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This is a summary of a three-part lecture series given at the meeting on “Explicit methods
in number theory” that was held in Oberwolfach from July 12 to 18, 2009. The theme of this
lecture series was the explicit construction of algebraic points on elliptic curves from cycles
on modular varieties. Given a fixed elliptic curve E over Q, the goal is to better understand
the group E(Q̄) of algebraic points on E by focusing on the following question:

Which points in E(Q̄) can be accounted for by a “modular construction”?

Heegner points arising from CM points on modular curves are the prototypical example
of such a modular construction. While we do not dispose of a completely satisfactory general
definition of modular points, fulfilling the conflicting requirements of flexibility and math-
ematical precision, several “test cases” that go beyond the setting of Heegner points have
been studied over the last 10 years (cf. [Da01], [DL], [BDG], [Da04], [Tr], [Gre], [BDP2]).
Three illustrative examples were touched upon in these lectures:

1. [BDP1], [BDP2]. “Chow-Heegner points” arising from algebraic cycles on higher di-
mensional varieties. The existence and key properties of Chow-Heegner points are
typically conditional on the Hodge or Tate conjectures on algebraic cycles.

2. [DL], [BDG], [CD]. “Stark-Heegner points” arising from ATR (“Almost Totally Real”)
cycles on Hilbert modular varieties parametrising elliptic curves over totally real fields.
These ATR cycles are not algebraic, and the expected algebraicity properties of the
associated Stark-Heegner points do not seem (for now) to be part of a systematic
philosophy.

3. [Da01], [DP]. Stark-Heegner points attached to real quadratic cycles on the “mock
Hilbert modular surface” SL2(Z[1/p])\(Hp×H) parametrising an elliptic curve E over
Q of prime conductor p. These real quadratic cycles are indexed by ideal classes
of orders in a real quadratic field K, and are topologically isomorphic to R/Z. By
an analytic process that combines complex and p-adic integration, they can be made
to yield p-adic points on E which are expected to be defined over class fields of K.
This setting leads to convincing experimental evidence for the existence of a theory of
“complex multiplication for real quadratic fields”.
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1 Heegner Points

We begin with a brief sketch of the classical picture which we aim to generalize.

Modular parametrisations. Let E be an elliptic curve over Q, and let N be its conductor.
The classical construction of Heegner points is based on the modularity theorem of [Wi],
[TW], as completed in [BCDT]. It asserts that

L(E, s) = L(f, s), (1)

where f(z) =
∑
ane

2πinz is a cusp form of weight 2 on the Hecke congruence group Γ0(N).
The modularity of E is established by showing that the p-adic Galois representation

Vp(E) =

(
lim
←,n

E[pn]

)
⊗Qp = H1

et(Ē,Qp)(1) (2)

is a constituent of the first p-adic étale cohomology of the modular curve X0(N). The
surjective GQ-equivariant projection of Galois representations

H1
et(X0(N),Qp)−→H1

et(Ē,Qp) (3)

gives rise to a non-trivial Tate cycle

Πp ∈ H2
et(X0(N)× E,Qp)(1)

GQ . (4)

By the Tate conjecture for curves over number fields that was proved by Faltings, there is
therefore a non-constant morphism over Q

Φ : J0(N)−→E, (5)

where J0(N) is the Jacobian of X0(N). This stronger, “geometric” form of modularity is
crucial for the Heegner point construction.

CM points. The modular curve X0(N) is equipped with a distinguished supply of 0-
dimensional cycles CMK ⊂ Div0(X0(N)(Kab)) attached to any imaginary quadratic field K.
The group CMK consists of degree zero divisors supported on CM points attached to the
moduli of elliptic curves with complex multiplication by an order in K. It is not hard to
show that Φ(CMK) is an infinitely generated subgroup of E(Kab); it will be referred to as
the group of Heegner points on E attached to K. The importance of Heegner points can be
justified on (at least) three grounds.

1. The Gross-Zagier formula [GZ] relates the heights of certain points in Φ(CMK) to the
central critical derivatives of the Hasse-Weil L-series of E over K, twisted by abelian
characters ofK, and thus supplies a link between the arithmetic of E and its Hasse-Weil
L-series.

2. Following a method of Kolyvagin (cf. [Gr2]), the non-triviality of certain Heegner points
can be used to bound the Selmer group of E (and therefore, its rank and Shafarevich-
Tate group). Combined with the Gross-Zagier formula, this has led to the strongest

2



known results on the Birch and Swinnerton-Dyer conjecture, most notably the theorem
that

rank(E(Q)) = ords=1 L(E, s) and #X(E/Q) <∞, when ords=1(L(E, s)) ≤ 1.

3. Heegner points can be computed efficiently in practice by analytic methods. After
identifying the set Y0(N)(C) of complex points on the open modular curve with the
quotient Γ0(N)\H, and replacing E(C) by the isogenous torus C/Λf for an appropriate
period lattice Λf attached to f , one has

Φ(τ) =

∫ τ

i∞
2πif(z)dz =

∞∑
n=1

an
n
e2πinτ (mod Λf ).

This formula leads to efficient algorithms for computing Heegner points numerically,
which have been implemented in software systems like Pari-GP, Magma, and SAGE.

2 Chow-Heegner points

Chow Groups. Given a variety V of dimension d defined over a field F , let

CHj(V )(F ) =

{
Codimension j algebraic cycles on V over F

modulo rational equivalence

}
,

CHj(V )0(F ) = the subgroup of null-homologous cycles.

Modular parametrisations. Any element Π of the Chow group CHd+1−j(V × E)(Q)
induces homomorphisms

ΦF : CHj(V )0(F )−→E(F ) (6)

for any F ⊃ Q, by the rule
ΦF (∆) := πE(π−1

V (∆̃) · Π̃), (7)

where πV and πE denote the natural projections from V × E to V and E respectively and
∆̃ and Π̃ are representatives of the class of ∆ and Π, chosen so that π−1

V (∆̃) and Π̃ intersect
transversally. The assignment Φ : F 7→ ΦF is a natural transformation from CHj(V )0 to E,
viewed as functors on Q-algebras. This leads to the following informal definition:

Definition 2.1. A modular parametrisation of E is a triple (V,Π, j) where

1. V is a “modular variety” of dimension d;

2. Π is a cycle class in CHd+1−j(V × E)(Q);

3. the induced morphism Φ : CHj(V )0−→E is non trivial.
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The non-triviality condition on Φ merits some clarification. The most obvious notion of non-
triviality is to require the existence of a cycle ∆ ∈ CHj(V )0(Q̄) for which Φ(∆) is non-zero in
E(Q̄)⊗Q. A second notion rests on the fact that the correspondence Π induces a functorial
map on deRham cohomology:

Φ∗dR : H1
dR(E/Q)−→H2d−2j+1

dR (V/Q).

The modular parametrisation Φ will be said to be non-trivial if the class of Φ∗dR(ωE) is non-
zero, where ωE is a non-zero regular differential on E. We will henceforth work with this
cohomological notion of non-triviality.

Modular varieties. Definition 2.1 above falls short of being mathematically precise because
we have not explained what is meant by “modular variety”. Loosely speaking, such a variety
is one which can be related to a Shimura variety in a reasonably direct way. For instance,
a Shimura variety is a modular variety, as is the universal object or the r-fold fiber product
of the universal object over a Shimura variety of PEL type. Examples include modular and
Shimura curves, Kuga-Sato varieties, Hilbert modular varieties, Siegel modular varieties,
Shimura varieties attached to the the orthogonal group O(2, n) or the unitary group U(p, q),
etc. For the purposes of these lectures, the term “modular variety” is best interpreted
informally in the broadest possible sense, as any variety whose cohomology is related to
modular forms.

Chow-Heegner points. Modular varieties frequently contain a plentiful supply of arith-
metically interesting algebraic cycles. The images in E(Q̄) of such special cycles under a
modular parametrisation can be viewed as “higher-dimensional” analogues of Heegner points:
they will be referred to as Chow-Heegner points.

The general program. Given an elliptic curve E, it would be of interest to construct mod-
ular parametrisations to E in the greatest possible generality, study their basic properties,
and explore the relations (if any) between the resulting systems of Chow-Heegner points and
values of L-series attached to E.

3 Generalised Heegner cycles

We flesh out the loosely formulated program of the previous paragraph in a simple but
non-trivial setting, in which E = A is an elliptic curve with complex multiplication by an
imaginary quadratic field K, and V is a suitable family of 2r-dimensional abelian varieties
fibered over a modular curve. This construction (to which two of the lectures in the series
ended up being devoted to) is part of a work in progress with Massimo Bertolini and Kartik
Prasanna [BDP1], [BDP2].

The setting. Fix a quadratic imaginary field K, and let A be an elliptic curve with complex
multiplication by the maximal order in K. In order to simplify the presentation of the main
results, we make the following assumptions:

Assumption 3.1. 1. The field K has class number one, unit group of order two, and
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odd discriminant. This implies that D := −Disc(K) is one of the following 6 primes:

D = 7, 11, 19, 43, 67, or 163.

2. The elliptic curve A is defined over Q and has conductor D2.

These assumptions are of course very restrictive; they are only made to ease the exposi-
tion, and the main results of [BDP1] and [BDP2] are obtained under more general conditions
in which K is not assumed to have class number one.

Let εD : (Z/DZ)×−→± 1 be the quadratic Dirichlet character of conductor D attached
to K. Because A has complex multiplication, its modularity follows from the fact (known
much before the work of Wiles, of course) that

L(A, s) = L(ψ, s),

where ψ is the Hecke character of K of infinity type (1, 0) defined on (principal) ideals by
the rule

ψ((a)) = εD(a mod
√
D)a.

The theta-series

θψ :=
1

2

∑
a∈OK

ψ(a)qaā ∈ S2(Γ0(D
2)) (q = e2πiτ )

is the weight two normalised eigenform of level D2 attached to A.
Fix an integer r ≥ 0, and consider the higher weight theta series

θψr+1 :=
1

2

∑
a∈OK

ψ(a)r+1qaā =
∞∑
n=1

anq
n ∈

{
Sr+2(Γ0(D

2)) if r is even;
Sr+2(Γ0(D), εK) if r is odd.

(8)

Set

Γ =

{
Γ0(D) if r is odd,
Γ0(D

2) if r is even,

and write C for the modular curve attached to Γ. Let Wr be the Kuga-Sato variety obtained
by taking a canonical desingularisation of the r-fold fiber product

E ×C E ×C · · · ×C E

of the universal (generalised) elliptic curve E over C. The locus W 0
r ⊂ Wr that lies over the

open modular curve admits an explicit complex uniformisation

W 0
r (C) = (Z2r o Γ)\(Cr ×H).

The theta series θψr+1 has a geometric interpretation as a regular (r+1)-form on Wr given on
W 0
r (C) by

ωψr+1 = (2πi)r+1θψr+1(τ)dz1 · · · dzrdτ,
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where (z1, . . . , zr, τ) are the standard coordinates on Cr × H. The q-expansion principle
implies that

ωψr+1 belongs to Ωr+1(Wr/Q) = Filr+1Hr+1
dR (Wr/Q).

The Deligne-Scholl motive associated to ψr+1 corresponds to the piece of the (r+1)-st coho-
mology of Wr on which the nth Hecke correspondence Tn acts (for each n) as multiplication
by the Fourier coefficient an of (8). It can be shown that the étale realisations of this motive
are isomorphic to a specific piece of the middle cohomology of Ar+1:

Hr+1
et (W̄r,Qp)

θψr+1 = Hr+1
et (Ār+1,Qp)

ψr+1

.

This isomorphism gives a non-trivial Tate cycle

Πp ∈ H2r+2(Wr × Ar+1,Qp)(r+1)GQ .

The existence of this Tate cycle suggests the following conjecture which is the basis for the
definition of Chow-Heegner points on A.

Conjecture 3.2. There is an algebraic cycle class Π? ∈ CHr+1(Wr×Ar+1)(K)⊗Q satisfying

Π?∗
dR([ωr+1

A ]) ∼ [ωψr+1 ], Π?∗
dR([ωjAω̄

r+1−j
A ]) = 0, for all 1 ≤ j ≤ r,

where
Π?∗

dR : Hr+1
dR (Ar+1/C)−→Hr+1

dR (Wr/C)

is the map on deRham cohomology induced by Π?, and the symbol ∼ denotes equality up to
multiplication by a non-zero scalar of Q×.

Notice that the putative cycle Π? is also an element of CHr+1(Xr × A), where Xr is the
(2r+1)-dimensional variety

Xr := Wr × Ar.

Viewed in this way, the cycle Π? gives rise to a modular parametrisation

Φ? : CHr+1(Xr)0−→A

defined overK. It is not hard to see that Φ? is non-trivial. More precisely, a direct calculation
reveals that

Φ?∗
dR(ωA) = ωψr+1 ∧ ηrA, (9)

where ηA is a suitably normalised class in H0,1
dR(A/C). (The fact that A has complex multi-

plication implies that the class ηA can be chosen to belong to H1
dR(A/K).)

Generalised Heegner cycles on Xr. The article [BDP1] introduces and studies a col-
lection of null-homologous, r-dimensional algebraic cycles on Xr, referred to as generalised
Heegner cycles. These cycles, which extend the notion of Heegner cycles on Kuga-Sato va-
rieties considered in [Scho], [Ne] and [Zh], are indexed by isogenies ϕ : A−→A′, and are
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defined over abelian extensions of K. The cycle ∆ϕ attached to ϕ is essentially equal to the
r-fold product of the graph of ϕ:

∆ϕ := εr(Graph(ϕ)r) ⊂ (A× A′)r = (A′)r × Ar
(∗)
⊂ Wr × Ar = Xr, (10)

where the inclusion (*) arises by embedding (A′)r in Wr as a fiber for the natural projection
Wr−→C. The projector εr that appears in (10) is a suitable idempotent in the ring of
algebraic correspondences on Xr, which has the effect of making the cycle ∆ϕ homologically
trivial.

It can be shown, by adapting an argument of Schoen [Scho], that the cycles ∆ϕ generate
a subgroup of CHr+1(Xr)0(K

ab) of infinite rank. The conjectural map Φ?
Kab sends these

generalised Heegner cycles to points in A(Kab). The resulting collection

{Φ?
Kab(∆ϕ)}ϕ:A−→A′ (11)

of Chow-Heegner points should generate an infinite rank subgroup of A(Kab), and should
give rise to an “Euler system” in the sense of Kolyvagin. In the classical situation where
r = 0, the variety Xr is just a modular curve and the existence of Π? follows from Faltings’
proof of the Tate conjecture for curves. When r ≥ 1, the very existence of the collection of
Chow-Heegner points relies, ultimately, on producing the algebraic cycle Π? unconditionally.

Complex calculations. Since this is a workshop about explicit methods, we hasten to
point out that even when the modular parametrisation Φ? cannot be shown to exist, it can
still be computed efficiently in practice, by complex analytic means.

The numerical calculation of Φ? rests on the complex Abel-Jacobi map

AJXr : CHr+1(Xr)0(C)−→Filr+1H2r+1
dR (Xr/C)dual

ImH2r+1(Xr(C),Z)
(12)

of Griffiths and Weil, which is defined by the rule:

AJXr(∆)(ω) =

∫
∆̃

ω, (for any (2r+1)-chain ∆̃ with ∂∆̃ = ∆). (13)

This is a natural generalisation of the usual Abel-Jacobi map for elliptic curves:

AJA : A(C) = CH1(A)0(C)−→ Ω1(A/C)dual

ImH1(A(C),Z)
, (14)

which one recovers from (12) after replacing Xr by A and setting r = 0. The image of the
Chow-Heegner point Φ?(∆ϕ) under the Abel-Jacobi map (14) is computed by noting that:

AJA(Φ?(∆ϕ))(ωA) = AJXr(∆ϕ)(Φ
?∗
dR(ωA)) = AJXr(∆ϕ)(ωψr+1 ∧ ηrA), (15)

where the first equality follows from the functorial properties of the Abel-Jacobi maps, and
the second follows from (9).
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Let N = D or D2 (depending on whether r is odd or even) and let ϕ : A−→A′ be an
isogeny from A to some elliptic curve A′. Suppose that A′(C) is described as A′ = C/〈1, τ〉,
and that (A′)r is embedded in Wr as the fiber above the point of C corresponding to the
pair (C/〈1, τ〉, 1/N). Suppose also that

ϕ∗(2πidz) = ωA,

where z is the standard coordinate on C/〈1, τ〉 = A′(C). The last expression in (15) can be
calculated from the following proposition, which is established in [BDP1], Thm. 3.14:

Proposition 3.3. Let 0 ≤ j ≤ r be an integer. For a complex isogeny ϕ as above, modulo
the appropriate period lattice,

AJXr(∆ϕ)(ωθψr+1 ∧ ω
j
Aη

r−j
A ) =

(−dϕ)j(2πi)j+1

(τ − τ̄)r−j

∫ τ

i∞
(z − τ)j(z − τ̄)r−jθψr+1(z)dz.

Setting j = 0, we find that Φ?
C = ΦC, where

ΦC : CHr+1(Xr)0(C)−→A(C)

is given by the explicit formula

ΦC(∆ϕ) =
2πi

(τ − τ̄)r

∫ τ

i∞
(z − τ̄)rθψr+1(z)dz (mod ΛA),

for an appropriate period lattice ΛA attached to the elliptic curve A. Conjecture 3.2 on
the existence of the modular parametrisation Φ? implies the following explicit algebraicity
statement:

Conjecture 3.4. Let H be a subfield of Kab and let ∆ϕ ∈ CHr+1(Xr)0(H) be a generalised
Heegner cycle defined over H. Then (after fixing an an embedding of Kab into C),

ΦC(∆ϕ) belongs to A(H)⊗Q,

and
ΦC(∆σ

ϕ) = ΦC(∆ϕ)
σ for all σ ∈ Gal(H/K).

While ostensibly weaker than Conjecture 3.2, Conjecture 3.4 has the virtue of being more
readily amenable to experimental verification. A number of such verifications—which can be
viewed as indirect numerical “tests” of the Tate conjectures for Wr×Ar+1—are documented
in [BDP2]. In these experiments, the complex points ΦC(∆ϕ) attached to a few generalised
Heegner cycles ∆ϕ are calculated to high accuracy and recognized as algebraic points defined
over the predicted class fields.

p-adic methods. Aside from such numerical explorations, the main theoretical evidence
for the existence of the modular parametrisation Φ? arises from p-adic methods.
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If F is any field, then the Abel-Jacobi map admits an analogue in étale cohomology:

AJet
F : CHr+1(Xr)0(F )−→H1(F,H2r+1

et (X̄r,Qp)(r+1)). (16)

The image of the conjectural algebraic cycle Π? under the étale cycle class map is a Tate
cycle

Πet ∈ H2r+2
et (Xr × A,Qp)(r+1)GQ ,

which in turn gives rise to a surjective, GQ-equivariant projection

πr : H2r+1
et (X̄r,Qp)(r+1)−→H1

et(Ā,Qp)(1) = Vp(A).

Applying πr to the target of (16) gives a map

πr ◦ AJet
F : CHr+1(Xr)0(F )−→H1

Sel(F, Vp(A)), (17)

where H1
Sel(F, Vp(A)) is the pro-p Selmer group of A over F . This Selmer group consists

cohomology classes whose restrictions to each completion Fv of F belongs to the image of
the local connecting homomorphism

δv : (lim
←
A(Fv)/p

nA(Fv))⊗Zp Qp−→H1(Fv, Vp(A))

arising from the p-power descent exact sequence of Kummer theory for A over Fv. When F
is a global field, this is the “usual” pro-p Selmer group of A over F , and when F is a local
field of residue characteristic p, the Qp-vector space H1

Sel(F, Vp(A)) is identified with the Lie
algebra A1(F )⊗Qp of the p-adic Lie group A(F ).

Remark: The system {AJet
Fϕ(∆ϕ)}ϕ (as ϕ ranges over all isogenies from A, and Fϕ is the

field of definition of ϕ) is an infinite collection of global cohomology classes defined over finite
abelian extensions of K, satisfying various norm compatibility and Selmer conditions. This
collection obeys (a simple variant of) the axioms of an Euler system, as they are spelled out
in [Ru] for example.

In the case where F is a finite extension of Qp, equation (17) can be used to define a
p-adic parametrisation

ΦF := πr ◦ AJet
F : CHr+1(Xr)0(F )−→A(F )⊗Q,

which is a p-adic counterpart of the map ΦC, is defined independently of the Hodge or Tate
conjectures, and agrees with Φ?

F when the latter exists. The main theorem of [BDP2] is
the following p-adic analogue of Conjecture 3.4, which shows that the images of generalised
Heegner points under ΦF have the expected algebraicity properties, and can be related to
the L-series of A. Assume for simplicity that the integer r is odd.

Theorem 3.5. Let p = pp̄ be a rational prime which splits in K/Q. Let H ⊂ Kab be a finite
extension of Q which is unramified at p, let ∆ ∈ CHr+1(Xr)0(H) be a generalised Heegner
cycle defined over this field, and let Hp ⊃ H be the completion of H at a prime above p.
Then

ΦHp(∆) belongs to A(H)⊗Q.
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In particular, the cycle ∆1 ∈ CHr+1(Xr)0(K) attached to the identity isogeny 1 : A−→A
maps to a rational point on A(K)⊗Q under ΦKp. This point is of infinite order if and only
if

L(ψ2r+1, r + 1) 6= 0, and L′(ψ, 1) 6= 0.

The idea of the proof of Theorem 3.5 is to express the local points ΦHp(∆ϕ) in terms of
special values of the p-adic L-functions studied in [BDP1] which are attached to the Rankin
convolution of θψr+1 with Hecke characters of K. The resulting formulae for the local points
ΦF (∆ϕ) (for F any p-adic field over which ∆ϕ can be defined) allows one to compare these
points for different values of r, and thereby reduce the case r > 0 of Theorem 3.5 to the case
r = 0, where it follows from the Tate conjecture for curves proved by Faltings.

The very possibility of such a proof reveals that the Chow-Heegner points constructed
in this setting are not genuinely new, since they can ultimately be related to CM points
on modular curves. The set-up involving the CM elliptic curve A and the variety Xr—a
simple but non-trivial “toy model” for the notion of Chow-Heegner points—is perhaps most
noteworthy for bringing the Hodge and Tate conjectures, which are notoriously difficult to
test numerically, a bit closer to the realm of “explicit methods”.

4 ATR cycles

Of course, the hope is that higher-dimensional cycles will lead to points on E that cannot
already be obtained by more classical approaches based on Heegner points. We will take
a first step in this direction by considering certain non-algebraic cycles on Hilbert modular
varieties.

The setting. Let F be a totally real field of degree r + 1, and fix an ordering v0, v1, . . . , vr
of the r+1 distinct real embeddings of F . Let E be an elliptic curve over F , and let

Ej := E ⊗vj R (0 ≤ j ≤ r)

be the r+1 elliptic curves over R obtained by taking the base change of E to R via the
embedding vj. To ease the exposition, we will make the following inessential assumptions:

1. The field F has narrow class number one;

2. the conductor of E/F is equal to 1 (i.e., E has everywhere good reduction).

Remark 4.1. These hypotheses, although very restrictive, are satisfied in some examples.
For example, when D = 29, 37 and 41, the real quadratic field F = Q(

√
D) has narrow class

number one, and there is an elliptic curve E of conductor one over F . This elliptic curve
cannot be defined over Q, but it is isogenous to its Galois conjugate, and is a quotient of the
Jacobian J1(D). The elliptic modular form thus associated to E belongs to S2(Γ0(D), εD),
where εD is the quadratic Dirichlet character of conductor D attached to F .

In general, the modularity conjecture asserts that E gives rise to a Hilbert modular form
f on SL2(OF ). Such a form is a holomorphic function on the product H0 ×H1 × · · · × Hr
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of r+1 copies of the complex upper half plane, which is of parallel weight (2, 2, . . . , 2) under
the action of the Hilbert modular group SL2(OF ). The latter group acts discretely on
H0 × · · · × Hr by Möbius transformations via the embedding

(v0, . . . , vr) : SL2(OF )−→SL2(R)r+1.

Because of this trasformation property, the Hilbert modular form f can be interpreted geo-
metrically as a holomorphic differential (r+1)-form on the complex analytic quotient

X(C) := SL2(OF )\(H0 ×H1 × · · · × Hr), (18)

by setting
ωhol
f := (2πi)r+1f(τ0, . . . , τr)dτ0 · · · dτr.

This quotient in (18) is identified with the complex points of the (open) Hilbert modular
variety X attached to GL(2)/F , but this algebraic structure will not be exploited in our
construction of Stark-Heegner points attached to ATR cycles.

It will be useful to replace ωhol
f by a closed, but non-holomorphic differential (r+1)-form

ωf on X(C). When r = 1, the differential ωf is defined by choosing a unit ε ∈ O×F of norm
−1 satisfying

ε0 := v0(ε) > 0, ε1 := v1(ε) < 0,

and setting
ωf = (2πi)2 (f(τ0, τ1)dτ0dτ1 − f(ε0τ0, ε1τ̄1)dτ0dτ̄1) .

For general r, one defines ωf similarly, but this time summing over the subgroup ofO×F /(O
+
F )×

of cardinality 2r consisting of units ε with v0(ε) > 0. Note that the closed (r+1)-form ωf is
holomorphic in τ0, but only harmonic in the remaining variables τ1, . . . , τr. The justification
for working with ωf rather than ωhol

f lies in the following statement which is a reformulation
of a conjecture of Oda [Oda].

Conjecture 4.2 (Oda). Let

Λf :=

{∫
γ

ωf , γ ∈ Hr(X(C),Z)

}
.

Then Λf is a lattice in C and the elliptic curve C/Λf is isogenous to E0.

This conjecture is known to hold for Hilbert modular forms which are base change lifts of
classical elliptic modular forms. For example, in the setting of Remark 4.1, the Hilbert mod-
ular form attached to E is the Doi-Naganuma lift of an elliptic modular form in S2(Γ1(D), εD)
and Conjecture 4.2 is known to hold in this case.

Let

Zr(X(C)) :=


Null-homologous cycles

of real dimension r
on X(C)

 .

Conjecture 4.2 makes it possible to define an “Abel-Jacobi map”

AJf : Zr(X(C))−→E0(C), (19)
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by choosing an isogeny ι : C/Λf−→E0(C), and setting

AJf (∆) := ι

(∫
∆̃

ωf

)
, (for any ∆̃ with ∂∆̃ = ∆). (20)

Note that the domain Zr(X(C)) of AJf has no natural algebraic structure, and that the map
AJf bears no obvious relation (beyond an analogy in its definition) with the Griffiths-Weil
Abel-Jacobi map on the Hilbert modular variety X.

ATR Cycles. A quadratic extension K of F is called an ATR extension if

K ⊗F,v0 R ' C, K ⊗F,vj R ' R⊕ R, (1 ≤ j ≤ r).

The acronym ATR stands for “Almost Totally Real”; an ATR extension of F is “as far as
possible” from being a CM extension, without being totally real.

Fix an ATR extension K of F , and let Ψ : K−→M2(F ) be an F -algebra embedding.
Then

1. Since K ⊗F,v0 R ' C, the torus Ψ(K×) has a unique fixed point τ0 ∈ H0.

2. For each 1 ≤ j ≤ r, the fact that K ⊗F,vj R ' R ⊕ R shows that Ψ(K×) has two
fixed points τj and τ ′j on the boundary of Hj. Let Υj ⊂ Hj be the hyperbolic geodesic
joining τj to τ ′j.

An embedding Ψ : K−→M2(F ) has a conductor, which is defined to be the unique OF -ideal
cΨ for which

Ψ(K) ∩M2(OF ) = Ψ(OF + cΨOK).

The OF -order OΨ := OF + cΨOK is called the order associated to Ψ. By the Dirichlet unit
theorem, the group

ΓΨ := Ψ((O+
Ψ)×) ⊂ SL2(OF )

is of rank r and preserves the region

RΨ := {τ0} × Υ1 × · · · × Υr.

The ATR cycle associated to the embedding Ψ is defined to be the quotient

∆Ψ := ΓΨ\RΨ.

It is a closed cycle on X(C) which is topologically isomorphic to an r-dimensional real torus.
In many cases, one can show that ∆Ψ is null-homologous, at least after tensoring with Q.
(This is the case, for instance, when r = 1, and it follows from the fact that the group
cohomology Hr(SL2(OF ),C) is trivial.) Assume from now on that ∆Ψ is homologically
trivial, and therefore that it belongs to Zr(X(C)).

The following conjecture lends arithmetic meaning to the Abel-Jacobi map AJf and to
the ATR cycles ∆Ψ.

12



Conjecture 4.3. Let Ψ : K−→M2(F ) be an F -algebra embedding of an ATR extension K
of F . Then the complex point AJf (∆Ψ) ∈ E0(C) is algebraic. More precisely, the isogeny ι
in the definition (20) of AJf can be chosen so that, for all Ψ,

AJf (∆Ψ) belongs to E(HcΨ),

where HcΨ is the ring class field of K of conductor cΨ.

This conjecture has been tested numerically in [DL], for the three elliptic curves men-
tionned in Remark 4.1. A key ingredient in [DL] is the formulation of an efficient algorithm
for calculating AJf numerically. This algorithm relies on group cohomology, and involves
the manipulation of certain (r+1)-cochains on Γ which are defined by integrating ωf over
appropriate regions. The algorithm described in [DL] also exploits the fact that the real
quadratic field K = Q(

√
D) for D = 29, 37, and 41, is Euclidean. It would be of interest to

have algorithms to calculate AJf in more general settings, particularly in cases where r > 1.
Conjecture 4.3 is poorly understood at present. For instance, it is not clear whether

the Tate conjecture sheds any light on it. On the positive side, the ATR points that are
produced by Conjecture 4.3 are “genuinely new” and go beyond what can be obtained using
only CM points on Shimura curves. Indeed, the former are defined over abelian extensions
of ATR extensions of totally real fields, while the latter are defined over abelian extensions
of CM fields.

5 Real quadratic cycles on SL2(Z[1/p])\(Hp ×H)

The construction based on ATR cycles fails to cover some of the most basic settings where
a modular construction might be expected to exist. The simplest non-trivial such setting
arises when E is an elliptic curve over Q of prime conductor p, and K is a real quadratic
field in which p is inert. In that case, a study of signs in functional equations reveals that

ords=1 L(E/H, s) ≥ [H : K],

for any abelian extension H of K which is unramified at p and for which Gal(H/K) is
isomorphic to a (generalised) dihedral group. (See the discussion in the introduction of
[Da01] for example.) The Birch and Swinnerton-Dyer conjecture therefore predicts that

rank(E(H))
?

≥ [H : K].

It is natural to ask whether this predicted systematic growth in Mordell-Weil rank can be
accounted for by a modular construction.

Such a modular construction does appear to exist. It rests on the formal analogy between
the Hilbert modular surface SL2(OF )\(H0 × H1) (corresponding to the case r = 1 of the
ATR construction described in the previous paragraph) and the quotient

SL2(Z[1/p])\(Hp ×H),
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where Hp := P1(Cp)−P1(Qp) is the p-adic upper half plane. Some of the terms that make
up the analogy are listed in the table below.

ATR cycles Real quadratic cycles
F real quadratic Q

v0, v1 p, ∞
Elliptic curve E/F of conductor 1 Elliptic curve E/Q of conductor p

SL2(OF )\(H0 ×H1) SL2(Z[1/p])\(Hp ×H)
K/F ATR K/Q real quadratic, with p inert

Ψ : K−→M2(F ) Ψ : K−→M2(Q)
〈γ〉 := Ψ((O+

Ψ)×) 〈γ〉 := Ψ((O+
Ψ)×)

∆Ψ = {τ0} × (Υ1/γ), τ ∈ H0 ∆Ψ = {τ} × (Υ1/γ), τ ∈ Hp.

⇓ AJf ⇓ AJ
(p)
f

Points in C/Λf = E0(C), Points in K×p /q
Z = E(Kp),

defined over abelian extensions of K defined over abelian extensions of K.

The “real quadratic cycles” ∆Ψ in SL2(Z[1/p])\(Hp×H) are topologically isomorphic to

R/Z, and AJ
(p)
f (∆Ψ) belongs to K×p /q

Z = E(Kp), where q ∈ Q×p is the p-adic Tate period of
E. Since the symmetric space Hp×H mixes a rigid analytic topology on the first factor with

a complex analytic topology on the second, one cannot define AJ
(p)
f by directly integrating an

appropriate differential on a two-dimensional region having ∆Ψ as boundary, as in equation
(20) defining AJf . The main steps that make it possible to define the p-adic analogue of AJf
are:

1. To reinterpret the elliptic modular form f ∈ S2(Γ0(p)) attached to E as a “mock Hilbert
modular form” on SL2(Z[1/p])\Hp×H. This reinterpretation gives a precise meaning
to certain 2-cochains on Γ with values in C×p which are the direct p-adic analogues of
the corresponding cochains considered in the ATR setting in the algorithms of [DL].

2. With these cochains in hand, the algorithms of [DL] can be precisely mimicked, yielding

invariants AJ
(p)
f (∆Ψ) ∈ K×p /qZ.

For more details on this construction, and the precise definition of AJ
(p)
f , see [Da01], [Da04].

The article [DP] describes the most efficient algorithms for computing the Stark-Heegner

points AJ
(p)
f (∆Ψ) attached to real quadratic fields. These algorithms have been implemented

in MAGMA and can be downloaded from the web site

http://www.math.mcgill.ca/darmon/programs/shp/shp.html
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