
1. The Zp-corank of the group H'(I', E(Kw p))p= considered in the proof of
proposition 2.3 is in fact equal to 1. To see this, note the exact sequence

0— H'(I, B(Keop)) — H*(T,Qp) — H*(T, K%, ;) — H*(I, B(Ksp)) — 0.

The “Brauer group” H?(T, K % p) has Zy-corank equal to 1, and it was already
observed that H?(T', Q) has Z,-corank equal to 1. Let E (K,) be the p-adic com-

pletion of F(K)), and let UE(K,) be the submodule of universal norms along the
local extension K p/K,. The Z,-corank of H?(T', E(K~ p)) is equal to the Z,-

rank of E(K,)/UE(K,). The theory of p-adic uniformization, combined with class
field theory and the fact that the Tate period of E/K, is a universal norm from

KX, shows that F(K,)/UE(K,) has Z,-rank equal to 1. The claim follows.

OO,p’
2. Recall that proposition 2.2 is a special case of a theorem of Kolyvagin [K].
The condition L(E/K,1) # 0 is equivalent to L(F/Q,1) # 0 and L(E’/Q,1) # 0,

Y

where E’ denotes the quadratic twist of ¥ by K. The opening step in Kolyvagin’s
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proof consists in choosing auxiliary imaginary quadratic fields F and F’ such that
the first derivatives L'(E/F,1) and L'(E/F’,1) are both non-zero, and such that
the primes dividing the conductors of F and E’ are split in F' and F”, respectively.
The proof is then achieved by proving the finiteness of the Selmer groups of £/Q
and E'/Q one at a time, and deducing the finiteness of the Selmer group of E/K.
A simpler approach to the proof of proposition 2.2 rests on the methods of [BD2],
which allow to bound directly the p-primary Selmer group of E/K.

3 A lower bound for the corank of Sel,~(E/K..)

Theorem 1.1 is a consequence of the next proposition, combined with proposition
2.1.

Proposition 3.1
If L(E/K, 1) is non-zero, then the A-corank of E(K +)®Q,/Z, is> 1. In particular,
the A-corank of Sel,~ (F/K) is > 1.

Some preliminary results are needed. Recall the integer ng defined in the previous
section. The field K, is contained in the union of all the ring class fields of K
of p-power conductor. More precisely, for n > ng let H,, be the ring class field of
conductor p"T1="0. Thus, H,, is an extension of the Hilbert class field H of degree
€n :=p" " (p+1)/u, where u is one half the order of the group of units of K. The
field H,, is the smallest ring class field containing K.

For n > ng, a Heegner point construction (which is described in [BD1], sec. 2.5)
defines a collection of points 3,, € E(H,,), satisfying the compatibility relations

Tracepq, /1, Bn+1 = Bn, Tracey,, /i Bn = 0.

Set a,, := Tracep, /K, Bn € E(Ky,). Thus,

Traceg, ., /K, Ont1 = Qn, TraceKn/KnO a, = 0.

Theorem 3.2
If L(E/K,1) is non-zero, then there is an integer nq > ng such that o, has infinite
order for all n > nq.

Proof. Let ¥, denote the group of connected components of E over H, ® Q,. The
group ¥, is a Gal(H/K)-module, isomorphic to (Z/cpe,)[Gal(H/K)]. Write [,
resp. &, for the natural image of 3, in ¥,,, resp. of ;, in ®,,. Moreover, set

A1 . __ 3 ~1 . ~
By = Tracem, K Bn, Q= TraceKnO/Kan.

The operator Tracey, sk, induces a surjective map tg, /k, : Vn — ®,. Note that

Theorem A of [BD2] relates the elements 3 to the special value L(E/K,1). In
particular, since L(E/K,1) is non-zero, it implies that the order of 8} tends to

infinity with n. The same property holds for the order of al, since the kernel of



tH, /K, is bounded independently of n. This shows that either the points c,, have
infinite order for n sufficiently large, or the «,, are a collection of torsion points of
unbounded order. But the second possibility is ruled out by lemma 2.4.

Corollary 3.3
The Mordell-Weil group E(K ) has infinite rank over 7.

Proof. Suppose instead that E(K ) has finite rank. Since E(K)tors i finite by
lemma 2.4, it follows that E(K ) is finitely generated. Thus, there is a positive
integer ng such that E(K.) = E(K,,), and such that the Heegner point «,, has
infinite order for all n > ns. By the compatibility of the Heegner points under
traces, one obtains that a,, = p" ™ aq,, for all n > ny. But the point «,, has
infinite order, and therefore it cannot be infinitely divisible in E(K,,).

Proof of Proposition 3.1

By corollary 3.3, E(K) ® Q,/Z, has infinite Z,-corank. On the other hand, a
cotorsion A-module has finite Z,-corank, by the structure theory of discrete A-
modules ([M], ch. 1). This completes the proof of proposition 3.1, and of theorem
1.1.

The next result gives information on the growth of the Mordell-Weil groups E(K ).

Proposition 3.4
If L(E/K,1) is non-zero, then there is a sequence of integers i, having absolute
value bounded independently of n such that

ranky E(K,) = p" + tp.

Proposition 3.4 follows from theorem 1.1 and theorem 3.2. More precisely, theorem
1.1 implies that rankz E(K,,) < p"™ + t,,, for a bounded sequence of integers ¢,,. By
theorem 3.2, the Heegner points «,, yield a norm-compatible sequence of points of
infinite order. The opposite inequality follows from the structure of the modules
of universal norms over the layers of K. See [B], ch. 2 and 3. The details of the
proof are omitted.

Remark 3.5

1. With the other assumptions on E, K and p as in the rest of the paper, now
assume that L(E/K,s) vanishes to even order at s = 1 and that L(E/K,1) = 0.
The first part of remark 1.2 suggests that in this setting Sel,~ (E/K) still has
A-corank equal to 1. Moreover, the Heegner point construction carries over, and
for n > ng provides a norm-compatible collection of points «,, € E(K,,). A natural
generalization (not yet proved) of the Gross-Zagier formula [GZ] to the derivatives
L'(E/K,x, 1) for ramified characters x of I' leads one to expect that again the point
o, has infinite order for n sufficiently large. (However, this cannot be shown by
mapping a,, to the group of connected components ®,, as in the proof of theorem
3.2, since L(E/K,1) is zero.) In the remainder of this remark, assume that o, has
infinite order for n large enough. The proofs of proposition 3.1 and of corollary
3.3 show that the A-corank of Sely (E/K ) is > 1. In order to show the opposite



