Euler systems and the Birch and Swinnerton-Dyer conjecture

HENRI DARMON

(joint work with Massimo Bertolini, Victor Rotger)

The Birch and Swinnerton-Dyer conjecture for an elliptic curve E/\mathbb{Q} asserts that
\[\text{ord}_{s=1} L(E, s) = \text{rank}(E(\mathbb{Q})) , \]
where $L(E, s)$ is the Hasse-Weil L-function attached to E. The scope of the conjecture can be broadened somewhat by introducing an Artin representation
\[\varrho : G_{\mathbb{Q}} \rightarrow \text{Aut}(V_{\varrho}) \simeq \text{GL}_n(\mathbb{C}) , \]
and studying the Hasse-Weil-Artin L-function $L(E, \varrho, s)$, namely, the L-function attached to $H^1_{\text{et}}(E_{\mathbb{Q}}, \mathbb{Q}_p) \otimes V_{\varrho}$, viewed as a (compatible system of) p-adic representations. The “equivariant Birch and Swinnerton-Dyer conjecture” states that
\[\text{ord}_{s=1} L(E, \varrho, s) = \dim_{\mathbb{C}} \text{hom}_{G_{\mathbb{Q}}}(V_{\varrho}, E(H) \otimes \mathbb{C}) , \]
where H is a finite extension of \mathbb{Q} through which ϱ factors. Denote by BSD$_r(E, \varrho)$ the assertion that the right-hand side of (3) is equal to r when the same is true of the left-hand side. Virtually nothing is known about BSD$_r(E, \varrho)$ when $r > 1$. For $r \leq 1$, there are the following somewhat fragmentary results, listed in roughly chronological order:

Theorem (Gross-Zagier 1984, Kolyvagin 1989) If ϱ is induced from a ring class character of an imaginary quadratic field, and $r \leq 1$, then BSD$_r(E, \varrho)$ holds.

Theorem A (Kato, 1990) If ϱ is abelian (i.e., corresponds to a Dirichlet character), then BSD$_0(E, \varrho)$ holds.

Theorem B (Bertolini-Darmon-Rotger, 2011) If ϱ is an odd, irreducible, two-dimensional representation whose conductor is relatively prime to the conductor of E, then BSD$_0(E, \varrho)$ holds.

Theorem C (Darmon-Rotger, 2012) If $\varrho = \varrho_1 \otimes \varrho_2$, where ϱ_1 and ϱ_2 are odd, irreducible, two-dimensional representations of $G_{\mathbb{Q}}$ satisfying:

1. $\det(\varrho_1) = \det(\varrho_2)^{-1}$, so that ϱ is isomorphic to its contragredient representation;
2. ϱ is regular, i.e., there is a $\sigma \in G_{\mathbb{Q}}$ for which $\varrho(\sigma)$ has distinct eigenvalues;
3. the conductor of ϱ is prime to that of E;
then BSD$_0(E, \varrho)$ holds.

This lecture endeavoured to explain the proofs of Theorems A, B, and C, emphasising the fundamental unity of ideas underlying all three.

The key ingredients are certain global cohomology classes
\[\kappa(f, g, h) \in H^1(\mathbb{Q}, V_f \otimes V_g \otimes V_h(c)) \]
attached to triples (f, g, h) of modular forms of respective weights (k, ℓ, m); here V_f, V_h and V_g denote the Serre-Deligne representations attached to f, g and h, and it is assumed that the triple tensor product of Galois representations admits
a Kummer-self-dual Tate twist, denoted $V_f \otimes V_g \otimes V_h(c)$. (This is true when the product of nebentype characters associated to f, g and h is trivial.)

When f, g and h are all of weight two and level dividing N, and f is cuspidal, associated to an elliptic curve E, say, the class $\kappa(f, g, h)$ admits a geometric construction via p-adic étale regulators/Abel-Jacobi images of

1. Beilinson-Kato elements in the higher Chow group $\text{CH}^2(X_1(N), 2)$ of the modular curve $X_1(N)$, when g and h are Eisenstein series of weight two arising as logarithmic derivatives of suitable Siegel units;
2. Beilinson-Flach elements in the higher Chow group $\text{CH}^2(X_1(N)^2, 1)$ when g is cuspidal and h is an Eisenstein series;
3. Gross-Kudla-Schoen diagonal cycles in the Chow group $\text{CH}^2(X_1(N)^3)$, when all forms are cuspidal.

When g and h are of weight one rather than two, and hence, are associated to certain (possibly reducible) odd two-dimensional Artin representations, the construction of $\kappa(f, g, h)$ via K-theory and algebraic cycles ceases to be available. The class $\kappa(f, g, h)$ is obtained instead by a process of p-adic analytic continuation, interpolating the geometric constructions at all classical weight two points of Hida families passing through g and h in weight one, and then specialising to this weight. The resulting $\kappa(f, g, h)$ is called the \textit{generalised Kato class} attached to the triple (f, g, h) of modular forms of weights $(2, 1, 1)$.

The generalised Kato classes arising from $(p$-adic limits of) Beilinson-Kato elements, Beilinson-Flach elements, and Gross-Kudla-Schoen cycles are germane to the proofs of Theorems A, B and C respectively. The key point in all three proofs is an explicit reciprocity law which asserts that the global class $\kappa(f, g, h)$ is non-cristalline at p precisely when the classical central critical value $L(f, g, h, 1) = L(E, g, 1)$ is non-zero. The non-cristalline classes attached to (f, g, h) (of which there are actually four, attached to various choices of ordinary p-stabilisations of g and h) can then be used (by a standard argument involving local and global Tate duality) to conclude that the natural inclusion of $E(H)$ into $E(H \otimes Q_p)$ becomes zero when restricted to $\mathfrak{g}_g \otimes \mathfrak{g}_h$-isotypic components, and hence, that $\text{hom}_{G_Q}(V_{\mathfrak{g}_g}, E(H) \otimes \mathbb{C})$ is trivial when $L(E, g, 1) \neq 0$.

The lecture strived to set the stage for the two that immediately followed, which were both devoted to further developments arising from these ideas:

1. Victor Rotger’s lecture studied the generalised Kato classes $\kappa(f, g, h)$ when $L(f, g, h, 1) = 0$. In that case, they belong to the Selmer group of E/H, and can be viewed as p-adic avatars of $L''(E, g, 1)$;
2. Sarah Zerbes’ lecture reported on [LLZ1], [LLZ2], [KLZ] in which the study of Beilinson-Flach elements undertaken in [BDR] is generalised, extended and refined. By making more systematic use of the Euler system properties of Beilinson-Flach elements, notably the possibility of “tame deformations” at primes $\ell \neq p$, the article [KLZ] is also able to establish strong finiteness results for the relevant p-isotypic parts of the Shafarevich-Tate group of E over H, in the setting of Theorem B.
REFERENCES

