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DERIVED P-ADIC HEIGHTS 

By MASSIMO BERTOLINI and HENRI DARMON 

Introduction. Let E be an elliptic curve defined over a number field K, 
and let K / 7K be a 7p-extension. Denote by A the Iwasawa algebra Zp4 [[17, with 
F = Gal (K,,/K). Given any topological generator -y of F, write I for the ideal 
(-y - 1)A of A. Let E(K)p = lim+- E(K)/p'E(K) denote the p-adic completion 
of E(K). When E has good ordinary reduction at the primes above p which are 
ramified in Ko 7K, there is a canonical symmetric pairing 

( , ): E(K)p x E(K)p _* 1/12, 

called the p-adic heightpairing (for a definition, see for instance [MT 1] or [Sc 1]). 
Unlike the Neron-Tate canonical height, the p-adic height pairing can be 

degenerate in certain cases, and the phenomena associated to this degeneracy are 
poorly understood. This paper is devoted to the study of these questions. 

One of the main results of this paper, Theorem 2.18, states the existence, for 
1 < k < p - 1, of a sequence of canonical pairings, called derived p-adic heights, 

))k: S(k) X 3(k) _k_1k+l 0 Q 

where Sp1) - lim+- Selpn(EK) is the inverse limit of the pn-Selmer groups with p n 

respect to the multiplication by p maps, and for k > 2 3(k) denotes the null-space 
- p 

of ((, ))k-1. 

We show that these pairings are either symmetric or alternating, depending 
on whether k is odd or even, and the space of universal norms of Sgl) is contained p 
in their null-space. We also show that the restriction of ((, to E(K)p is equal 
to (, ). We give an alternate description of the null-spaces 3pk) in terms of 
the A-module structure of the Selmer group of E/KOO. See Theorem 2.18 and 
Theorem 2.7. 

The product of the discriminants of the above pairings (viewed as defined 
on (Spk)/S1k+l))) provides a generalization of the notion of p-adic regulator. This 
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1518 MASSIMO BERTOLINI AND HENRI DARMON 

derived regulator is useful in all instances where the p-adic height ((, is 
degenerate (i.e. the classical p-adic regulator vanishes) as a way of describing in 
a convenient manner the leading coefficient of the p-adic (algebraic) L-function 
associated to the data (E, K,/K). See Theorem 2.23 for the precise statement. 

When E is defined over Q, the anticyclotomic ZP-extension of an imaginary 
quadratic field K provides a prototypical example of the above situation, since the 
Galois equivariance of (( , ))1 forces degeneracy if the "plus" and "minus" part 
of S(1) under the action of complex conjugation have different ranks. This case p 
is analyzed in detail in the third part of the paper where, inspired by conjectures 
of Mazur ([Ma2], [Ma3]), we predict that the null-space of the second derived 
height consists exactly of the subspace of universal norms (cf. ?3.2). We also 
explain how this fits into a (partly conjectural) picture describing the behavior of 
Heegner points over the anticyclotomic tower. 

1. Preliminary results. 

1.1. Notations and assumptions. We keep the notations of the introduction. 
For n > 1, let Kn/K denote the subextension of Ko, of degree pn. Given a place 
v of K, let Kv be the completion of K at v. If F is any finite extension of K, we 
write 

Fv = wI vFw, 

where the sum is taken over all places of F above v. Functors on abelian categories 
will always be additive, e.g., 

H1(FV,M) 0DWI vHi(Fw, M), 

if M is any Gal (K/K)-module. 
Throughout the paper we make the following assumptions on (E, p, K" /K). 

(1) p t 2#(E/E?), where E/IE denotes the group of connected components 
of the Neron model of E over Spec(OK). 

(2) E has good reduction above p. 

(3) The image of the Galois representation pp: Gal (K/K) -* Aut(Ep) con- 
tains a Cartan subgroup of Aut(Ep) 2_ GL2(IFp). 

(4) The local norm mappings Normv: E((Kn)1,) -* E(Kv) are surjective for 
all primes v of K and for all finite subextensions Kn of KOO/K. 

PROPOSITION 1. 1. Assume that for all primes v ramified in Koo/K, p t #E(IF,,) 
and v is ordinary for E. Then assumption 4 is satisfied. 

Proof. This is proved in [Mal], ?4. 0 
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DERIVED P-ADIC HEIGHTS 1519 

Conversely, observe that assumption 4 implies that all the primes above p 
which are ramified in KOO/K are ordinary primes for E. 

Using Proposition 1.1, it is easy to construct 7P-extensions satisfying condi- 
tions 1-4, once E/K is fixed. First, almost all primes p of Q satisfy conditions 
1-3, by Serre's "open image theorem" [Se] and the theory of complex multipli- 
cation. Given a prime v of K above p where E has good reduction, let av and 
13v denote the eigenvalues of the Frobenius at v. Assume for simplicity that E 
does not have complex multiplications, and that Kv has residue field Fp (the set 
of such v's has density 1). The conditions that E be ordinary at v and p t #E(Fv) 
translate into av - 0, 1 (mod p), where av is the rational integer av = atv + Ov. If 
p > 7, this is equivalent to av i 0, 1 in Z by the Hasse bound av < 2.p Now 
choose a rational prime 1 i p lying below primes of good reduction for E. The 
integer av is equal to the trace of Frobv acting on the Tate module T1E. By [Se], 
we may assume that Gal (K(E1n)/K) is isomorphic to GL2(Z/ln Z) for all n > 1. 
The Chebotarev density theorem applied to the extensions K(Ein)/K for n -o 0o 

implies that the set of v as above such that av i 0, 1 has density 1. 
In conclusion, any 7p4-extension K / 7K such that p lies below the primes v 

considered above satisfies conditions 1-4. 

1.2. The duality formalism. In this section let L/K denote any finite subex- 
tension of KOO/K. We review some duality theorems for the Galois cohomology 
of an elliptic curve, together with results of [BD] built on them. (In effect, these 
results hold more generally for finite abelian p-extensions.) 

1.2.1. Duality (Reference: [Mi], chapter 1). Let v be a finite prime of K 
and m be a positive integer. Recall the local Tate pairing 

( A )L,,,m : H1(Lv,Em) x H1(Lv,Em) -> 2/mZ, 

defined by composing the cup product with the Weil pairing. (In view of our 
conventions, H1 (Lv, Em) = ~w vH1 (Lw Em), thus (, )L,,,m is actually a sum over 
the primes of L dividing v of the local Tate pairings.) The local Tate pairing is 
nondegenerate, symmetric and Galois-equivariant. The submodule of local points 
E(Lv)/mE(Lv) is the orthogonal complement of itself under (, L Hence there 
is also an induced nondegenerate pairing 

[ , ]Lv,,m : E(Lv)/mE(Lv) x H1(Lv, E)m -4 ZZ/mZ. 

Later we shall need the following compatibility formulae for the local Tate pair- 
ings, which are consequences of standard properties of the cup product. 

(1) 
(coresL,,/K,, (a), b)Kt,,m = (a, reSL,,/K^,(b))L,,,m, 

Va E H1 (Lv, Em), Vb E H1 (Kv, Em). 
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1520 MASSIMO BERTOLINI AND HENRI DARMON 

(2) [coresL,,/K^,(a), b]Kt,,m = [a, reSL,/Kj(b)]L,,m, 

Va E E(Lv)/mE(L,),Vb E H (Kv,E)m. 

Let I be a finite, possibly empty, set of nonarchimedean primes of K. The local 
Tate pairing gives rise in the obvious way to nondegenerate Galois-equivariant 
pairings 

)L,m: EvE,,Hl(Lv, Em) x v ,H1(Lv,EEm) -* Z/mZ. 

[, ]L,m: OEV-E(Lv)/mE(Lv) x 0 , H "(Lv,E)m -* Z/mZ. 

Define the I-Selmer group of E/L to be 

Sel'(E/L) = {s E H1(L, Em) resW(s) E E(Lw)/mE(Lw) Vw I v, v , X}. 

When I is the empty set, one finds the usual Selmer group Selm(E/L). By defi- 
nition, there is a map 

Selm(E/L) + 0lvcxE(Lv)/mE(Lv). 

By passing to the Pontryagin dual, we obtain a map 

6 = 0v ffl Hl(Lv,E)m - Selm(E/L)dual 

where H1 (Lv, E)m is identified with (E(Lv)/mE(Lv))dual via the local Tate duality. 
The following, known as the Cassels dual exact sequence, plays a key role in our 
construction. 

PROPOSITION 1.2. There is an exact sequence 

0- Selm(E/L) -* Sel'(E/L) -- ~vEyH1(Lv,E)m Selm(E/L)dual 

where thefirst map is the canonical inclusion and the second one is induced by the 
natural map H1 (L, Em) + H1 (L, E)m followed by localization. 

Proof. [Mi], Lemma 6.15, p. 105. o 

The nontrivial point in the proof of 1.2 is to show the exactness at the third 
term of the sequence. Rephrased, this means that a #?-tuple of local classes 
of G)vEH1 (Lv,E)m pairs to zero with all the elements of the Selmer group 
Selm(E/L) under the local Tate pairing if and only if it comes from a global class 
of Sel-(E/L). 

Half of this statement, namely, that the image of Sely(E/L) in Selm(E/L)dual is 
zero, follows from the global reciprocity law of class field theory. (More precisely, 
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DERIVED P-ADIC HEIGHTS 1521 

given global classes ae and : of H1 (L, Em), their cup product composed with 
the Weil pairing gives an element ae /3 in the m-torsion Br(L)m of the Brauer 
group of L. The local invariant at v of ae /3 is equal to the local Tate pairing 

(resv(oa),resv(/))L,,m. But the sum of the local invariants is zero by class field 
theory.) The other half follows from Tate's global duality theorem [Mi], ch. I, 
Theorem 4.10. Write G for the Galois group of the extension L/K. The Z/m7/[G]- 
valued pairing we introduce next will be an ingredient in the construction of the 
derived heights. Define 

( ) : v,H(Lv,Em) x evf ,Hl(Lv,Em) -? 7/m7[G] 

by the rule 

(X, y) =,(X, Yg)L,m * 9- 

gCG 

Write c: Z/m7[G] -* Z/mZ for the augmentation map. Let A H-* A* denote the 
involution of 2Z/m2[G] defined on group-like elements by g H-* g-1. 

PROPOSITION 1.3. 

(1) The pairing (, ) is nondegenerate. It is Z/mZ[G]-linear in thefirst variable 
and *-linear in the second variable, i.e. for all A E Z/m7[G] we have (Aa, b) = 

A (a, b), (a, Ab) = A* (a, b). 

(2) (a, b) = (b, a) *. 

(3) E(a, b) = -(coreSL/K(a), coresL/K(b))K,m. 

(4) The image ofUvcyE(Lv)/mE(Lv) in v H1 (Lv, Em) is isotropicfor (, ). 

(5) The image of Sely(E/L) in vE-H1 (Lv, Em) is isotropic for (, ). 

Proof. 

(1) follows from the fact that ( L, m is nondegenerate and G-equivariant. 

(2) follows from the symmetry and G-equivariance of (, )L,m. 

(3) is a consequence of formula (1) above. 

(4) follows from the isotropy of the local points with respect to the local 
Tate pairing. 

(5) follows from the global reciprocity law of class field theory. o 

1.2.2. Descent theory. From now on, we shall work with p-groups (nota- 
tionwise, replace the positive integer m with pm). 

LEMMA 1.4. For any choice of ?, the restriction map induces an isomorphism 

res: Selm (E/K) -- Selm (E/L)G. 
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1522 MASSIMO BERTOLINI AND HENRI DARMON 

Proof. The Hochschild-Serre spectral sequence gives 

H1(G, H(L, Em)) -+ H1(K, Epm) -+ H(L,Epm)G -+ H2(G,HO(L,Epm)). 

By assumption 3 of ? 1.1, Ep(L) = 0. Hence we get an isomorphism H1 (K, Epm) - 
H I(L, Epm)G. It follows that Selpm(E/K) injects into Sellm(E/L)G. Let s be an 
element of this last group. Then s is a class of H1 (K, Epm) whose image in 
H1 (L,, E)G is trivial for all v not in ?. To conclude the proof, observe that 
restriction induces an isomorphism HI (Kv, E) -* H1 (Lv, E)G for all v. For this, by 
the Hochschild-Serre spectral sequence, it suffices to check that H1 (G, E(Lv)) and 
H2(G, E(Lv)) are both trivial. This is equivalent to H?(G, E(Lv)) = H1 (G, E(Lv)) = 
O ([CF], Theorem 9, p. 113). The first group is trivial by our assumption on the 
local norms. As for the second group, it is dual of the first by the compatibility 
formula (2) of ? 1.2.1, combined with the nondegeneracy of the local Tate pairing. 

Definition 1.5. An admissible set for (E, L/K, pm) is any finite set ? of primes 
of K such that for all v in ?: 

(1) res char (v) =/p and v is a prime of good reduction for E; 

(2) v is split in L; 

(3) E(Kv)1pmE(Kv) - Z/ ); 
(4) Selpm(E/K) injects into GvcyE(Kv)/pmE(Kv) under the natural restric- 

tion map. 

The existence of admissible sets of primes for (E, L/K, pm) (infinitely many, 
indeed) is proved in [BD], Lemma 2.23. It follows from a standard argument 
based on the Chebotarev density theorem applied to M/K, M being the exten- 
sion of L(Epm) cut out by the elements of the Selmer group Selpm(E/K). The 
same argument shows that one can assume that the cardinality of ? is equal to 
dimFp (Selpm (E/K) 0 IF1p). 

PROPOSITION 1.6. Let ? be an admissible set for (E, L/K, pm). Then there is an 
exact sequence 

O -* Selpm(E/L) -* Selym(E/L) + 0velHl (Lv, E)pm Selpm(E/L)dual -O 0. 

Proof. By Proposition 1.2 and duality, we only need to show that the map 
Selpm(E/L) -* GvcyE(Lv)/pmE(Lv) is injective. Assume the contrary, and denote 
by s a nonzero element of the kernel. Then we can find a nonzero element s' 
of the Z/pmZ[G]-module 7/pm [G]s fixed under the action of G. s' is in the 
kernel of the above map. Since by Lemma 1.5 s' comes from Selpm(EK), this 
contradicts the hypothesis that ? is admissible. o 
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DERIVED P-ADIC HEIGHTS 1523 

LEMMA 1.7. Let l be an admissible set for (E, L/K, pm). 

(1) The modules ev,,E(Lv)/pmE(Lv), UvyH1 (Lv, E)pm and vD, 
H1 (LV, Epm) are free Z/pm Z[G]-modules of ranks 2#1, 2#? and 4#?, respectively. 

(2) We can identify Qv3yE(Lv)/pmE(Lv) autd Sel&m(E/L) with submodules 
of S,CxH1(L,, Epm) via the natural maps. Then, their intersection is equal to 
Selpm (E/L). 

Proof. (1) follows immediately from the definition of admissible set and the 
local Tate duality. As for (2), the only non-obvious thing is to show that the 
natural map Selym(E/L) 4 p,,yH1(La,Epm) is injective. Its kernel contains 
the elements of Selpm(E/L) mapping to zero in Uv,yE(Lv)/pmE(Lv). Since ? is 
admissible, the kernel is 0. o 

When ? is an admissible set, the descent module Selpm(E/L) has a simple 
and "predictable" Galois structure. This fact will play an important role in the 
construction of the derived heights. 

PROPOSITION 1.8. Let ? be admissible for (E, L/K, pm). Then Selzm(E/L) is a 
free Z/pm7[G]-module of rank 2#X. 

Proposition 1.8 is proved in [BD], Theorem 3.2. The proof consists in a 
counting argument, which exploits the exact sequence of Proposition 1.6 and the 
information on the Z/pm7[G]-module structure of Gv,yH1(Lv,E)pm contained 
in Lemma 1.7. 

2. Derived p-adic heights. 

2.1. Derived heights for cyclic groups. In this section we define a sequence 
of canonical pairings associated with finite cyclic p-extensions. The first pairing 
turns out to be equal, when restricted to the points, to the pairing of [Sc 1] (adapted 
to finite extensions as in [T]) and of [MT1]: See ?2.2. The successive pairings are 
each defined on the null-space of the previous. This generalizes results obtained 
in [BD] for cyclic extensions of prime degree. The notations are as follows. Let 
L = Kn for some n > 1, and G = Gal (L/K) - Zl/pn . Fix any generator -y of 
G. Write A for the group ring Z/pn2[G] and I = (-y - 1)A for its augmentation 
ideal. (Note: The order of G is the same as the order of the ring of coefficients 
Z/pn Z.) Given a A-module M, let 

N : M __ MG 

denote the norm operator. We identify N with the element EgCG g of A. 
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1524 MASSIMO BERTOLINI AND HENRI DARMON 

LEMMA 2.1. There exist operators D(0), ... , D(P- 1) E A such that: 

(1) D(0) = N; 

(2) (-y - I)D(k) = D(k l) for 1 < k < p - 1. 

In particular (-y - 1)kD(k) = Nfor 0 < k < p - 1. 

Proof. Let 

pny k 1 (i 

The claim follows from a direct computation (cf. also [D], ?3.1). El 

LEMMA 2.2. For 0 < k < p - 1, the module Ik/jk+1 is isomorphic to Z/p nZ 
equipped with the trivial G-action. 

Proof. By induction on k, the case k = 0 being trivial. Let 1 < k < p -1. 

Consider the exact sequence 

? __ > >ik-lljk a~- I klik+l o 

Given ae E Ck, let x be any lift of ae to Ik- . Then there exists y E A such that 

(y- 1)x = (y- I)k+ly 

i.e. x = (y - l)ky + z, where z E AG. Since AG = NA, there exists w E A such 
that Nw = z. By Lemma 2.1, we may write N = (- 1)kD(k). Thus 

x = (_y - I)k(y + D (k)w). 

We have proved that Ck = 0 for 1 < k < p - 1. By the induction hypothesis, 

Ik-l1k 
- 

Z/pnZ. This proves Lemma 2.2. o 

LEMMA 2.3. Let M be a free A-module of finite rank. For 0 < k < p - 1, we 
have ker ((-y - l)k+l) = D(k)M, where we identify ( I-l)k+l with the operator on 
M defined by left multiplication by (<y - I)k+l. 

Proof. We may reduce to prove the lemma for M = A. We reason by induction 
on k. Note that by Lemma 2.1 

D(k)A C ker(I-y-l)k+l) 

We have the exact sequence 
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DERIVED P-ADIC HEIGHTS 1525 

By Lemma 2.2, Jk+1 _ (2/p7Z)Pn-k-i as an abelian group. Thus 

ker (Q -1I)k+1) (2/pn 2)k+l1 

For k = 0, D(?)A = NA = AG is isomorphic to 2/pnf, hence the claim is true. In 
general, there is an exact sequence 

0 k D(k)A D(k ')A, 0. 

By the induction hypothesis, D(k-')A (Z/pnZ)k. Since AG =NA C D(k)A by 
Lemma 2.1, we deduce Qk = AG and D(k)A (2/pn2)k+1. This concludes the 
proof of Lemma 2.3. O 

COROLLARY 2.4. Let M be a free A-module of finite rank. Given x E MG, 
assume that there exists y E M such that (?- -)ky = x, with 0 < k < p - 1. Then 
there exists z E M such that D(k)z = y. In particular, Nz = x. 

Proof. y belongs to ker ((-y - l)k+1). 0 

COROLLARY 2.5. Let M be a free A-module of finite rank. For 0 < k < p -1 

we have kerD(k) = Ik+lM, where D(k) operates on M by left multiplication. 

Proof. We may assume M = A. By Lemma 2.1, Jk+1 C kerD(k). The exact 
sequence 

o -3 D(k)A - A (I)k+I k+1 -?O 

which is a consequence of Lemma 2.3, gives #(D(k)A)#(Ik+l) = #(A). By com- 
bining this with the exact sequence 

O -* kerD(k) -> A -> D(k)A -> 0, 

we get #(kerD(k)) = #(Ik+1 ). The corollary follows. o 

Recall the involution * A -- A defined on group-like elements by g* = g-. 

COROLLARY 2.6. For 0 < k < p - 1, (D(k))* = uD(k), where u is a unit of A. 

Proof We have (D(k))*A c ker(y - l)k+l - D(k)A, since (-y - I)k+1D(k) = 0 

implies ((-y - 1)*)k+l(D(k))* = 0, and (-y - 1)* = --y1(y - 1). But #((D(k))*A) = 

#(D(k)A), since * is an automorphism of A. Hence (D(k))*A = D(k)A. The corollary 
follows. o 

Let Sel := Selpn(EK). By Lemma 1.4 (applied to the empty set) the restric- 
tion map 

Sel -> Selpn(E/L)G 
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1526 MASSIMO BERTOLINI AND HENRI DARMON 

is an isomorphism. Hence we may abuse notation somewhat and identify Sel with 
its image in Selpn(E/L) under restriction. We define a filtration on Sel 

Sel = Sel(') D Sel(2) D ... D Sel(k) D ... 

by letting 

Sel(k) {s E Sel: ]s E Selpn (E/L) s.t. (y - I)k-1I = s} 

Sel n (a-y - )Selpn(E/L). 

Since the operator -y - 1 is nilpotent, Sel(k) = 0 for k sufficiently large. 

THEOREM 2.7. For 1 < k < p - 1, there exists a sequence of canonical pairings 

(,)k : Sel (k) x Sel (k) _* Ik 1,k+I 

such that: 

(1) (S1, S2)k = (- )k+l (S2, sl)kfor allsl, s2 E Sel(k), 

(2) Sel(k+l) is the null-space of (, )k, 

(3) the norm space coresL/KSelpn(E/L) is contained in the null-space of all 
the pairings. 

Proof. 
Definition of(, )k. Let X be an admissible set for (E, L/K, pn). Let X = Xx, Y = 

Yy denote the free A-modules of Lemma 1.7 Uv,yE(Lv)/pnE(Lv) and Sely-n(E/L), 

respectively. Given si E Sel(k), i = 1,2, let si E Selpn (E/L) be such that ('y- 
l)k-1Ig = si. Lemma 1.7, 2. allows us to view s1, respectively &2 as an element 
of X, respectively Y. By Corollary 2.4 we can find xl E X, Y2 E Y such that 

D(k-l)Xy = Sl, 

D(k 1)Y2 = s2 . 

In particular, coresL/Kxl = si, coresL/Ky2 = S2. Let 

( , ) : 0 H (Lv,Epn) x $ ,Hl(Lv,Epn) -? A 

be the A-valued pairing defined in ? 1.2. Recall that ( , ) is A-linear in the first 
variable and *-linear in the second (Proposition 1.3, (1)). We have (XI, Y2) E Ik. 
This follows from Corollary 2.5 (applied to M = A) and Corollary 2.6, as 

(D (k)* (XI,Y2) = (xi, D(k )Y2) 
= (XI,&2)=0, 
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where the last equality comes from Proposition 1.3, (4). We define 

(SI,s2)k := (Xl,Y2) (mod Jk+I) 

We have to check that (, )k is well-defined. To this end, let xl E X and y' E Y 
be such that 

D(k-l)x =S) , coresL/KxI = SI, 

D(k )Y2 = 5, coresL/KyI = S2, 

with &l and s' elements of Selpn(E/L). Then, 

coresL/K(xI - X'1) = 0, coreSL/K(yI - Yl) = 0. 

Since X and Y are free A-modules, there exist ( E X and r1 E Y such that 
x -xl = (-y - 1)*( and Yl - y = (-y - 1)*r7. It is enough to show that 

(XI -x, Y2) E jk+I and (xl, Y2 -y) E jk+I. We have 

(D (k) *(x - Xi,y2) = (,,y - 1)D Y2) 

= t,2) = 

by Proposition 1.3, (4), and 

D(k)(XI, Y2 - Y) = ((y - 1)D (k)X,) 

= (gi,g=?0 

the last equality being a consequence of 1.3, (5). 
The pairing ( , )k is also independent of the admissible set S. For, if X' 

is another admissible set, E U ' is also admissible. The modules X_ and Xx' 
inject into Xyuy/9 and similarly for Y. Moreover, the restriction of the A-valued 
pairing on vG),uy1H1(La, Epn) to v-ExH1 (La, Epn) coincides with the A-valued 
pairing on p,xH1 (La,Epn). Thus, the above calculations also show that (, )k 
is independent of ?. Finally, ( , )k is visibly independent of the choice of the 
generator -y of G. 

Proof of (1). Let SI, S2 E Sel(k). There are KI, 2 E Selpn(E/L) such that 
(-y - l)k-1i = si, i = 1,2. As above, we can find xi e X, yi E Y for i = 1,2 such 
that 

D(k )Xi = gig D( )yi = Si. 
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Hence 

D(ki-)(xi-yi)=O, i= 1,2. 

By Lemma 1.7, Z = UvcyHl (Lv, Epn) is a free A-module and we can view X 
and Y as submodules of Z. Then, Corollary 2.5 implies the existence of zi E Z 
such that 

('y - 1)kzi = Xi- yi. 

It follows from Corollary 2.5, applied to M = A, that (xI - Yi1, X2 - Y2) belongs to 
Ik+l. By the isotropy of X and Y with respect to ( , ) (Proposition 1.3) we find 

(xI, Y2) = -(Y1, x2) (mod Jk+1). 

Since the involution * acts as ( l)k on Ik/jk+l, Proposition 1.3, (2) gives 

(xI, Y2) = (- l)k+l (X2, Y1) (mod Jk+I) 

In view of the definition of our pairings, this concludes the proof of 1. 

Proof of (2). By induction on k. By (1), it is enough to prove that the right 
null-space of ( , )k is equal to Sel(k+l), for 1 < k < p-1. 

Case k = 1. Let S2 be in the (right) null-space of ( , ) 1. Let Y2 E Y such 
that coresL/Ky2 = S2. Then (XI, Y2) belongs to j2 for all xl E X mapping by 
corestriction to Sel. By Corollary 2.5 and 2.6, we get 

0 = (D(1))*(xl,Y2) = (xl,D(1)y2). 

Let : be the image of DM1)y2 in pv,zH1(L,, E)pn under the natural map. Since, 
by Lemma 2.1, (-y - I)D(I)y2 = S2, then f belongs to (@,,xHl(Lv,E)pn)G = 

cH1 (Kr, E)pn. By the compatibility formula (2) of ? 1.2.1 we find immediately 

(xI,D(')y2) = -[sl,]K,pn N 

for all si in the Selmer group Sel, where [, ] ,pn is the local pairing introduced 
in ? 1.2.1 and N = D(?) denotes the norm operator. Hence [Sl 01]K,pn = 0 for all 
sl E Sel. By Proposition 1.2, there exists a global class a in Sel-n(E/K) mapping 
to : under the natural map. Thus, DM)y2 - a belongs to Selpn(E/L), and 

(-y - 1)(D(I)y2 - a) = (y - I)D(')y2 = S2 

In other words, S2 belongs to Sel(2), and this concludes the proof of the case 
k= 1. 
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Claim. 
1. Let Y2 E Y be such that D(k- 1)y2 belongs to Selpn(E/L). Then Y2 induces 

a homomorphism q in Hom(Sel, Ik/Ik+) by the rule 

q(si ) = (xl, Y2) (mod Jk+1) 

where, given sl E Sel, xl denotes any element of X such that coresL/KxI = Sl. 
2. If the element S2 = coresL/Ky2 E Sel(k) belongs to the right null-space of 

( )k, then we can view q as a homomorphism in Hom(Sel/Sel(k), Ik/Jk+l). 

Proof of the Claim. (XI, Y2) belongs to Ik. For, in view of Corollary 2.5, 

(D(k-l))*(xI,Y2) = (xi,D(k l)y2) = 0. 

The last equality follows from Proposition 1.3, (5). Note that 0 does not depend 
on the choice of xl. For, given another x' E X such that coresL/Kxi = sl, by the 
freeness of X we can find ( E X such that xl - x'l = (-y - 1)*(. Then 

(D(k))*(XI -Xj,Y2) = ((D(k I)Y2) = 0. 

Hence (xl,y2) = (x',y2) (mod Jk+I). Finally, if S2 is in the null-space of ()k, 
then q(Sel(k)) c jk+I. This concludes the proof of the claim. 

Now let k be at least 2. By the induction hypothesis, for 1 < i < k - 1 the 
pairings (, ) induce identifications 

Sel(i)/Sel(i+l) = Hom(Sel(i)/Sel(i+l), Ii/li+1) 

By Lemma 2.2, multiplication by (-y - l)k-i identifies Hom(Sel(i)/Sel(i+l), Ji/Ji+1) 
with Hom(Sel(i)/Sel(i+l), Ik/Ik+l). Thus, we can find y(l), yk(k- 1) in Y such that: 

(1) coresL/Ky(i) = s(i) E Sel('), 

(2) D(- l)y(l) s(i) E Seln (E/L), 

(3) (X,y 2) (Xi, (-y - I)k l y(l)) +... + (x1, (y - l)y(kl1)) (mod Jk+1 ) for all 

xl as above. 

Let y' = Y2 - (Y l)k- ly(l) _ - (.y l)y(k- 1). By Lemma 2. 1, 

(i) coreSL/KY2 = S2, 

(ii) D(k- 1)y/ - D(k- )Y (1)- ... 
l 

- (k- 1) E Selpn(E/L). 

By definition of y , (xl, y') = 0 (mod Jk+1) for all xl E X such that coresL/KxI 
belongs to Sel. Hence, by Corollary 2.5 and 2.6, 

0 = (D(k))*(xl,y ) = (xl, D(k)y). 
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Let:3 be the image of D(k)y2 jn XH (L, E)pn under the natural map. Since 
(,y - I)D(k)yl = D(k- l)y belongs to Selpn(E/L), then 3 belongs to 

(0 "~H1 (La, E)pn )G = ? CX (Kv, E)pn. 

By formula (2) of ?1.2.1, we find (xl,D(k)yf) -[S1/]Kpn * N for all sl in the 
Selmer group Sel. It follows 

[SI, /]K,pn = 0 

for all si in Sel. Then, by Proposition 1.2 there exists ae E Sely-n(E/K) mapping 
to 3 under the natural map. Hence D(k)yl - a belongs to Selpn(E/L). Moreover, 

(_y _ l)k(D(k)y1 - a) = S2' 

i.e. S2 belongs to Sel(k+l). This concludes the proof of (2). 

Proof of (3). It follows from the factorization in A of coresL/K as (,y - 1)kD(k) 
for 1 < k < p - 1 (Lemma 2.1). 

2.2. Comparison of pairings. We keep the notations of ?2.1. The first 
pairing of Theorem 2.7 induces on points a pairing 

E(K) x E(K) _ I/j2, 

which, by an abuse of notation, we still denote by (, ) 1. We show that it is equal 
to the "analytic" height pairings of Schneider [Scl] (as formulated by K.-S. Tan 
[T] for finite extensions) and of [MT1]. 

For the convenience of the reader, we recall the definition of (, 1. Fix 
an admissible set ? for (E,L/K,pn), and denote by X, respectively Y the free 
A-modules UvcyE(Lv)/pnE(Lv), respectively Sely-n(E/L). Given P, respectively 
Q in E(K), we write a, respectively b for its image in XG, respectively yG. 
Choose a E X, b E Y such that coresL/K(a) = a, coresL/K(b) = b. Recall the 
A-valued pairing ( , ) of ?1.2.1. The element (a,b) belongs to I. Equivalently 
by Lemma 2.5, D() (a, b) = 0. But D(O)(a, b) = (a, b), and this is zero by Propo- 
sition 1.3, (4). The image of (a, b) in I/12 depends only on P and Q: This is 
proved, in greater generality, in the course of constructing the pairings (, )k in 
the proof of Theorem 2.7. By definition 

(P, Q) I := (a, b) (mod I2). 

In [T] an "algebraic" definition of height is introduced, and shown to be equal to 
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the analytic pairings of Mazur-Tate and Schneider. Hence it suffices to show that 
(, ) 1 is equal to the algebraic pairing of [T], whose definition we now recall. 

Tan defines a homomorphism 

DLIK :E(K) (0 E(K) (0 Hom(G, 2/pnZ) __ 2/pnZ 

as follows. Let P, Q E E(K) = H?(G, E(L)), and Vb E Hom(G, 2/pnZ) = H2(G, 2). 
The cup product of P and Vb gives an element P U Vb E H2(G, E(L)). We have 
H2(K, E) = 0 by [Mi], Corollary 1.6.24, p. 111, since p is odd. Then the Hochschild- 
Serre spectral sequence defines a surjective homomorphism (transgression) 

H1 (L, E)G ) H 2(G, E(L)) -- O. 

Let ny E H1 (L, E)G be such that trg(^y) = PU UV. For all v, since restriction induces 
an isomorphism H1 (Kv, E) H1 (Lv, E)G (see the proof of Lemma 1.4), there 
exists av E H1(KV,E) which maps in Hl(Lv,E)G to the localization at v of ny. 
Let [ , ]Kv,pn E(Kv)/pnE(Kv) x H1(Kv,E)pn -_ Z/pn2 denote the local Tate 
duality of ?1.2.1. Define 

(DL/K(P (0) Q (0) = E [Qv av]Kvpn. 
v 

One can check that this is independent of the choices made. Identify I/12 with 
G and G with its bi-dual, in the usual way. Then (DL/Kdefines a pairing 

( K )KS E(K) x E(K) _ I/12. 

THEOREM 2.8. We have (P, Q) 1 = (P, Q)KS for all P, Q E E(K). 

Proof. By definition 

pnl- 1 

(P, Q) 1 - (a, b1 )LLpn .i (mod J2) 
i=O 

= -E~ (a, b'1 )Lp,n i(y -1) (mod J2) 
i=O 

- (a,lD1)b)L,pn (y-1) (mod J2) 

where (, )L,pn denotes the local pairing of ? 1.2.1, a and b are chosen as above 
and D(1) = i ZL1 inj is the derivative operator of Lemma 2.1. Let rj be the 
image of D(1Ob in H1(L,E). Since (-y - 1)D() = D(?) is the norm operator, rj 
belongs to H1(L, E)G. Let b E Hom(G, 2/pnZ) be the homomorphism such that 
(^y) = 1 (mod pn2). 
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LEMMA 2.9. We have trg(rT) = Q U Vb. 

Clearly (a, D(l)b)L,pn = Ev [Pv, T7v]K,pn, where nv E H1(KV,E) corresponds 
to the localization of T under the isomorphism H1 (Kv, E) H1 (Lv, E)G. Then, in 
view of the definition of the height pairings, Lemma 2.9 implies that (P, Q) = 

(Q, P)KS for all P, Q E E(K). Theorem 2.8 follows from the symmetry of (, )9 
(Theorem 2.7, (1)). 0 

Proof of Lemma 2.9. We make use of the explicit formula for computing the 
transgression homomorphism on cocycles given in [T], proof of Lemma 3.2. Let 
GK = Gal (K/K), GL = Gal (K/L). Letf: GL -- E(K)be a 1-cocycle representing 
TI. Then 

Tf(T-1YT) -f(cr) = ul(T) - 1(T) Va E GL, VT E GK, 

for some 1(T) E E(K). The point 1(T) is determined modulo elements in E(L). Fix 
R E E(K) such that pnR = Q. It is easy to see that we can choose 1(T) = iR + e(T), 

where e(T) E Epn and 0 < i < pn - 1 is an integer such that T maps to ^yi in G. 
With this choice of 1(T) we have 

(1) l(u) =f(a) for all ca E GL, 

(2) l(Tc) = 1(T) + T1(cY) for all ca E GL, T E GK. 

This follows from an explicit computation, observing that Epn(L) = 0 by assump- 
tion 3 of ? 1.1. Then a well-defined 2-cocycle g: G x G -+ E(L) representing 
tr(TI) is given by the formula 

gQ.y1, n ) = l(TI) + TI 1(T2) - 1(TIT2) 0 < il, i2 < pn - 1, 

where Tj, j = 1, 2 is chosen so that it maps in G to nyi. We find 

{ 0 for + j p<pn 
- I 

But this is precisely a representative for Q U Vb, as one can see by describing 
explicitly on cochains the cup product ([CF], pp.106-7) and the identification via 
coboundary Hom(G, Z/pnZ) = H2(G, 2). This concludes the proof of Lemma 2.9. 

a 

Remark 2.10. The definition of the pairings (, ) and (, )KS works equally 
well when L/K is a finite abelian p-extension, not necessarily cyclic. The two 
pairings still coincide in this more general setting, as a consequence of their 
norm-compatibility (combined with Theorem 2.8). More precisely, given a tower 
K C LI C L, write v: I/12 __ I, /I2 for the natural projection, I, being the aug- 
mentation ideal of 2/pna Z Gal (L17K)]. Then a computation gives the identities 
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(where we use the obvious notations) 

(1) V((P, Q)1,L/K) = (P, Q) 1,L,/K for all P, Q E E(K), 

(2) V((P, Q)KS,L/K) = (P, Q)KS,LI/K for all P, Q E E(K). 

2.3. Compatibility of the derived heights. We shall define the p-adic 
derived heights by compiling the derived heights corresponding to the finite layers 
of the Z -extension KOO/K. To do this, we need to study the compatibility of the 
derived heights for finite cyclic groups under change of extension, and this is the 
goal of this section. 

Recall that Kn denotes the subextension of K,,/K of degree pn. Write G, for 
the Galois group Gal (Kn/K), A, for the group ring Z/p7Z[G,], and In for its 
augmentation ideal. Let Sel, := Selpn(E/K). Let 

Seln = Sel(l) D Sel2 D 2) D Sel) D(k 

denote the filtration of Seln defined by 

Sel (k) = {s E Seln: 3sK E Selpn(E/Kn) s.t. (,Yn - I)k I = s} 

Selpn(E/K) n (7n - 1)k- lSelpn(E/Kn). 

Let 

(, )k,n: Sel k) x Sel$2k) j Ik/lk+l 

be the derived height pairings defined in ?2.1. By abuse of notation we shall 
write mp for any map induced in cohomology by Epn+l 2 Epn. In particular, we 
have a map 

mp: Seln+1 -- Seln. 

Since Ep(K) = 0 by our assumptions, Seln injects into Seln+1 under the natural 
map, and mp is induced by the multiplication by p on Seln+1. The next proposition 
contains the compatibility result we, need. Let 

vn An+i I An 

denote the natural projection of group rings, and also, by abusing notation, the 
induced map In 7j/lnk+1 k Ink/ik+1 for any k. 

PROPOSITION 2.11. 

(1) For 1 < k < p, the map mp respects the filtrations on Seln+1 and Seln, i.e. 

mp(Seln+1) c Seln. 
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(2) For I < k < p-1, we have 

VniS(S1,S2)k,n+1 = (mpS1,MpS2)k,n 

for allSI, S2 in Selk+). 

Proof of Part 1. Fix any topological generator ̂ y of Gal (KOO/K), and let an 

be the generator of Gal (Kn/K) corresponding to -y under the natural projection. 
Denote by 

D(k) E An, < k < p-1 

the operators defined in the proof of Lemma 2.1 (with an replacing 'y). Write 

qn Z/pn+ I[Gn+1 ] ) Z/pn+1 Z[Gn], 

Tn : Z/pn+ 1Z[Gn] Z/pn Z[Gn] 

for the natural projections. Thus their composite 7rnqn is equal to vn. 

LEMMA 2.12. For 0 < k < p - 1 there exists Dfk) E 2/pZn+1 [G] such that: 

(1) qnD (k)l pE(k), 

(2) nD n(k) = Dk) 

Proof. By definition of 1nk), we reduce to show that for all 0 < i < pn _ 

the equality 

j k +Pn>(k) O<k< p-i 

holds in 2/pn+l 2. This follows from an easy induction argument. a 

We conclude the proof of Part 1. 
Let s E Sel1n+ . Let I be an admissible set for (E, Kn+1 /K,pn+1). Then by the 

results of ?2.1 there exists y c Sely- + (E/Kn+i) such that 

(1) DnC+l l)y := s E Selpn+1 (ElKn+i), (^Yn+ I- _)k-1I = S 

Then 

mps = mp(coresKn+,/KY) 

= coresKn/K(mpcoresKn+ l/Kny) 

= (yn - 1)k lD k 1)(mpcoresKfl+, /KnY). 

This content downloaded from 132.206.150.153 on Sun, 26 Jul 2015 15:26:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DERIVED P-ADIC HEIGHTS 1535 

Let y' := mpcoresKl+I /K,ly. We claim that 

D k-l)yt E Selpn(ElKn). 

For, Djk-1)y' Sely-n(E/Kn) since y' E SelYz+,1(E/Kn)[pn] = Sely-n(E/Kn), where 
the equality follows, for example, from Proposition 1.8 and Ep(Kn) = 0. Moreover, 
by Lemma 2.12 

D(k-1)y- pD(k- 1)coresKn+1 /KnY 

= Dn+( -)coresKn+ /KnY 

n+1 ~ n1 
= coresKn+l /KnDnz+l )Y 

= coresKn+ /KnS E Selpn+1 (E/Kn). 

Thus, D kl)y' c 
Selpn+1 

(E/Kn) n Selln(E/Kn) = Selpn(E/Kn). We find 

(2) Dnk- y:= 'C E Selpn(E/Kn), (^nY -)k- 
I g = m s. 

In particular, mps belongs to Sel(k), as was to be shown. 

Proof of Part 2. We begin with a couple of lemmas. 

LEMMA 2.13. Let F be a localfield. Let Pn Z/pn+I Z - Zl/pn7Z be the canon- 
ical projection. Then for all x, y in H1 (F, Epn+ ), the local Tate pairing satifies 

Pn((X, Y)F,pn+ I ) = (mpx, mpy) Fpn. 

Proof. Recall that the local Tate pairing is defined by composing the cup 
product with the Weil pairing wn: Epn 0 Epn At ,pn. The Lemma follows from 
the explicit definition of the cup product on cocycles ([CF], pp.106-7) combined 
with the relation wn+I( ? 7r)P = wn(pX 0 pry) for all (, r7 E EEpn+. E 

Given an admissible set I for (E, Kn/K, pn) we let 

( , )(n): evcHl ((Kn) v,Epn) X e vH'((Kn) v,Epn) An 

denote the nondegenerate pairing defined in ? 1.2.1. 

LEMMA 2.14. Let I be an admissible set for (E, Kn+i /K, pn+1 ). For all x,y C 

vH1 ((Kn+l )v Epn+l) we have 

Vn (X Y)(n+1) = (mp(coresKn+ /Knx), mp(coresKn+l /KnY))(n) 
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Proof. Note that E is also admissible for (E, Kn/K, p+ 1) and for (E, K,/K, p'). 
The formulae (1) and (2) of ?1.2.1 and Lemma 2.13 give 

Vnn(X,Y)(n+1) = E w(x, (coresKn,+/Kny) )Kn+,Pn+1 . ci 

aeGn 

= n(coresKn+l /Knx, (coresKn+,/KnY) )Kn,pn+l f- 

aeGn 

= (mp(coresKn+, /KnX), mp(coresKn+, /KnY))(n) ? 

We conclude the proof of Part 2. 
Let E be an admissible set for (E,Kn+I/K,pn+l). Let s E Sel(k) . Then there n+1 ITe hr 

exists x belonging to eE((Kn+j)v)1pn+1E((Kn+j)v) such that 

(3) Dk+ j)x := s E Selpn+l (E/Kn+l), (n+ - l)k-1 = s 

Let x' := mpcoresKn+,/Knx. With the formal argument of the proof of Part 1, we 
can show that 

(4) D(k-l)x' := gs' E Selpn (ElKn), (n-l _)k- 1I g = m s. 

In view of the definition of our pairings (Theorem 2.7), the claim follows from 
Lemma 2.14 and the equations (1)-(4). a 

2.4. Derived p-adic heights. By Proposition 2.11, we may compile the 
pairings ( k, n via the maps mp, in order to define pairings on the inverse limit 
of the modules Seln$). We may use Theorem 2.7 to obtain the properties of these 
new pairings, once we know that the modules Sel(k) can be recovered from their 
inverse limit in the natural way. This is proved in Proposition 2.17, after a few 
preliminary definitions. The properties of the p-adic pairings we construct are 
summarized in Theorem 2.18. 

Definition 2.15. 
1. We define the pro-p Selmer group of E/Kn to be 

Sp(E/Kn) := lim Selpm (E/Kn), 
m 

where the inverse limit is with respect to the maps mp. 
2. In view of Proposition 2.11, we define a filtration on Sp(E/K) 

Sp(E/K) = S(l) D S(2) D .. . D 1) S(P) p p p p 

by letting S(k) :=lim,- Sel(k), the limit being taken by means of the maps mpt. p n n 
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Since Ep(K,) = 0 by our assumptions, we have that E(K,)p is equal to E(K,) O Zp 
and it injects into Sp(E/K,). They coincide if and only if the p-primary part 
1l(E/K,)p0o of the Shafarevich-Tate group of E/K, is finite. 

Given s = (s,),>i,t = (t,),>I E S(k) with 1 < k < p - 1, Proposition 2.11 
allows us to define canonical pairings 

( , 
: S(k) x S(k) __ Ik7lk+1 

by the rule 

(s, t)k = ((sn, tn)k,n)n> 1 . 

Definition 2.16. Let N c M be an inclusion of free p -modules of finite rank. 
Define the p-adic saturation SatM(N) of N in M to be the maximal submodule 
of M containing N with finite index. 

The theory of elementary divisors guarantees the existence of SatM(N). To 
ease notations, we shall often write N instead of SatM(N). In particular, we write 
3pk) for Sats(l)(S(k)), 1 < k < p. Thus 3pl) - S1). Let 

p p p~ 

USp(E/K) := ncoresKn/K(Sp(E/Kn)) 
n>1 

denote the universal norm submodule of Sp(E/K). 
The next proposition is the key to relate the p-adic pairings ( k, ) to the 

pairings for the finite layers of Ko 7K. 

PROPOSITION 2.17. For 1 < k < p the cokernel of the natural map S -k) - Sel(k) 
is bounded independently pf n. 

Proof. By induction on k. For k = 1, the cokernel in Seln is 

(JJl(E/K)/Div (III(EIK))) [pn], 

where Div is the functor which to every abelian group associates its divisible part. 
Assume that S -k) - Sel(k) has a cokernel whose order is bounded independently 

of n. Choosing an identification of jk/jk+1 with Zp, we may view the pairing 
( k, ) as taking values in Zp. By the structure theory of pairings over Q,, there 
is a finite index submodule T(k) of S(k) such that the pairing (, )k restricted to p p 
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1538 MASSIMO BERTOLINI AND HENRI DARMON 

T(k) has the form p 

ppaij 

nasj 

0 

relative to a basis el, . . , es, es+i,* , er, (respectively el, el, . . , es, e9, es+i, 
,er), where J = (1) (respectively J = (_? 0)) if (, )k iS symmetric, i.e., k 

is odd (respectively ( , )k is alternating, i.e. k is even). Let x be an element of 
Sel(k+l). By the induction hypothesis, the cokernel of the natural map T(k) -+ Sel(k) 

is bounded independently of n, by PA, say. Then y = pAx belongs to the image of 
T(k). We have 

p. 

(Y,q )k,n = 0 

for all ( in Sel(k), hence for all ( in the image of T(k). Let g be any element of 
T(k) mapping to y, so that, by definition of (, )k, 

0 =)- mod pn 

for all ( in T(k). This implies that g is of the form p 

= Apn-a I el + * * * + Aspn-ases + As+les+l + * * * + Arer 

if k is odd, or 

A ln-a='el + 
^yipn-a el + .. . + Aspn-ases + ^Yspn ase + As+les+l + *+ Arer, 

where Ai and ̂ Yi are scalars in 7p. Let B denote the maximum of the ai. Write 

Z = pB (As+ les+l + * * * + Arer)- 

Since z is in the null-space of (k, ) resricted to T(k), it follows that pAz belongs 
to the null-space of ( k, . Hence pA+Bz belongs to S(k+l). On the other hand, p 
letting z be the image of z in Sel(k+ ), we have z = pA+Bx. Hence p2A+2Bx belongs 
to the image of S(k+l) Since A and B do not depend on n, this proves the claim. 

p~~~~~~~~~~~ 
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THEOREM 2.18. For 1 < k < p - 1, there exists a sequence of canonical 
pairings 

( ())k 3 ) X 3(k) _ k/Ik+ Q1 
p p 

such that: 

(1) ((Sl, S2))k = (S- 1)k((S2,Sl))k VS1,S2 E p 

(2) 3(k+1) is the null-space of((, ))k, p 

(3) USp(E/K) is contained in the null-space of all the pairings, 

(4) the restriction of ((, )) I to E(K)p is equal to the p-adic height relative to 
(E, Koo/K) (as defined in [MT1] or [SC1]), 

(5) pAk (( ))k takes values in Ik/ljk+l, where pAk denotes the exponent of the 
finite group 3pk)/S(k) 

Proof. Define ((, ))k by extending ( 
k, 

) to 3pk) in the natural way. 
(1) It follows directly from Theorem 2.7. 
(2) Observe that 3pk+1) is contained in the null-space of (( ))k. As for the 

reverse inclusion, let y be in the null-space of (( )). Then there exists A > 0 
such that pAy belongs to the null-space of ( , )k. By Proposition 2.17, there exists 
B > 0 such that pA+By maps to Selk+ 1) for all n, and hence pA+By belongs to 
S(k+l). This proves (2). p 

(3) By Theorem 2.7, (3), it suffices to observe that USp(E/K) is contained in 

lim (coresKn/KSelpn (E/Kn)), 
n 

where the limit is taken with respect to the maps mp. 
(4) The homomorphisms DKn/K of ?2.2 satisfy the compatibility relation [T] 

PMrDKn/K(P 0 Q 0 0) = (DKm/K(P 0 Q m 

where, for n > m, pn : Z/pn7Z __ Z/pmZ denotes the canonical projection and, 
given any homomorphism Vb in Hom(Gal(Kn/K),Z/pnZ), pn/' is viewed as a 
homomorphism in Hom( Gal (Km/K), Z/pm Z). Tan defines a p-adic height pairing 
by means of the homomorphism 

(DK.IK = lim nDKn/K E(K)p (0 E(K)p (0 Hom(F, Zp) -- 7p, 
n 

where the tensor products and the homomorphisms are are of Zp-modules. He 
shows that this coincides with the p-adic height of Mazur-Tate and Schneider. 
Statement (4) follows from Theorem 2.8 and the definition of ((, )) I* 
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(5) We have ((S t))k = p-2Ak(pAks, pAkt)k for all s, t E 3(k). Let s = (s,),t= p 
(ta). It is enough to show that (pAkSn,pAktn)k,n belongs to pAk(4nk/jnk+l) for all 
n. By the claim in the proof of Theorem 2.7, (2) there exists a homomorphism 
b: Seln ) jnk7jkk+1 such that 

( pAk Sn pAk tn) kfn = 0(pAk SO ) =pAk O(Sn). 

This proves (5). a 

Definition 2.19. We call the canonical pairing ((, ))k of Theorem 2.18 the 
k-th derived p-adic height pairing. 

It is possible to use the derived heights to generalize the notion of p-adic regulator. 
Choose a basis S,... ,Sr for the free Zp-module Sp(E/K) compatible with the 
filtration 

Sp(E/K) = 3(l) D 3(2) D D(p) p p p. 

This is possible because, by definition of p-adic saturation, the successive quo- 
tients 3(k)/3pk+1) are free Zp-modules. Say that the projection of Sjk+l1.. SJk+dk to 
3(k)/p(k+1) is a basis for 3pk)/3pk+1). Define the k-th partial regulator, 1 < k < p-, 

R(k) := det (((si, Sj))k)jk+l?<ijgk+dk 

Notice that R(k) depends on the choice of the basis, and is well-defined up to 
multiplication by a p-adic unit. Given t > 0, we let (It/It+1 0 Q)/Zpx denote the 
quotient of the multiplicative monoid It/1t+1 0 Q by the action of the group of 
p-adic units Zpx. Let 

p 
p(k) =rn (3~(k)), pp :=E (k). 

k=l 

Observe that if S3P) = 0 (i.e. by Theorem 2.18, ((, ))p-I is nondegenerate) then 

PP Z1 kdk. 

Definition 2.20. If ((, ))p-I is nondegenerate, we define the derived reg- 
ulator Rder E (IPp /IPP+l 0 Q)/Zp x to be the product of the partial regulators 
RM ... R(P- ). Otherwise, we let Rder = 0. 

By Theorem 2.18, Rder is nonzero when ((, ))p- I is nondegenerate. We say in 
this case that pp is the order of vanishing of Rder. On the other hand, if USp(E/K) 
is nontrivial, then Theorem 2.18 implies Rder = 0. 
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Remark 2.21. If 1l(E/K)poo is finite, then Sp(E/K) _- E(K) 07p has a natural 
basis coming from an integral basis P1, . . ., Pr for the Mordell-Weil group E(K). 
Let M E Mn(Zp) be an endomorphism sending P1,. . , Pr to a basis compatible 
with the filtration on Sp(E/K). Using this compatible basis, define the partial 
regulators R(k) as above, and define the generalized regulator by the formula: 

Rder = det (M)-2R(1) ...R(P- 1). 

This is well-defined in IPP /IPP+l (not just up to a p-adic unit) and does not depend 
on the choice of M. 

In the next section we shall relate Rder to the leading coefficient of the 
characteristic power series of the Pontryagin dual of Selp'co (E/KO). Here we 
content ourselves with proving a parity statement for the order of vanishing. 

PROPOSITION 2.22. Assume that ((, ))p-1 is nondegenerate. Then the order of 
vanishing of Rder has the same parity as the rank of the pro-p Selmer group Sp(E/K). 

In particular, if iL(E/K)poo is finite, then the order of vanishing of Rder has the 
same parity as the rank of the Mordell-Weil group E(K). 

Proof. With notations as above, we have 

rankzp (Sp(E/K)) = d1 + + dp_ 

For k even, by Theorem 2.18 (( , ))k is a nondegenerate alternating pairing on 
the free 7p-module of rank dk 3(k)/p(k+1). Hence dk is even and 

rankzzp(Sp(E/K)) d, + d3 + + dp_2 (mod 2). 

On the other hand, the order of vanishing of Rder is equal to 

d1+2d2+3d3+. +(p -l)dp_Idi+d3+ .+dp-2(mod 2). 

2.5. Refined Birch Swinnerton-Dyer formulae. We keep the notations of 
?2.4. Let 

XOO = Homzp (SelpcO (E/K,), Qp /Zp) 

denote the Pontryagin dual of the Selmer group of E/K00. The main result of this 
section relates the order of vanishing and the leading coefficient of the character- 
istic ideal of X00 to the derived regulator Rder defined before. Assume that X00 
is a torsion A-module. (Otherwise, both Rder and the characteristic ideal vanish, 
since USp(E/K) 7 0.) Let C?, denote a characteristic power series of X0. ZOO is 
determined up to a unit of A. Let up > 0 be the smallest exponent such that LCoo 
belongs to IP, and let ZOO denote the image of L,, in (I'P/IrP+1)/Zpx. Write 
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char (X,,) for the characteristic ideal of X,. Clearly up and ZOO depend only on 
char (XOO), and therefore we may call them the order of vanishing and the leading 
coefficient of char (X,,). 

THEOREM 2.23. The order of vanishing up is greater than or equal to pp, and 
we have: 

Div (Lf(E/K)p.) *Rder 

in (IPP/IPP+i 0 Q)/ZpX, where Div denotes the divisible part. 

COROLLARY 2.24. 

(1) Assume that ((, ))p-I is nondegenerate. Then up is equal to pp. 

(2) Let pB be the order of the finite group IH(E/K)poo /Div (ElI(E/K)poo). 

Then pBRder belongs to (IPP/IPP+l )/7Zx. 

Remark 1. When ((, )) is nondegenerate, then Rder is equal to the usual p-adic 
regulator, and Theorem 2.23 contains as a particular case the Birch Swinnerton- 
Dyer formulae of Schneider [Sc2], [Sc3] (cf. also [PRI], [PR3]). On the other 
hand, when ((, )) I happens to be degenerate, the order of vanishing of char (XO) 
is strictly greater than the order of vanishing of the classical regulator, and one 
needs the refined Birch Swinnerton-Dyer formula of Theorem 2.23 to capture 
the order of vanishing and the leading coefficient of char (X,,). See ch. 3 for an 
illustration of this. 

Remark 2. If (( , ))p-l is degenerate, i.e. Rder is zero, the order of vanishing 
of char (X,,) is stricly greater than pp by Theorem 2.23. It is tempting to hope 
that the null-space of (( , ))p-1 reduces to the p-adic saturation USp(E/K) of 
the universal norms for almost all primes p. It would follow that ((, ))p-, 
is nondegenerate if and only if XOO is a torsion A-module. In this case, by 
Corollary 2.24, the order of vanishing is precisely pp. See the next chapter for the 
formulation of stronger conjectures of this sort, when KOO/K is the anticyclotomic 
7P-extension of an imaginary quadratic field. In general, however, it appears 
possible to fabricate examples where the radical of the (p - 1)-th derived height 
is larger than the submodule of universal norms. See Remark 3.11 for more 
details. 

Proof of Theorem 2.23. Given n > 0 fix an admissible set I = In for 
(E,Kn/K,pn). Let t = 2#X. Fix any bases (x1,...,xt) and (y.....,yt) for the 
free An-modules of rank t, X = evE((Kn)V)1pnE((Kn)v) and Y = Sel':n(ElKn), 
respectively. By Lemma 1.7, we can view X and Y as submodules of the free 
rank 2t An-module Z = EvH1 ((Kn)v,Epn). Thus, by restricting the pairing 
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(, ) = (, )(n) of ?2.3 to X x Y we find a pairing 

(*)~~~~~ (, ) :X x Y--+An 

(denoted in the same way by abusing notation). The next two lemmas, by relating 
char (XOO) to (, ), provide a the bridge beween char (XOO) and the derived heights 
and regulator. The reader may find all the facts about the theory of Fitting ideals 
we need below in [MW], Appendix. 

LEMMA 2.25. The Fitting ideal FittAn (Selpn(E/Kn)dual) of the Pontryagin dual 
of Selpn (E/Kn) is a principal ideal, generated by the discriminant det ((xi, yj) 1 <iJ<t) 
of the pairing (*). 

Proof. Let W = HE((Kn),E)pn. By the properties of the local Tate 
pairing, (, ): Z x Z -- An induces a nondegenerate pairing [ , ]: X x W - An . 
Let y' be the image of yi in W, and let XV be the basis of W which is dual 
to xi with respect to the pairing [, ]. By Lemma 1.7, the exact sequence of 
Proposition 1.6 gives a presentation of the An-module Selpn(E/Kn)dual with t 
generators and t relations. Hence FittAn (Selpn(E/Kn)dual) is a principal ideal, 
generated by det (aij), where yJ = Zi aijx4. Since aij = [xi, yJ] = (xi, yj), the result 
follows. 

LEMMA 2.26. Let ,un: A -- An be the canonicalprojection. Then pn( char (XOO)) 
= FittAn (Selpn(ElKn)dual). 

Proof. 
Step 1. Let Jn be the ideal of A (pn, (_Pfp - 1)). Then there is a natural 

identification 

XOO/JnXoo = Selpn(E/Kn)dual. 

For, by combining the argument in the proof of Lemma 1.4 with Ep(K,,) = 0, 
one can prove that the restriction map composed with the inclusion Epn C Epoo 
induces a natural isomorphism Selpn(E/Kn) = SeLpoo(E/K)O)rn[pn], Fn being the 
Galois group Gal (K,O/Kn). By taking duals, the identification follows. 

Step 2. Since An = A/Jn, step 1 and the theory of Fitting ideals give 

pn( FittA (XOO)) = FittAn (Selpn(ElKn)dual). 

Lemma 2.25 implies that FittA (XO,) is a principal ideal. The next step shows that 
in this case FittA (Xo,) is equal to the characteristic ideal char (XO), concluding 
the proof of Lemma 2.26. 

Step 3. 

SUBLEMMA. Let T be a torsion A-module whose Fitting ideal FittA (T) is prin- 
cipal. Then the characteristic ideal char (T) of T is equal to FittA (T). 
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Proof of the Sublemma. We use repeatedly without explicit mention the fol- 
lowing fact: Given an exact sequence of finitely generated A-modules 

0 -- M1 -- M -M2 - 0, 

then 

FittA (MI) FittA (M2) C FittA (M) c FittA (M2). 

By the classification theorem of A-modules there is an exact sequence 

-+ C1 -+T - A/Afi -C2 -+ O, 

with C1 and C2 finite. Since T is torsion, there is also an exact sequence 

O -+ D1 -+ A/Afi - T -+ D2 -+ , 

with D1 and D2 finite. The first sequence implies easily 

FittA(T)FittA(C2) C FittA(T/Cl)FittA(C2) C FittA (e.A/Afi) 

Similarly, from the second sequence we get 

FittA (@iA/Afi) FittA (D2) C FittA ((@lA/Afi) IDI) FittA (D2) C FittA (T). 

Since char (T) = FittA (GiA/Afi), by combining the two chains of inclusions we 
find 

FittA (T) FittA (C2) FittA (D2) C char (T) FittA (D2) C FittA (T). 

FittA (C2) and FittA (D2) are finite index ideals in A. For C2 and D2 are finite 
A-modules, and the Fitting ideal of a finitely generated A-module contains a 
positive power of the annihilator of that module. Hence there is a finite index 
ideal I (equal to FittA (C2) FittA (D2)) such that 

FittA (T) I C char (T) 

with finite index. By hypothesis, FittA (T) = (0) is a principal ideal. Let 61 and 
62 be nonzero elements of I with no common irreducible factors. Since char (T) 
divides 61 0 and 620, we conclude that char (T) divides 0 and FittA (T) is contained 
in char (T) with finite index. Let char (T) . (a) = FittA (T). Then the finite module 
char (T)/ FittA(T) is isomorphic to A/(a). Thus a must be a unit of A. This 
finishes the proof of the sublemma, and also of Lemma 2.26. a 
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Recall the filtration Sp(E/K) -= D ** D 1) D (p') defined in ?2.4. It 
ends with 0, by Theorem 2.18, if and only if the pairing ((, ))p_ I is nondegenerate. 
For 1 < k < p, we let Selnk denote the image of Spk) in Selpn(E/K) = Sel'l) under 
the natural map. Since 3(k) is defined as the p-adic saturation in Sp(E/K) of the p 

module S(k), the Selnk) give rise to a filtration of Selpn(E/K) such that 

Sel?n/Seln ) (I//fl4dk, 1 < k < p - 1, 

Selp) (2/pn Z)dp 

where dk = rankzp (S(k) /3(k+ 1)) and dp = rankzz3 ) In view of Lemmas 1.7 
and 1.4, we can identify Selpn(E/K) with the intersection submodule of the free 
Z/pnZ-modules XGn = vE(Kv)1pnE(Kv) and yGn = Sely-n(E/K). Choose 

a basis (xi,... ,t), respectively (,. t ,Yt) for XGn, respectively yGn com- 
patible with the above filtration. Assume that for 1 < k < p - 1 the pro- 
jection of (ejk+1,...,Xj,+dt) to is a basis for Selnk)/Seln+l), and 
that (i3p+1,. .. XJ+d ) is a basis for Sel(if. And similarly for YJk+1.. Yjk+dk) 
Let (xI,... ,xt), respectively (Yl,... yt) be a basis for X, respectively Y such 
that coresKn/KXk = Xk and coresKn/Kyk = Yk* Write r for rankzpSp(E/K). Then 
r=Z= di. 

LEMMA 2.27. Let : An __ Z/pnZ be the augmentation map and let (, ) 
X x Y -- An be the pairing (*) introduced before. Then for some unit u E 7Z/pnZ 
we have the equality in Z/pnZ 

E(det((xi,yj)r+1<ij<t)) = U 1((E/K)p0) Div (1ll(E/K)p0)~ 

Proof. Of course, E(det((xi,yj)r+1<ij<t)) is equal to det(c(xi,yj)r+1<ij<t). By 
Proposition 1.3, (3), E(xj,yj) = -(xij, )K pn for 1 < i,j < t. Since (xl,..., xr) is 
a basis for Seln c Selpn(E/K), the global reciprocity law (see Proposition 1.2) 
gives 

(a) (AXi,Yj)Kpn=O 1 <i<r 1 <j?<t. 

Similarly, since (Yl,... 9 Yr) is a basis for Seln ), the isotropy of the local points 
under the local Tate pairing (? 1.2.1) gives 
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Suppose that the group Hi(E/K)po /Div (ll(E/K)poo) is isomorphic to 

2/pal 2? ... * Z/PsZ. 

We have s < t - r. Assume, without loss of generality, that ai < n. The image of 
SelpEn(E/K) in EyH (K,, E)pn is generated by the images of Yr+l1. .,Yt, and 
it is isomorphic to the direct sum of t - r summands 

Z/pnl-ol Z? ... ?2/pfclas?no /ps l ?n@ ... ?7Z/PnZ. 

Hence, by (a), (b) and the local Tate duality we find 

det((Xi9Yj)r+1<ij<t) = Ul # 
i1l(E/K)poo #Div(1ll(E/K)poo) 

for a unit ul of 2/pn2. The lemma follows. o 

Let pA be the maximum of the exponents of the finite groups 3pk)/S(k) 1 < 

k < p. Then for all n > 1 we have pA Seln) C Seln$). Consider the discriminant 
det ((pAxi,pAyj) 1<ij<t). By Lemma 2.25, it generates p2At FittAn (Selpn(E/Kn)dual). 
Although the admissible set I = In depends on n, we may assume that t= 2#= 

is independent of n (see the remark after definition 1.5: We may assume that t 
be equal to 2dimFp (Selpn (E/K)&F?p)). In particular, p2tA FittAn (Selpn (E/Kn)dual) is 
nonzero for n sufficiently large. For 1 < k < p the elements ( jAXyk+l, .. .,pAXjk+dk), 

(pAIk+, ... , pAyjk+dk), belong to Sel$ k). Choose (x k+1,... ',1k+dk) in X and 

(Yik+1 ... Yik+dk) in Y such that: 

(1) coresKnf/KXk+= PAXjk+i, coresKn/KyJk+= PAyJk+i; 

(2) D k-1)xXk+i belongs to Selpn(E/Kn), Dhk-1) belongs to Selpn(E/Kn). 

For r+ 1 < i < t, let xi =pAxi and yi = pAyi Let U and V in Mt(An) be t x t matrices 
with entries in An such that (xi,... ,xt)U = (x ,... ,x), and (yi,... ,yt)V = 

(Y'i ... ., Y). Since coresKn/Kxi = coresKn/KpAxi and coresKn/Kyi = coresKn/KpAyi, 
we find e(U) = e(V) = pAIt, where It is the identity matrix in Mt(Z/pn2). Thus, we 
may replace det((pAxi,pAyj)j<ij<t) by det((xi, y)1<ij<t) in the computation of 

the leading coefficient of p2At FittAn (Selpn (E/Kn)dual). Observe that forjk+ 1 < i < 

ik+dk, (xi,y) belongs to Ink for all y E Y. For, D(k-l)(x y) = 0, by Proposition 1.3, 
(5). Let up = d, + 2d2 + + (p- I)dp-1 + pdp. Then 

det ((xi, /)I l<ij<t) E In'p. 

Thus the order of vanishing of char(XOO) is greater or equal than urp. This is 
enough to prove the theorem when (( , ))p-I is degenerate, i.e. dp =/ 0. For, 
up > pp = d, + 2d2 + . + (p - I)dp_ and Rder = 0 by definition. From now on 
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assume that (( ))p-I is nondegenerate, hence pp = up. By Lemma 2.27 and the 
above remarks, we find the equality in IPP/IPP+l 

det((xi,y)2iAtt) = ui p2A(tr) ((E/K) 1 det((x,yj)ik+1?iJjk+dk), O"t (~4 I <ij<) = 
UnDiv (1ll(E/K)p0) k=11 

for some unit un of 2/pnZ. By the definition of the derived heights ( )k,n we 
have in IPlIPP+l 

p-1 p-1 
17 det(((p Xi,p Ay)k,n)Ik+l<ij?ik+dk) = 1 det ((XYiY)ik+l<ij?Jk+dk). 

k=1 k=1 

But 

p-l 

p2Ar n(Rder) = det ((( Pi PYj) kn)jk+I<i!Jk+dk) 
k=1 

Theorem 2.23 follows. O 

Remark 2.28. The results of this section and of the previous one are con- 
cerned with the study of the degeneracy of the p-adic height. We point out that 
Schneider [Sc2] has conjectured that the p-adic height attached to the cyclotomic 
ZP-extension Koo of a number field K is always nondegenerate. Assuming this 
conjecture, theorem 2.18 implies that XOO is A-torsion. In this case the generalized 
regulator Rder coincides with the usual p-adic regulator, and by Theorem 2.23 
the characteristic ideal of XOO vanishes to order r = rankzpSp(E/K). In particular, 
XOO X Q is a semisimple Qp, IFl-module. It also follows that the Mordell-Weil 
group E(Koo) is a finitely generated Z-module, since E(Koo)tors is finite under our 
assumptions by [Ma3], ?6. If K = Q and E has complex multiplications, Rubin 
[Ru] has shown that XOO is torsion over A. If in addition the analytic rank of E is 
at most one, the results of Kolyvagin [Ko] combined with a theorem of Bertrand 
[Ber] on values of p-adic theta functions show that the p-adic height is nonde- 
generate. Much less is known when E does not have complex multiplications. 
Kato has announced recently a proof that XOO is A-torsion, for modular elliptic 
curves. Nothing is known about the p-adic height. 

Now let E be a complex multiplication elliptic curve defined over Q and let 
K be its field of complex multiplications. Assuming that the sign of the functional 
equation of L(E/Q, s) is -1 and Koo is the anticyclotomic 7P4-extension of K, the 
results of Greenberg [Gr] show that the A-rank of XOO is equal to 2, and hence 
the p-adic height must be degenerate because of the presence of universal norms. 

With E and K as above, Brattstrom [Br] gives examples of 7p-extensions of 
K such that the attached p-adic height is degenerate, whereas a variant of XOO 
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is torsion over the Iwasawa algebra. We refer the reader to her paper for more 
details. 

In the next chapter we treat in detail the case of the anticyclotomic 7P- 
extension of an imaginary quadratic field K, assuming that E is an elliptic curve 
over Q such that K is different from the field of endomorphisms of E. 

In general, it is rather common to have degeneracies in the p-adic height. 
For example, let Loo be a 7/d-extension of a number field K. (Recall that we can p 
always choose d so that it is equal to r2 + 1, r2 being the number of complex 
embeddings of K.) One can show that it is possible to define a p-adic height 
pairing 

Sp(E/K) x Sp(E/K) -> Gal (L,/K) -pd 

by imposing that it be compatible with the p-adic heights relative to the 7p- 
extensions K,, contained in Loo under the natural maps Gal (Loo/K) -- 

Gal (K,,/K). Letting r denote the 7p-rank of Sp(E/K), suppose that r(r+ 1) < 2d. 
It follows that for at least one of the 7p-extensions K,, the corresponding p-adic 
height is identically zero. See also the examples in Remark 3.11. 

More natural examples of degeneracies in the p-adic height are treated in the 
next chapter. 

3. Elliptic curves and anticyclotomic Zp-extensions. In this chapter K,, 
denotes the anticyclotomic 7P-extension of an imaginary quadratic field K, de- 
fined by adjoining to K values of modular functions at complex multiplication 
points of p-power conductor. It is the only 7p-extension of K that is dihedral 
over Q. We require that (E, p, K,;/K) satisfy the assumptions of ? 1.1. We also 
assume that 1ll(E/K)poo is finite. Thus Sp(E/K) = E(K)p, and we can readily 
translate standard analytic conjectures into statements on the rank of the pro-p 
Selmer group Sp(E/K). 

The goal of this chapter is to sketch the Iwasawa theory, still largely con- 
jectural, for elliptic curves over Q with values in the intermediate extensions of 
KOO/K. In this situation the degeneracy of the p-adic height pairing tends to be 
the rule, and the theory of derived heights allows a conceptual formulation of the 
theory. 

3.1. The conjectures of Mazur. We begin by recalling some conjectures of 
Mazur (see [Ma3], and also [Ma2]) concerning the null-space of the p-adic height. 
Let r denote a fixed complex conjugation. Thus, given g E Gal (K,,/K), we have 
gT = g1. Write Sp(E/K)" for the submodule of Sp(E/K) on which r acts as +1, 
and r? for the 7p-rank of Sp(E/K)?. Write r = r+ + r_ for rankzp (Sp(E/K)). The 
following Galois equivariance property of the derived p-adic heights holds. 

LEMMA 3.1. For all sI, s2 E pk), ((5T1,STS2))k = (- 1)k((S1, S2))k. 
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Proof. The Galois equivariance of the local Tate pairing implies immediately 
the equality 

(TX,Ty) (n) = T (X, Y) (n)T1, 

where (n, )( denotes the An-valued pairing of ?2.3. Hence by definition 

((TS1, TS2)) k = ((S1 5S2)) *k 

where * denotes the involution of A given on group-like elements by g* = g- 
The lemma follows from the fact that * acts on Jk/lk+1 (0 Q as (_ l)k. a 

In particular, we find that the p-adic height pairing ((, ))I is trivial when 
restricted to Sp(E/K)+ x Sp(E/K)+ and Sp(E/K)- x Sp(E/K)-. Hence, the null- 
space of ((, i has rank at least r+ - r . Following Mazur's terminology we 
give: 

Definition 3.2. We say that E is in the generic case if either E does not have 
complex multiplications or K is not the complex multiplication field of E. 

Conjecture 3.3 (Mazur). Assume that E is in the generic case. Then the null- 
space of ((, ))i has rank r r+- r, i.e. rankzp3(2) - lr+-rj1. 

In other words, the anticyclotomic p-adic height should be as nondegenerate 
as possible. We may reformulate Conjecture 3.3 by saying that the pairing 

((, ))1 Sp(EIK)+ x Sp (EIK)-__ I/12, 

obtained by restriction of ((, )), is either left or right nondegenerate. Since, 
by Theorem 2.18, the universal norm submodule USp(E/K) is contained in the 
null-space of (( , ))I, Conjecture 3.3 implies that USp(E/K) is contained in either 
Sp(E/K)+ or Sp(E/K)-, whichever has the larger rank. The following "growth 
number" conjecture gives precise information on the size of USp(E/K). 

Conjecture 3.4 (Mazur). Assume that E is in the generic case. If 
rankz,P(Sp(E/K)) is even, respectively odd then USp(E/K) = 0, respectively 

USp(EIK) -_Zp 

Equivalently (see for example [B], ?11. 1) the Pontryagin dual XO of Selp.o (E/K00) 
is a torsion A-module, respectively has rank 1 over A when rankzP(Sp(E/K)) is 
even, respectively odd. 
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3.2. Applications of the derived p-adic heights. Consider the second 
derived p-adic height 

((z))2 : 3p2) X 3p2) 
J 
2X13 X9 Q. 

Assume Conjecture 3.3. Then rankzp (S(2)) - r, - r and 3p2) iS contained in 
one of the eigenspaces of r acting on Sp(E/K). Thus Lemma 3.1 does not force 
any degeneracy of (( , ))2. On the other hand, we have the a priori information 
that the universal norms USp(E/K) are contained in the null-space of ((, ))2 
Conjecture 3.4 indicates that USp(E/K) need not be trivial (see also ?3.2.3 below). 
Inspired by the philosophy of Conjecture 3.3, we formulate the following: 

Conjecture 3.5. Assume that E is in the generic case. Then the null-space 
of the second derived p-adic height (( , ))2 is equal to USp(E/K), the p-adic 
saturation of USp(E/K) in Sp(E/K). 

For the sake of clarity, let us make two separate discussions according to the 
parity of the rank of Sp(E/K). 

3.2.1. The even rank case. Assume that rankzpSp(E/K) is even. Assuming 
Conjecture 3.4, we may reformulate 3.5 as follows, 

Conjecture 3.6. Assume that E is in the generic case, and that rankzpSp(E/K) 
is even. Then the second derived p-adic height pairing is nondegenerate. 

By Theorem 2.18, this is equivalent to (3p) = 0. Since we are assuming that p 
USp(E/K) is trivial, XO is a torsion A-module. By combining Theorem 2.23 with 
the above conjecture, we obtain a conjectural statement for the order of vanishing 
of the characteristic ideal of XO. 

Conjecture 3.7. Assume that E is in the generic case and that rankzp(Sp(E/K)) 
is even. Then the characteristic ideal of XO vanishes to order r + Ir+ - r = 
2 max (r+, r_). 

3.2.2. The odd rank case. Assume that rankzpSp(E/K) is odd. Assuming 
Conjecture 3.4, we reformulate 3.5 as follows. 

Conjecture 3.8. Assume that E is in the generic case and that rankzpSp(E/K) 
is odd. Then the null-space of the second derived p-adic height pairing is a free 
rank one Zp-module equal to USp(E/K). 

Conjecture 3.8 provides a characterization of the space of universal norms 
USp(E/K) (or, rather, its p-adic saturation) in terms of the second derived height. 
This brings up the challenge of finding a computational definition of the derived 
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heights, in order to have a way of approximating numerically USp(E/K). 
If USp(E/K) is isomorphic to 7p, then XO is a A-module of rank 1 and, 

by definition, the derived regulator Rder vanishes. The theory of derived heights 
may be used to define a modified derived regulator Rder, which accounts for this 
situation. By Theorem 2.18, Conjecture 3.8 amounts to 3p3) - USp(E/K). Hence, 

with notations as in ?2.3, the partial regulators R(k) vanish for 3 < k < p - 1. Let 
di = rankzp3S()/Slki), i = 1, 2. Then we define 

Rier :-R 1)R(2) E (Id, +2d2 /IdI +2d2+1 X Q)/ X 

Note that the order of vanishing of R'er is exactly d1 + 2d2. By the above conjec- 
tures, this is equal to (r- 1) + (Ir+-rI -1) = 2(max(r+, r)- 1). Along the lines 
of Theorem 2.23, one can prove a theorem connecting the modified regulator R'r 
to the leading coefficient of the characteristic ideal of the A-torsion submodule 
(Xoo)tors of XO. (For reasons of brevity, we do not give details.) 

Conjecture 3.9. Assume that E is in the generic case, and that rankzp (Sp(E/K)) 
is odd. Then the characteristic ideal of (Xoo)tors vanishes to order (r - 1) + (I r+ - 
r_ - 1). 

3.2.3. Heegner points (Reference: [B]). Assume that E/Q is a modular 
elliptic curve and that K satisfies the Heegner hypothesis, i.e. all rational primes 
dividing the conductor of E are split in K. Then the analytic rank of E(K)p is 
odd. Assuming standard conjectures, so is rankzP(Sp(E/K)). There is a collection 
of complex multiplication points defined over Koo, called Heegner points. Let 
8(E/Kn)p C Sp(E/Kn) denote the cyclic 7p[ Gal (Kn/K)]-module generated by 
any Heegner point of level Kn. Define the A-modules 

fS(E/Koo)p I= im 4(ElKn)p, 
n 

Sp(E/Koo) I= im Sp (ElKn), 
n 

where the projective limits are with respect to the natural corestriction mappings. 
Note that S(E/KOO)p is contained in 

A 
(E/K&). One can show that 3p(E/Ko) 

is a free A-module of finite rank (equal to the 7P-rank of USp(E/K)) and 
that S(E/Ko)p is a cyclic A-module (cf. [B], ch. II). Thus S(E/Koo)p is ei- 
ther isomorphic to A or 0. Analytic evidence combined with a theorem of 
Gross-Zagier lead to the natural expectation that some of the Heegner points 
of level Kn have infinite order, i.e., S(E/Ko)p is isomorphic to A. Assum- 
ing this, it is proved in [B], ?111.1 that the conclusion of Conjecture 3.4, i.e. 

USp(E/K) E 7p, holds. This is equivalent to Sp(E/Ko) being a free A-module 
of rank 1. In this situation, Sp(E/Kco)/8S(E/Koo)p is a cyclic torsion A-module. 
The next conjecture blends a conjecture of B. Perrin-Riou [PR2] with Con- 
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jecture 3.9. Let char (SP(E/K, )/8(E/K,,)p) denote the characteristic ideal of 
3p (E/Koo )/(E1&0o)p. 

Conjecture 3.10. char(Sp(E/Ko )/8(E/KI)&)2 vanishes to order (r - 1) + 

(r+ - r_-I-1). 

The results of [B], ch. III, based on the ideas of Kolyvagin [Ko], provide evidence 
for Conjecture 3.10. 

Remark 3.11. 
1. We sketch the possible construction of an example where the radical of 

the p - 1-th derived height is larger than the space of universal norms. Let p = 3, 
and let E denote an elliptic curve subject to our assumptions, whose rank is 1 
over Q and 2 over an imaginary quadratic field K. Write s? for a generator 
of Sp(E/K)?. Denote by Kc, respectively COO the anticyclotomic, respectively 
cyclotomic 7p-extension of K. Thus Loo = CcoKco is the unique Z,-extension 
of K. According to our conjectures, the p-adic height pairing (), a attached to 
KOO/K should be nondegenerate. Assume this, and let 

OA 0 

be its matrix relative to the basis (s+, s_). Similarly, let 

tB O0 

be the matrix of the cyclotomic height (, ), relative to (s+, s) . We assume, in 
agreement with the conjecture of Schneider mentioned in remark 2.28, that this 
matrix is nondegenerate. For A E 7p, define a homomorphism 

Gal (Loo/K) = Gal (Coo/K) x Gal (Kco/K) E 7p x 7p -- Gal (M(A)/K) E 7p 

by the rule (x, y) |-4 Ax + y. Thus the p-adic height attached to M(>) is equal to 
A(, ),+(, )a, and its p-adic regulator is given by BCA2-A2. Now suppose that BC 
is a square in 7p. Then the 7p-extensions M(>) corresponding to A = ?(A/ BC) 
are such that the radical S(2,A) of the associated p-adic height pairing has rank 1. p 
Moreover, they are different from Kc, since A is nonzero. Since the second 
derived height is alternating, it must be zero on S(2,A). By a conjecture of Mazur p 
(cf. [Ma2] and [Ma3]), the universal norms from M(>) should be trivial. Thus 
the above construction would provide the desired example. We remark that the 
above regulators can actually be computed, by using the analytic definition of 
p-adic height. 
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2. Here we construct examples of 7p -extensions such that XO is highly 
nonsemisimple for the action of -y - 1. By Theorem 2.23 this amounts to show 
that most derived p-adic heights are degenerate. Let K be an abelian extension 
of a number field F such that G := Gal (K/F) is a cyclic group of order p - 1. 
Suppose that Koo is a Zp-extension of K such that G acts on F via an odd 
character X: G - Zx of order p-1. For example, consider the case F = 

K= QQ(,). The existence of a Zp-extension as above follows from class field 
theory combined with standard properties of the local units in cyclotomic fields. 
Now let E be an elliptic curve over F subject to our assumptions. Moreover, 
assume that Sp(E/K) = Sp(E/F), so that G acts trivially on Sp(E/K), and that the 
ZP-rank of Sp(E/K) is odd. The formula 

((gsl,gS2))k = S(g)k((51,52))k Vg C G, VS1,s2 E 3k) 

is a generalization of Lemma 3.1 and is proved similarly. It follows that the first 
p -2 derived heights are totally degenerate. Moreover, since the rank of Sp(E/K) 
is odd, the fact that the p - 1-th derived height is alternating implies that it must 
have nonzero radical. Is it possible that this radical has rank larger than the one 
of the module of universal norms? 
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