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The Langlands Functoriality Conjecture is the number theorist’s “grand

unified theory". It describes and elucidates the platonic realm of modular

forms, L-functions, and motives—a world arguably no less real, in its rich-

ness, than the physicist’s universe of elusive particles and far-flung galax-

ies.

The timely volume under review (referred to henceforth as CKM) is made

up of three distinct contributions of about 100 pages each:

[C] A survey of L-functions of automorphic forms and converse theo-

rems for GLn, written by James Cogdell;

[K] An account by Henry Kim of his recent work with Shahidi on cer-

tain special cases of functoriality (which will be described more pre-

cisely below);

[M] Ram Murty’s exposition of some of the applications of these results

and of related conjectures to classical questions in analytic number

theory.

All three contributions are motivated by the striking work of Kim and Shahidi

on functoriality for the symmetric third [KS] and fourth [Kim] powers of the

standard representation of GL(2). Thus CKM makes an ideal introduction

to the main techniques—most crucially, the converse theorems of Cogdell

and Piatetski-Shapiro, and the Langlands-Shahidi method—that were in-

strumental in obtaining these results. Because CKM is resolutely pitched
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at the motivated graduate student or the expert in automorphic forms, it is

a challenge to convey its contents to a broader readership, reconciling the

sometimes competing demands of simplicity and precision. We will sac-

rifice a bit of the latter to the former, and focus on a single of the many

threads that runs through the volume: functoriality for symmetric powers

and its relation to the Sato-Tate conjecture, a topic of much current interest

in light of the recent breakthroughs of [CHT], [HSBT], and [Ta].

To an elliptic curve E over Q is associated a collection of Galois repre-

sentations (parametrised by positive integers n)

ρE,n : Gal(Q̄/Q) −→ Aut(E[n]) ' GL2(Z/nZ),

obtained by considering the action of the absolute Galois group of Q, de-

noted GQ := Gal(Q̄/Q), on the n-division points of the divisible group

E(Q̄) (a group which is abstractly isomorphic to (Z/nZ)2). Packaging

these representations together as n ranges over the powers of a prime `

leads to the fundamental `-adic representation

(1) ρE : GQ −→ GL2(Z`).

Understanding such naturally occuring representations of GQ is one of

the central questions in number theory. To be more precise about what

is meant here by “understanding", we note that the group GQ carries a

plethora of extra structures, most notably a collection of so-called decom-

position subgroups Gp := Gal(Q̄p/Qp) indexed by the rational primes p

and arising from the various p-adic completions of Q. The inclusion of Gp

in GQ is obtained by choosing an embedding of the algebraic closure Q̄

into Q̄p and associating to σ ∈ Gp its restriction to Q̄. The resulting in-

clusion depends on the choice of embedding, but only up to conjugation in
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GQ. The group Gp has a canonical normal subgroup Ip consisting of ele-

ments which act trivially on the residue field of Q̄p, and the quotient Gp/Ip

is a procyclic group with a canonical topological generator, the so-called

frobenius element Frobp. (It is defined by the condition that it induces the

automorphism x 7→ xp on the residue field at p.) It is not hard to show

that ρE(Ip) = 1 for all but finitely many p. When this condition is sat-

isfied, one says that ρE is unramified at p. For such primes, the image

σp := ρE(Frobp) of Frobp is a well-defined element of GL2(Q`)—or, more

precisely, a canonical conjugacy class (because Gp is only well-defined up

to conjugation in GQ). Understanding the behaviour of the classes σp as

p varies is an important theme in the branch of number theory devoted to

generalised reciprocity laws. Questions of this type can be traced back to

the fundamental law of quadratic reciprocity proved by Gauss. The con-

nection with quadratic reciprocity is that, in the simpler case where

(2) ρ : GQ −→ ±1

is a (continuous) one-dimensional representation of order 2, and K is the

quadratic field of discriminant D determined by ρ, (i.e., the fixed field of its

kernel), it follows directly from the definition of Frobenius elements that σp

is 1 or −1 depending on whether D is a square or a non-square modulo

p. That this latter condition depends only on the value of p modulo 4D

is the content of the law of quadratic reciprocity. The periodicity of σp for

the representation ρ of (2) reveals an a priori unexpected regularity of the

function p 7→ σp, and it is this type of pattern one would like to unveil for

more complicated sequences of frobenius elements such as those arising

from the Galois representation of (1).
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Returning to the case of (1), basic facts in the theory of elliptic curves

show that the characteristic polynomial of σp is of the form

x2 − apx + p = (x − αp)(x − βp),

where ap is an integer (which in fact is independent of the choice of ` 6= p)

satifying |ap| < 2
√

p, so that the complex roots αp and βp lie on the circle

of radius
√

p. The Hasse-Weil L-series, defined by the infinite product

(taken over the primes p for which ρE is unramified)

L(E, s) :=
∏

p

(1 − αpp
−s)−1(1 − βpp

−s)−1 =:
∑
n≥1

ann−s,

packages the data from the σp into an Euler product which converges in

the right half-plane of s ∈ C with Real(s) > 3/2. (This convergence is a

direct consequence of the inequality |ap| ≤ 2
√

p.)

The Langlands conjecture, in this special case, is known as the Shimura-

Taniyama conjecture. It asserts that the generating series

fE(τ) :=

∞∑
n=1

ane2πinτ,

viewed as an analytic function of the variable τ in the complex upper half-

plane, is a modular form of weight 2 on a specific (explicitly determined,

in terms of E) finite-index subgroup Γ ⊂ SL2(Z). Modularity in this setting

means that fE satisfies the deep periodicity

fE

(
aτ + b

cτ + d

)
= (cτ + d)2fE(τ),

for all matrices ( a b
c d ) ∈ Γ , together with certain (equally deep) conditions

of moderate growth at the boundary of the quotient Γ\H.

The proof of the Shimura-Taniyama conjecture was completed in [BCDT]

by capitalising on the revolutionary techniques of [W] and [TW] that led to

the proof of Fermat’s Last Theorem. The Shimura-Taniyama conjecture

reveals a pattern satisfied by the σp, which, although less easily described
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than the simple periodicity of quadratic reciprocity, has many of the same

desirable consequences for L(E, s). For example, Hecke showed how the

modularity of E implies that its L-series has a simple integral representation

L(E, s) = (2π)sΓ(s)−1

∫∞
0

fE(iy)ys dy

y
,

leading to the analytic continuation and functional equation satisfied by

L(E, s). These classical topics are recalled, in a treatment that is brief but

complete, in the first sections of [C] . Cogdell’s contribution then turns to a

more general framework for Langlands functoriality, where ρ is now taken

to be an n-dimensional representation of GF := Gal(F̄/F), for some num-

ber field F. In this level of generality, the conjectures are most conveniently

expressed by replacing classical modular forms by automorphic forms and

representations. The automorphic forms considered in [C] are special

kinds of functions on GLn(AF), where AF denotes the ring of adèles of

F, i.e., the restricted product of all the completions of F relative to their

maximal compact subrings. It is a requirement of the definition that the

form satisfy suitable growth and invariance properties under right transla-

tion by elements in a compact subgroup of GLn(AF), as well as (crucially)

being invariant under left translation by the discrete subgroup GLn(F) ⊂

GLn(AF). An even more flexible (if at first somewhat daunting to the

novice) framework for working with automorphic forms is the theory of au-

tomorphic representations–representations (typically infinite-dimensional)

of the adèlic group GLn(AF) occuring in a suitable space of functions on

GLn(F)\ GLn(AF). The sequence of shifts in point of view that make it

possible to pass from classical modular forms, first to automorphic forms,

and then to automorphic representations, is well motivated and explained

in sections 2 and 3 of [C] .
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To each automorphic representation π of GLn over F is associated an L-

function L(π, s). The precise definition of this L-function would take us a bit

far afield, but here are its main features. One first shows that any “reason-

ably nice" (the technical term being “admissible") representation π can be

expressed as a restricted tensor product ⊗vπv, taken over all completions

Fv of F, where πv is a representation of the group GLn(Fv). An important

subclass of these “local" representations, referred to as unramified repre-

sentations, are parametrized by conjugacy classes in GLn(C). For a given

π, all but finitely many πv are unramified in this sense. Hence any automor-

phic representation gives rise to a collection of conjugacy classes σv(π) in

GLn(C) indexed by the primes v of F (outside a finite set of exceptions).

The σv(π) are called the Langlands parameters associated to π. The L-

function attached to π, denoted L(π, s), is now defined in the same way

as the L-function of a Galois representation, but with Frobenius elements

replaced by the classes σv(π). One of the predictions of the Langlands

conjecture is that, for any n-dimensional Galois representation ρ, there is

an automorphic representation πρ of GLn(F) with L(ρ, s) = L(πρ, s). For

such π = πρ, the Langlands parameters σv(π) should therefore display

the same sort of coherence as that which is satisfied by the Frobenius

elements σv of a Galois representation.

The category of Galois representations of GF is equipped with the stan-

dard panoply of linear algebra constructions (duality, as well tensor, sym-

metric and alternating products) making it possible to build new represen-

tations from old ones. A consequence of functoriality (and this is the way in

which functoriality is often exploited in representation theory) is that these

constructions should have counterparts on the automorphic side. Such
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predictions “arising from number theory" are often highly non-trivial, yield-

ing surprising and deep insights into the behaviour of automorphic repre-

sentations. (The information can also go in the other direction, as in the

proof of the Shimura-Taniyama conjecture and Fermat’s Last Theorem,

or, even more germane to the present review, the recent progress on the

Sato-Tate conjecture.)

There are many ways in which n-dimensional `-adic representations

can arise in number theory, typically by considering the étale cohomol-

ogy groups of varieties over number fields. After the Galois representation

ρE of (1), the most natural example is perhaps the n-th symmetric power

of ρE. This is an (n + 1)-dimensional representation of GQ, denoted

(3) Symn ρE : GQ −→ GLn+1(Q`).

The frobenius elements σ
(n)
p := Symn σp associated to this representation

have eigenvalues given by

λ(i)
p := αn−i

p βi
p, i = 0, 1, . . . , n.

The Langlands functoriality conjecture predicts that the representation (3)

should, as in the case n = 1, be associated to an automorphic represen-

tation of GLn+1(Q). This conjecture implies in particular that the L-series

Ln(E, s) := L(Symn ρE, s) =
∏

p

n∏
i=0

(1 − λ(i)
p p−s)−1

admits a functional equation and an analytic continuation to the entire com-

plex plane.

It was already known from work of Gelbart and Jacquet that the Galois

representation Sym2 ρ is automorphic if ρ is any two-dimensional repre-

sentation of GF that is itself associated to an automorphic representation
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of GL2(F). The breakthrough of Kim and Shahidi is the corresponding

statement for the representations Sym3 ρ [KS] and Sym4 ρ [Kim].

When combined with the Shimura-Taniyama conjecture, the work of Kim

and Shahidi implies that the L-series L2(E, s), L3(E, s), and L4(E, s) admit

analytic continuations and functional equations of the standard type. (It

also implies, by a technique known as the Rankin-Selberg method, simi-

lar analyticity statements for the integers n ≤ 8, although the L-function

Ln(E, s) is not proved to arise from an automorphic form for n > 4.)

The basic idea for proving automorphy results of this type is first to relate

L-series like Ln(E, s) to the constant terms of certain Eisenstein series;

the analytic continuation and functional equation satisfied by the Eisen-

stein series can then be transferred to the constant term. This powerful

method for studying L-series was initiated by Langlands and developped

further by Shahidi, and it now goes under the name of the Langlands-

Shahidi method. A description of the Langlands-Shahidi method and its

use in proving the main results of [KS] and [Kim] is one of the goals of the

contribution [K] .

The Langlands-Shahidi method explained in [K] makes it possible to

prove that the L-series L(Symn ρ, s) (n = 2, 3, 4), as well as related

L-series obtained by twisting Symn ρ by automorphic representations of

lower dimension, behave (from the point of view of their functional equa-

tions and analytic properties) as if Symn ρ were automorphic. The mech-

anism for concluding that Symn ρE is in fact attached to an automorphic

form goes under the rubric of converse theorems.

The fundamental work of Hecke (recalled in Section 1 of [C] ) shows

that the L-series attached to classical cusp forms f on GL(2) have analytic

continuations and satisfy functional equations of a standard type as well as

being bounded in vertical strips. Let us call an L-series nice if it satisfies
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these properties. Hecke’s theory shows that the L-series obtained from

the twists of f by one-dimensional characters are also nice. (We will not go

into the precise definition of “nice", or of of twisting, as this would take us

too far afield.)

Weil proved a kind of converse to Hecke’s statement by showing that

if the L-series attached to an admissible representation f of GL2(Q) and

sufficiently many of its twists are nice, then f is is in fact automorphic.

Converse theorems have been extended to representations of GLn(F) and

are the main topic discussed in [C] .

Knowing that the representations in (3) are automorphic, and hence that

the L-series Ln(E, s) possess analytic continuations at s = 1, has impor-

tant applications to the analytic number theory of elliptic curves, which are

discussed in Ram Murty’s contribution [M] . One of the most striking is to

the Sato-Tate conjectures, which predicts that (when the elliptic curve E

has only the obvious endomorphisms by Z) the complex numbers αp/
√

p

attached to E are distributed on the unit circle according to a specific den-

sity function, the Sato-Tate distribution. More precisely, the arguments of

αp should be equidistributed on the interval [0, π] according to the density

function 2
π

sin2 θdθ. The first Section of [M] explains why the analyticity

and non-vanishing of Ln(E, s) at s = 1 (for all n) implies the Sato-Tate

conjecture for E.

The Sato-Tate conjecture (for a fixed elliptic curve E) would follow from

a proof of Langlands Functoriality for all Symn ρ, yielding the analyticity

of Ln(E, s) for all n. The result of Kim and Shahidi carries out this pro-

gram for n = 3 and 4, and can be viewed as a significant step towards

understanding the Sato-Tate conjecture.
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A few months ago, the preprint [Ta], completing the program initiated

in [CHT] and [HSBT], succeeded in showing (for a large class of ellip-

tic curves E, essentially those having non-integral j-invariant) the analytic

continuation of the L-series Ln(E, s) for all n, thereby proving the Sato-

Tate conjecture for these E! The proof adapts the methods of [W] and

[TW] to the setting of the representations Symn ρE. The final result is less

precise than the results of Kim and Shahidi for n = 3 and 4, since it only

esablishes potential modularity of the representations Symn ρE: namely,

that after restricting Symn ρE to the Galois group of some totally real field

F (which could depend a priori on n) the corresponding L-series is at-

tached to an automorphic form on GLn(F). However, even this cruder form

of Langlands functoriality is enough to establish the Sato-Tate conjecture,

and represents another spectacular success to emerge from the circle of

ideas surrounding the “Langlands program".

In conclusion, [CKM] will be valuable both as a reference or textbook for

researchers and students interested in a vibrant area of modern mathemat-

ics at the intersection of representation theory and number theory which

has witnessed a tremendous amount of recent progress.
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