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Preface

This book arose out of course notes for a fourth year undergraduate/first
year graduate course that I taught at Carleton University. The goal was to
present group representation theory at a level that is accessible to students
who have not yet studied module theory and who are unfamiliar with tensor
products. For this reason, the Wedderburn theory of semisimple algebras is
completely avoided. Instead, I have opted for a Fourier analysis approach.
This sort of approach is normally taken in books with a more analytic flavor;
such books, however, invariably contain material on representations of com-
pact groups, something that I would also consider beyond the scope of an
undergraduate text. So here I have done my best to blend the analytic and
the algebraic viewpoints in order to keep things accessible. For example,
Frobenius reciprocity is treated from a character point of view to evade use
of the tensor product.

The only background required for this book is a basic knowledge of linear
algebra and group theory, as well as familiarity with the definition of a ring.
The proof of Burnside’s theorem makes use of a small amount of Galois
theory (up to the fundamental theorem) and so should be skipped if used
in a course for which Galois theory is not a prerequisite. Many things are
proved in more detail than one would normally expect in a textbook; this
was done to make things easier on undergraduates trying to learn what is
usually considered graduate level material.

The main topics covered in this book include: character theory; the
group algebra; Burnside’s pg-theorem and the dimension theorem; permu-
tation representations; induced representations and Mackey’s theorem; and
the representation theory of the symmetric group.

It should be possible to present this material in a one semester course.
Chapters 2-5 should be read by everybody; it covers the basic character
theory of finite groups. The first two sections of Chapter 6 are also rec-
ommended for all readers; the reader who is less comfortable with Galois
theory can then skip the last section and move on to Chapter 7 on permu-
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tation representations, which is needed for Chapters 8-10. Chapter 10, on
the representation theory of the symmetric group, can be read immediately
after Chapter 7.

Although this book is envisioned as a text for an advanced undergraduate
or introductory graduate level course, it is also intended to be of use for
mathematicians who may not be algebraists, but need group representation
theory for their work.

When preparing this book I have relied on a number of classical refer-
ences on representation theory, including [2-4,6,9,13,14]. For the represen-
tation theory of the symmetric group I have drawn from [4,7,8,10-12]; the
approach is due to James [11]. Good references for applications of represen-
tation theory to computing eigenvalues of graphs and random walks are [3,4].
Discrete Fourier analysis and its applications can be found in [1,4].
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Chapter 1

Introduction

The representation theory of finite groups is a subject going back to the
late eighteen hundreds. The earliest pioneers in the subject were Frobenius,
Schur and Burnside. Modern approaches tend to make heavy use of module
theory and the Wedderburn theory of semisimple algebras. But the original
approach, which nowadays can be thought of as via discrete Fourier analysis,
is much more easily accessible and can be presented, for instance, in an
undergraduate course. The aim of this textbook is to exposit the essential
ingredients of the representation theory of finite groups over the complex
numbers assuming only linear algebra and undergraduate group theory, and
perhaps a minimal familiarity with ring theory.

The original purpose of representation theory was to serve as a powerful
tool for obtaining information about finite groups via the methods of linear
algebra, such as eigenvalues, inner product spaces and diagonalization. The
first major triumph of representation theory was Burnside’s pg-theorem,
which states that a non-abelian group of order p%q® with p, ¢ prime cannot
be simple, or equivalently, that every finite group of order p®¢® with p,q
prime is solvable. Representation theory went on to play an indispensable
role in the classification of finite simple groups.

However, representation theory is much more than just a means to study
the structure of finite groups. It is also a fundamental tool with applications
to many areas of mathematics and statistics, both pure and applied. For
instance, sound compression is very much based on the fast Fourier trans-
form for finite abelian groups. Fourier analysis on finite groups also plays an
important role in probability and statistics, especially in the study of ran-
dom walks on groups, such as card-shuffling and diffusion processes [1,4],
and in the analysis of data [5]. Applications of representation theory to
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graph theory, and in particular to the construction of expander graphs, can
be found in [3]. Some applications along these lines, especially toward the
computation of eigenvalues of Cayley graphs, is given in this text.



Chapter 2

Review of Linear Algebra

This chapter reviews the linear algebra that we shall assume throughout
this text. In this book all vector spaces considered will be finite dimensional
over the field C of complex numbers.

2.1

Notation

This section introduces our standing notation.

If X is a set of vectors, then CX = Span X.

M (C) = {m x n matrices with entries in C}.

M, (C) = My, (C).

Hom(V,W)={A: V — W | Ais a linear map}.
End(V) = Hom(V, V) (the endomorphism ring of V).

GL(V)={A € End(V) | A is invertible} (known as the general linear
group of V).

GL,(C)={A € M,(C) | A is invertible}.
C* =C\ {0}.

Zn =10,...,n—1}.
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Throughout we will abuse the distinction between GL(C") and G L, (C)
by identifying an invertible transformation with its matrix with respect to
the standard basis {e1,...,e,}. Suppose dim V' = n and dim W = m. Then:

End(V) = M, (C);
GL(V) = GLn(C);
Hom(V, W) = M,,,,(C).

Notice that GL;(C) = C* and so we shall always work with the latter.
We indicate W is a subspace of V by writing W < V.

2.2 Complex inner product spaces

An inner produczﬂ on Visamap (-,-): V x V — C such that:
(a) (v, crwy + cowe) = c1 (v, wy) + ca(v, wa);
(b) (w,v) = (v, w);
(¢) (v,v) >0 and (v,v) =0 if and only if v = 0.

A vector space equipped with an inner product is called an inner product
space. The norm ||v|| of a vector v in an inner product space is defined by

[0l = v/ (v, v).

Example 2.2.1. The standard inner product on C" is given by

(a1, an), (b, ..y b)) = > @i,
=1

Recall that two vectors v, w in an inner product space V are said to be
orthogonal if (v,w) = 0. A subset of V' is called orthogonal if the elements
of V are pairwise orthogonal. If in addition, the norm of each vector is 1,
the set is termed orthonormal. An orthogonal set of non-zero vectors is
always linearly independent, in particular any orthonormal set is linearly
independent. If {ej,...,e,} is an orthonormal basis for an inner product
space V and v € V, then v = (e1,v)e; + -+ + (e, v)en.

1Our choice to make the second variable linear is typical in physics; many mathemati-
cians use the opposite convention.
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Example 2.2.2. For a finite set X, the set C* = {f: X — C} is a vector
space with pointwise operations. Namely, one defines

(f +9)(x) = f(z) + 9(2);
(cf)(x) = cf (x).

For each x € X, define a function §,: X — C by

so={y

There is a natural inner product on CX given by

(f.9) = fla)g().

zeX

The set {0, | = € X} is an orthonormal basis with respect to this inner
product. If f € CX, then its unique expression as a linear combination of
the 4, is given by

=" f(z)ds.

reX

Consequently, dim CX = | X]|.

If Wi, Wy <V, then Wy + Wy = {w1 + wo ’ wy € Wi, wy € Wg}. This is
the smallest subspace containing Wy and Wa. If in addition W3 N Wy = {0},
then W7 + Wy is called a direct sum, written Wy & Ws. As vector spaces,
Wi & Wy =2 Wi x Ws. In fact, if V and W are any two vector spaces, one
can form their external direct sum by setting V & W =V x W. Note that

dim(W1 ) WQ) = dim W7 + dim Ws.

More precisely, if By is a basis for W7 and Bs is a basis for Ws, then B1 U B>
is a basis for W7 @ Whs.

Direct sum decompositions are easy to obtain in inner product spaces.
If W <V, then the orthogonal complement of W is the subspace

Wt ={veV|(wuw) =0 forall we W}.

Proposition 2.2.3. If V is an inner product space and W <V, then there
results a direct sum decomposition V=W & W=,
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Proof. First, if w € W N W then (w,w) = 0 implies w = 0; so WNW+ =
{0}. Let projy : V. — W be the orthogonal projection to W. Then, for
v € V, we have projy, (v) € W, v — projy, (v) € W+ and

v = projy (v) + (v — projy (v)).
This completes the proof. O

A linear map U € GL(V) is said to be unitary if (Uv, Uw) = (v, w) for
all v,w € V. The set U(V) of unitary maps is a subgroup of GL(V).

Example 2.2.4. If U = (u;;), then U* is the conjugate transpose of U, i.e.,
U* = (uj;). For the standard inner product on C", U € GL,(C) is unitary
if and only if U~! = U*. We denote by U, (C) the set of all n x n unitary
matrices. A matrix A € M, (C) is called self-adjoint if A* = A.

2.3 Further notions from linear algebra

If X C End(V) and W <V, then W is called X -invariant if, for any A € X
and any w € W, one has Aw € W, ie, XW CW.

A key example comes from the theory of eigenvalues and eigenvectors.
Recall that A € C is an eigenvalue of A € End(V') if AT — A is not invertible;
in other words, if Av = A\v for some v # 0. The eigenspace corresponding to
A is the set V) = {v € V | Av = M}, which is a subspace of V. Note that
if v € Vy, then A(Av) = A(Av) = MAv, so Av € V. Thus V) is A-invariant.
Conversely, if W <V is A-invariant with dim W =1 (that is, W is a line),
then W C V) for some A. In fact, if w € W\ {0}, then {w} is a basis for
W. Since Aw € W, we have that Aw = Aw for some A € C. So w is an
eigenvector with eigenvalue A, whence w € Vy; thus W C V.

Recall that the characteristic polynomial pa(x) of a linear operator A
on an n-dimensional vector space V' is given by pa(z) = det(xI — A). This
is a monic polynomial of degree n and the roots of pa(z) are exactly the
eigenvalues of A.

Theorem 2.3.1 (Cayley-Hamilton). Let pa(x) be the characteristic poly-
nomial of A. Then pa(A) = 0.

If A € End(V), the minimal polynomial of A, denoted ma(zx), is the
smallest degree monic polynomial f(x) such that f(A) = 0.

Fact 2.3.2. If q(A) =0 then ma(z) | q(z).
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Proof. Write g(x) = ma(x)f(x)+ r(x) with either r(x) = 0, or deg(r(z)) <
deg(ma(x)). Then

0 = q(A) = ma(A)f(A) +r(4) = r(A).
By minimality of m(z), we conclude that r(z) = 0. O

Corollary 2.3.3. If pa(z) is the characteristic polynomial of A, then m4(x)
divides pa(x).

The relevance of the minimal polynomial is that it provides a criterion
for diagonalizability of a matrix, amongst other things.

Theorem 2.3.4. A matric A € M,(C) is diagonalizable if and only if
ma(x) has no repeated roots.

Example 2.3.5. For the matrix

A=

S O W
o = O

0
0
1

ma(z) = (z — 1)(z — 3), whereas pa(z) = (z — 1)?(z — 3). On the other
hand, the matrix
11
p=lo

has mp(z) = (r — 1)? = pp(z) and so is not diagonalizable.

One of the main results from linear algebra is the spectral theorem for
matrices.

Theorem 2.3.6 (Spectral Theorem). Let A € M, (C) be self-adjoint. Then
there is a unitary matriz U € Uy, (C) such that UAU* is diagonal. Moreover,
the eigenvalues of A are real.

The trace of a matrix A = (a;;) is defined by
TI‘(A) = Z ;.
i=1

Some basic facts concerning the trace function Tr: M, (C) — C are that Tr is
linear and Tr(AB) = Tr(BA). Consequently Tr(PAP~!) = Tr(P~1PA) =
Tr(A). In particular, this shows that Tr(A) does not depend on the basis and
so if T' € End(V), then Tr(T") makes sense: choose any basis and compute
Tr of the associated matrix. Similar remarks apply to the determinant.



Chapter 3

Group Representations

The goal of group representation theory is to study groups via their actions
on vector spaces. Consideration of groups acting on sets leads to such impor-
tant results as the Sylow theorems. By acting on vector spaces even more
detailed information about a group can be obtained. This is the subject
of representation theory. As byproducts emerge Fourier analysis on finite
groups and the study of complex-valued functions on a group.

3.1 Basic definitions and first examples

An action of a group G on a set X is the same thing as a homomorphism
p: G — Sx, where Sx is the symmetric group on X. This motivates the
following definition.

Definition 3.1.1 (Representation). A representation of a group G is a ho-
momorphism ¢: G — GL(V) for some (finite-dimensional) non-zero vector
space V. The dimension of V is called the degree of .

We usually write ¢4 for ¢(g) and ¢4(v), or simply ¢g4v, for the action
of ¢, on v € V. Suppose that dim V = n. To a basis B for V, we can
associate a vector space isomorphism 7: V. — C™ by taking coordinates.
More precisely, if B = {b1,...,b,}, then T'(b;) = e; where ¢; is the i'" stan-
dard unit vector. We can then define a representation ¢: G — GL,(C) by
setting 1, = TgpgT_l for g € G. If B’ is another basis, we have another iso-
morphism S: V — C", and hence a representation ¢': G — GL,(C) given
by 1y = SpyS ~1. The representations 1) and v are related via the formula
W= ST 1 TS~ = (ST 1)y (ST1)~!. We want to think of ¢, ¢ and ¢/
as all being the same representation. This leads us to the important notion
of equivalence.
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Definition 3.1.2 (Equivalence). Two representations ¢: G — GL(V) and
Y: G — GL(W) are equivalent if there exists an isomorphism 7: V. — W
such that ¢, = T, T~ for all g € G, i.e., ¥, = T, for all g € G. In this
case, we write ¢ ~ 1. In pictures, we have that the diagram

Vv

SEE
WTW

g

commutes, meaning that either of the two ways of going from the upper left
to the lower right corner of the diagram give the same answer.

Example 3.1.3. Define ¢: Z, — GLy(C) by

__ [eos (%) —sin (22m)
I Lsin (25m)cos (B) ]

which is the matrix for rotation by 27rm/n, and ¢ : Z,, — GL2(C) by

2mmi 0
e n
@Z)ﬁ — [ 0 e 227717,] .

Then ¢ ~ 1. To see this, let

and so

Then direct computation shows

A1 7147&_1 i cos(zTrTm) —sing%Tm) T =1
Ym _2Z 1 4 2mm m
el T -
- 22 _6—22m1 ie—szl

1 2™ o ]
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The following representation of the symmetric group is very important.

Example 3.1.4 (Standard representation of S,,). Define ¢: S,, — GL,(C)
on basis elements by ¢, (e;) = e,(;). One obtains the matrix for ¢, by
permuting the rows of the identity matrix according to o. So, for instance,
when n = 3 we have

a2 = y P(123) =

S = O

1
0
0

= o O
O = O
= o O
O O =

Notice in Example that
Poler et t+en) =€) Feoe)+  Feom =€1+e2t - Fen

where the last equality holds since ¢ is a permutation and addition is com-
mutative. Thus C(e; + - - + €,,) is invariant under all the ¢, with o € Ss.
This leads to the following definition.

Definition 3.1.5 (G-invariant subspace). Let ¢: G — GL(V') be a repre-
sentation. A subspace W < V is G-invariant if, for all ¢ € G and w € W,
one has p,w € W.

For v from Example Ceq,Cey are both Z,-invariant and C? =
Cey @ Ceqy. This is the kind of situation we would like to always happen.

Definition 3.1.6 (Direct sum of representations). Suppose that represen-
tations o(1): G — GL(V}) and ¢®: G — GL(V,) are given. Then their
direct sum

cp(l) & g0(2): G — GL(Vy @ Va)

is given by
(go(l) ® (P(Q))g('ULUZ) = (<P§1)(’U1)a <P§2) (v2))-

Let’s try to understand direct sums in terms of matrices. Suppose that
o1 G — GL,(C) and ¢?: G — GL,(C) are representations. Then

oM @ o?: G = GLpin(C)

has block matrix form
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Example 3.1.7. Define o1 : Z,, — C* by ga(ml) = e%, and ¢ Z,, — C*
(2) o —2mim

by ¢’ =e  n . Then

2mim
e n 0
(90(1) @ 90(2))% = [ —27mim
0 e n

Since representations are a special kind of homomorphism, if a group G
is generated by a set X, then a representation ¢ of G is determined by its
values on X; of course, not any assignment of matrices to the generators
gives a valid representation!

Example 3.1.8. Let p: S35 — GL2(C) be specified on the generators (1 2)

and (1 2 3) by
-1 -1 -1 -1
Pa 2) = 0 1 y P(123) = 1 0

and let ¥: S3 — C* be defined by ¢, = 1. Then

-1 -1 0 -1 -1 0
(pOP)ay=10 1 0|, (p®Y)azy=|1 0 0
0 0 1 0 0 1

We shall see later that p & v is equivalent to the representation of S3 con-
sidered in Example |3.1.4

Let ¢: G — GL(V) be a representation. If W < V is a G-invariant
subspace, we may restrict ¢ to obtain a representation ¢|y : G — GL(W) by
setting (p|w)g(w) = @q(w) for w € W. Precisely because W is G-invariant,
we have pg4(w) € W. Sometime one says ¢|w is a subrepresentation of .
If Wi, Wy <V are G-invariant and V = Wy @& W, then one easily verifies
@~ @lw, ® elw,.

A particularly simple example of a representation is the trivial represen-
tation.

Example 3.1.9 (Trivial representation). The trivial representation of a
group G is the homomorphism ¢: G — C* given by ¢(g) =1 for all g € G.

If n > 1, then the representation p: G — GL,(C) given by p, = I all
g € G is not equivalent to the trivial representation; rather, it is equivalent
to the direct sum of n copies of the trivial representation.

In mathematics, it is often the case that one has some sort of unique
factorization into primes, or irreducibles. This is the case for representation
theory. The notion of irreducible is modeled on the notion of a simple group.



CHAPTER 3. GROUP REPRESENTATIONS 12
Definition 3.1.10 (Irreducible). A representation ¢: G — GL(V) is said
to be drreducible if the only G-invariant subspaces of V' are {0} and V.

Example 3.1.11. Any degree one representation ¢: G — C* is irreducible,
since C has no proper non-zero subspaces.

Table [3.1] exhibits some analogies between the concepts we have seen so
far with ones from Group Theory and Linear Algebra.

’ Groups \ Vector spaces \ Representations
subgroup subspace G-invariant subspace
simple group | one-dimensional subspace | irreducible representation
direct product direct sum direct sum
isomorphism isomorphism equivalence

Table 3.1: Analogies between groups, vector spaces and representations

If G = {1} is the trivial group and ¢: G — GL(V) is a representation,
then necessarily ¢7 = I. So a representation of the trivial group is the same
datum as a vector space. For the trivial group, a G-invariant subspace is
nothing more than a subspace. A representation of {1} is irreducible if and
only if it has degree one. So the middle column of the above table is a special
case of the third column.

Example 3.1.12. The representations from Example[3.1.3| are not irreduc-

ible. For instance,
1 —1
C [1] and C [ 1 }

are Zn-invariant subspaces for ¢, while the coordinate axes Ce; and Cey are
invariant subspaces for 1.

Not surprisingly, after the one-dimensional representations, the next eas-
iest class to analyze consists of the two-dimensional representations.

Example 3.1.13. The representation p: S3 — GL2(C) from Example
is irreducible.

Proof. Since dim C? = 2, any non-zero proper Ss-invariant subspace W
is one-dimensional. Let v be a non-zero vector in W; so W = Cv. Then
po(v) = v for some \ € C, since by Ss-invariance of W we have p,(v) €
W = Cuv. It follows that v must be an eigenvector for all the p,, o € S3.

Claim. p(1 2y and p(; 2 3) do not have a common eigenvector.
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Indeed, direct computation reveals p(; o) has eigenvalues 1 and —1 with

V_1=Ce and V3 = C [_1 . Clearly e; is not an eigenvector of p(1 3 3),

2

. 1 -1 Al -1 |1 —11 .
since pa23) |0l = | 1 |- S0, P123) | o | = |_1]"50 | is not an

eigenvector of p(; o 3). Thus p(; 9) and p(; 2 3y have no common eigenvector,
which implies that p is irreducible by the discussion above. O

Let us summarize as a proposition the idea underlying this example.

Proposition 3.1.14. If ¢: G — GL(V) is a representation of degree 2
(i.e., dimV = 2), then ¢ is irreducible if and only if there is no common
eigenvector v to all o4, with g € G.

Notice that this trick of using eigenvectors only works for degree 2 rep-
resentations.

Example 3.1.15. Let r be rotation by 7/2 and s be reflection over the
z-axis. These permutations generate the dihedral group Dy. Let the repre-
sentation ¢: Dy — GL2(C) be defined by

1= [5 S35

Then one can apply the proposition to check that ¢ is an irreducible repre-
sentation.

Our eventual goal is to show that each representation is equivalent to a
direct sum of irreducible representations. Let us define some terminology to
that effect.

Definition 3.1.16 (Completely reducible). Let G be a group. A representa-
tion p: G — GL(V) is said to be completely reducible if V.=V & Va®- - - BV,
where the V; are non-zero G-invariant subspaces and ¢|y; is irreducible for
alli=1,...,n.

n)

Equivalently, ¢ is completely reducible if ¢ ~ cp(l) &) g0(2) G- go(
where the ¢ are irreducible representations.

Definition 3.1.17 (Decomposable). We say that ¢ is decomposable if V =
V1 & Vo with V4, V5 non-zero G-invariant subspaces. Otherwise, V is called
indecomposable.
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If T:V — V is a linear transformation and B is a basis for V', then we
shall use [T'] 5 to denote the matrix for 7" in the basis B. Let ¢: G — GL(V)
be a decomposable representation, say with V = Vi @& Vo where Vi, V5 are
non-trivial G-invariant subspaces. Let ¢(¥) = @y.. Choose bases B and By
for V1 and Va, respectively. Then it follows from the definition of a direct
sum that B = By U By is a basis for V. Since V; is G-invariant, we have
@qg(B;) € V; = CB;. Thus we have in matrix form

_[leWle, 0
[(Pg]B = 0 B

[90(2)]32

and so ¢ ~ go(l) ® w(g)-

Complete reducibility is the analogue of diagonalizability in representa-
tion theory. Our goal is to show that any representation of a finite group is
completely reducible. To do this we show that any representation is either
irreducible or decomposable, and then proceed by induction on the degree.
First we must show that these notions depend only on the equivalence class
of a representation.

Lemma 3.1.18. Let p: G — GL(V) be equivalent to a decomposable rep-
resentation. Then ¢ is decomposable.

Proof. Let ¥: G — GL(W) be a decomposable representation with 1 ~ ¢
and T': V' — W a vector space isomorphism with ¢, =T 4ng. Suppose
that W7 and W5 are non-zero invariant subspaces of W with W = W7 @ Whs.
Since T is an equivalence we have

©
vV —s

\%

T iT

W Tg W
commutes, i.e., Ty, = ,T, all g € G. Let V; = T-Y(W) and Vp =
T~Y(W3). First we claim V = V; @ Va. Indeed, if v € V4 N Vs, then Tv €
Wi N Wy = {0} and so Tv = 0. But 7' is injective so this implies v = 0.
Next, if v € V, then Tv = w1 + wo some wy; € Wy and we € Wy. Then

v=T"tw +T  wy € Vi +Vo. Thus V =V; & Va.

Next we show that V;,V5 are G-invariant. If v € V;, then pv =
T_lngv. But T'v € W; implies ,Tv € W; since W; is G-invariant. There-
fore, we conclude that g 0 =T~ 1¢,Tv € T~ (W;) = V;, as required. O

Similarly, we have the following results, whose proofs we omit.
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Lemma 3.1.19. Let ¢: G — GL(V) be equivalent to an irreducible repre-
sentation. Then @ is irreducible.

Lemma 3.1.20. Let ¢: G — GL(V') be equivalent to a completely reducible
representation. Then ¢ is completely reducible.

3.2 Maschke’s theorem and complete reducibility

In order to effect direct sum decompositions of representations, we take
advantage of the tools of inner products and orthogonal decompositions.

Definition 3.2.1 (Unitary representation). Let V' be an inner product
space. A representation ¢: G — GL(V) is called unitary if ¢4 is unitary
for all g € G, i.e., (p4(v), pg(w)) = (v,w) for all v,w € W. In other words,
p: G—=UV).

Identifying GL;(C) with C*, we see that a complex number z is unitary
if and only if Z = 27!, that is 2z = 1. But this says exactly that |z| = 1, so
U1(C) is exactly the unit circle S! in C. Hence a one-dimensional unitary
representation is a homomorphism ¢: G — S*.

Example 3.2.2. Define ¢: R — S! by (t) = €*™. Then ¢ is a unitary
representation of R since ¢(t + s) = e2™(ts) = 2mite2mis — (1) p(s).

A crucial fact is that every indecomposable unitary representation is
irreducible as the following proposition shows.

Proposition 3.2.3. Let ¢: G — GL(V) be a unitary representation of a
group. Then o is either irreducible or decomposable.

Proof. Suppose ¢ is not irreducible. Then there is a non-zero proper G-
invariant subspace W of U. Its orthogonal complement W+ is then also
non-zero and V = W @ W+=. So it remains to prove that W+ is G-invariant.
If v e Wt and w € W, then

(w,0g(v))

(gog—l(w),gog—lgog(v)) (31)
<90g—1 (w>v U>
0

where (3.1]) follows since ¢ is unitary, (3.2) follows since @ 190, = 01 =1
and ({3.3)) follows since ¢ 1w € W, as W is G-invariant, and v € wt. O
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It turns out that for finite groups every representation is equivalent to a
unitary one. This is not true for infinite groups, as we shall see momentarily.

Proposition 3.2.4. FEvery representation of a finite group G is equivalent
to a unitary representation.

Proof. Let ¢: G — GL(V) be a representation where dim V' = n. Choose
a basis B for V, and let T: V — C" be the isomorphism taking coordi-
nates with respect to B. Then setting p, = Tp,T~!, for g € G, yields a
representation p: G — GL,(C) equivalent to ¢4. Let (-,-) be the standard
inner product on C". We define a new inner product (-,-) on C" using the
crucial “averaging trick.” It will be a frequent player throughout the course.
Without further ado, define

(v, w) ==§£:<pgv,pgﬂ».

geG

This summation over G of course requires that G is finite. It can be viewed
as a “smoothing” process.
Let us check that this is indeed an inner product. First we check:

(v, crws + caws) = 3 {pgv, pylerwr + cawn))
geG

= Z (c1{pgv, pgw1) + c2{pgv, pgw2))
geG

=a Z<nga pgwi) + C2 Z(ng, pgW2)

geG geqG

= c1(v,w1) + c2(v, wa).

Next we verify:

(w,v) = Z (pgw, pgv)

geG

Finally, observe that
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because each term (pgv, pgv) > 0. If (v,v) = 0, then

0= (pgv, pgv)

geG

which implies (pgv, pgv) = 0 for all g € G since we are adding non-negative
numbers. Hence 0 = (pjv,p1v) = (v,v), and so v = 0. We have now
established that (-,-) is an inner product.

To verify that the representation is unitary with respect to this inner
product, we compute

(pn0, prw) = > _{papn; pgpnt) = Y _{Pgnv, pgntv).
9€G geG

We now apply a change of variables, by setting z = gh. As g ranges over
all G, = ranges over all elements of G since if k € G, then when g = kh ™1,
x = k. Therefore,

(o, prw) = 3 (pu, pw) = (v, w),
zeG

This completes the proof. O

As a corollary we obtain that every indecomposable representation of a
finite group is irreducible.

Corollary 3.2.5. Let p: G — GL(V') be a representation of a finite group.
Then ¢ is either irreducible or decomposable.

Proof. By Proposition  is equivalent to a unitary representation p.
Proposition then implies that p is either irreducible or decomposable.
Lemmas [3.1.18 and [3.1.19| then yield that ¢ is either irreducible or decom-
posable, as was desired. ]

The following example shows that Corollary fails for infinite groups
and hence Proposition must also fail for infinite groups.

Example 3.2.6. We provide an example of an indecomposable representa-
tion of Z, which is not irreducible. Define ¢: Z — GL2(C) by

e =y -

It is straightforward to verify that ¢ is a homomorphism. The vector e; is an
eigenvector of ¢(n) for all n € Z and so Ce; is a Z-invariant subspace. This
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shows that ¢ is not irreducible. On the other hand, if ¢ were decomposable,
it would be equivalent to a direct sum of one-dimensional representations.
Such a representation is diagonal. But we saw in Example that ¢(1)
is not diagonalizable. It follows that ¢ is indecomposable.

Remark 3.2.7. Observe that any irreducible representation is indecompos-
able. The previous example shows that the converse fails.

The next theorem is the pinnacle of this chapter. Its proof is quite
analogous to the proof of the existence of a prime factorization of an integer
or of a factorization of polynomials into irreducibles.

Theorem 3.2.8 (Maschke). Every representation of a finite group is com-
pletely reducible.

Proof. Let ¢: G — GL(V) be a representation of a finite group G. The
proof proceeds by induction on the degree of ¢, that is dim V. If dimV =1,
then ¢ is irreducible since V' has no non-zero proper subspaces. Assume the
statement is true for dimV < n. Let ¢: G — GL(V) with dimV =n + 1.
If ¢ is irreducible, then we are done. Otherwise, ¢ is decomposable by
Corollary so V = V1 @V, where 0 # V1, Vs are G-invariant subspaces.
Since dim Vj,dim Vo < dim V/, by induction, ¢|y, and ¢|y, are completely
reducible. Therefore, V1 =U1 ®---®Us and Vo = W1 & --- & W, where the
U;, Wj are G-invariant and the subrepresentations ¢|y;, ¢|w, are irreducible
forall1 <i<s1<j<r. ThenV=U1®---UsdW1®---® W, and
hence ¢ is completely irreducible. O

Remark 3.2.9. If one follows the details of the proof carefully, one can verify
that if ¢ is a unitary matrix representation, then ¢ is equivalent to a direct
sum of irreducible unitary representations via an equivalence implemented
by a unitary matrix T'.

In conclusion if p: G — GL,(C) is any representation of a finite group,
then

0 (2)

e~ v
: - . 0
0 -~ 0 pm

where the ¢ are irreducible for all . This is analogous to the spectral
theorem stating that all self-adjoint matrices are diagonalizable.

There still remains the question as to whether the decomposition into
irreducible representations is unique. This will be resolved in the next chap-
ter.
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Exercises

Ezercise 3.1. Let ¢: Dy — GL2(C) be the representation given by
ik Nk
ky _ | 0 gy |0 (=9)
=l Sl e =2 G

where r is rotation counterclockwise by 7/2 and s is reflection over the
z-axis. Prove that ¢ is irreducible. You may assume ¢ is a representation.

FEzercise 3.2. Prove Lemma |3.1.19

Ezercise 3.3. Let ¢,19: G — C* be one-dimensional representations. Show
that ¢ is equivalent to ¢ if and only if ¢ = .

Ezercise 3.4. Let p: G — C* be a representation. Suppose g € G has order
n.

th

1. Show that ¢(g) is an n*"-root of unity (i.e. a solution to the equation

2" =1).
2. Construct n inequivalent one-dimensional representations Z, — C*.

3. Explain why your representations are the only possible one-dimensio-
nal representations.

Ezercise 3.5. Let ¢: G — GL(V) be a representation of a finite group G.
Define the fixed subspace

VO ={veV|pp=uVYgeG}
1. Show that V¢ is a G-invariant subspace.

2. Show that

1
@ Z PYRU € VG
heG

forallv e V.

3. Show that if v € V&, then

‘é’Zgohv—v.

heG

Ezercise 3.6. Let ¢: G — GL,(C) be a representation.
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1. Show that setting vy, = @, = (¢ij(g)) results in a representation
: G — GL,(C) called the conjugate representation. Provide an ex-
ample showing that ¢ and v do not have to be equivalent.

2. Let x: G — C* be a degree 1 representation of G. Define a map
©X: G — GL,(C) by g5 = x(g)pg. Show that ¢X is a representation.
Give an example showing that ¢ and X do not have to be equivalent.



Chapter 4

Character Theory and the
Orthogonality Relations

This chapter gets to the heart of group representation theory: the character
theory. In particular, we establish the various orthogonality relations and
use them to prove the uniqueness of the decomposition of a representation
into irreducibles. An application to graph theory is presented in this chapter.
In the next chapter, we use the results of this chapter to develop Fourier
analysis on finite groups.

4.1 Homomorphisms of representations

To proceed, we shall need a notion of homomorphism of representations.
The idea is the following. Let ¢: G — GL(V') be a representation. We can
think of elements of G as scalars via g-v = @4v for v € V. A homomorphism
between ¢: G — GL(V) and p: G — GL(W) should be a linear transfor-
mation T: V' — W such that T'gv = gTw for all g € G and v € V. Formally,
this means T'p,v = pgTv all v € V, ie., T, = p T for all g € G.

Definition 4.1.1 (Homomorphism). Let ¢: G — GL(V), p: G — GL(W)
be representations. A homomorphismﬂ from ¢ to p is by definition a linear

!Some authors use the term intertwiner for what we call homomorphism.

21
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map 1T': V — W such that T'p, = p,T" for all g € G, that is, the diagram

V@y

v
T iT
W——W

Pg
commutes for all g € G.

The set of all homomorphisms from ¢ to p is denoted Homg (¢, p). Notice
that Homg (¢, p) € Hom(V, W).

Remark 4.1.2. If T € Homg(¢p, p) is invertible, then ¢ ~ p and T is an
equivalence (or isomorphism).

Remark 4.1.3. Observe that T: V — V belongs to Homg (¢, ¢) if and only
if Ty = 4T for all g € G, i.e., T commutes with (or centralizes) ¢(G). In
particular, the identity map I: V — V is always an element of Homg (g, ¢).

As is typical for homomorphisms in algebra, the kernel and the image of

a homomorphism of representations are subrepresentations.

Proposition 4.1.4. Let T: V — W be in Homg(p,p). Then kerT is a
G-invariant subspace of V. and T(V) = ImT is a G-invariant subspace of

w.

Proof. Let v € kerT and g € G. Then T'p,v = p,Tv = 0 since v € kerT'.
Hence p4v € kerT. We conclude ker T' is G-invariant.

Now let w € ImT', say w = Tv with v € V. Then pyw = p,Tv = Tp,v €
Im T, establishing that Im 7" is G-invariant. O

The set of homomorphisms from ¢ to p has the additional structure of
a vector space, as the following proposition reveals.

Proposition 4.1.5. Let ¢: G — GL(V) and p: G — GL(W) be represen-
tations. Then Homg(p, p) is a subspace of Hom(V, W).

Proof. Let Th,T> € Homg(y, p) and ¢1,co € C. Then
(a1Th + c2To)pg = c1Tipg + c2Topg = cipgTh + capgTo = py(ciTh + c2Tv)

and hence ¢1T} 4 coT> € Homg (¢, p), as required. O
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Fundamental to all of representation theory is the important observation,
due to I. Schur, that roughly speaking homomorphisms between irreducible
representations are very limited. This is the first place that we seriously
use that we are working over the field of complex numbers and not the field
of real numbers. Namely, we use that every linear operator on a finite-
dimensional complex vector space has an eigenvalue. This is a consequence
of the fact that every polynomial over C has a root, in particular the char-
acteristic polynomial of the operator has a root.

Lemma 4.1.6 (Schur’s lemma). Let ¢, p be irreducible representations of G,
and T € Homg (@, p). Then either T is invertible or T = 0. Consequently:

(a) If ¢ # p, then Homg(p,p) = 0;

(b) If p = p, then T = X with A € C (i.e., T is a scalar matriz).

Proof. Let ¢: G — GL(V), p: G — GL(W), and let T: V. — W be in
Homg(p, p). If T' = 0, we are done; so assume that 7' # 0. Proposition
implies that kerT is G-invariant and hence either kerT = V or kerT' =
0. Since T # 0, the former does not happen; thus kerT = 0 and so T
is injective. Also, according to Proposition ImT is G-invariant, so
ImT =W or ImT = 0. If ImT = 0 then again 7" = 0. So it must be
ImT = W, that is, T is surjective. We conclude that T is invertible.

For (a), assume Homg(p,p) # 0. That means there exists 7' # 0 in
Homg (o, p). Then T is invertible, by the above, and so ¢ ~ p. This is the
contrapositive of what we wanted to show.

To establish (b), let A be an eigenvalue of T' (here is where we use that we
are working over C and not R). Then AI — T is not invertible by definition
of an eigenvalue. Since I € Homg(p, ), Proposition tells us that
A — T belongs to Homg (g, ¢). Since all non-zero elements of Home (¢, )
are invertible by the first paragraph of the proof, it follows \I — T = 0. Of
course this is the same as saying T' = AI. O

Remark 4.1.7. It is not hard to deduce from Schur’s lemma that if ¢ and p
are equivalent irreducible representations, then dim Homg(¢, p) = 1.
We are now in a position to describe the irreducible representations of

an abelian group.

Corollary 4.1.8. Let G be an abelian group. Then any irreducible repre-
sentation of G has degree one.
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Proof. Let ¢: G — GL(V) be an irreducible representation. Fix for the
moment h € G. Then setting T = ¢y, we obtain, for all g € G, that

Tpg = orpg = Phg = Pgh = Pgpn = pgT.

Consequently, Schur’s lemma implies pp = ApI for some scalar A\, € C (the
subscript indicates the dependence on h). Let v be a non-zero vector in V'
and k € C. Then ¢p(kv) = ApIlkv = Apkv € Cv. Thus Cv is a G-invariant
subspace, as h was arbitrary. We conclude that V' = Cwv by irreducibility
and so dimV = 1. 0

Let us present some applications of this result to linear algebra.

Corollary 4.1.9. Let G be a finite abelian group and ¢: G — GL,(C) a
representation. Then there is an invertible matriz T such that T 1p,T is
diagonal for all g € G (T is independent of g).

Proof. Since ¢ is completely reducible, we have that ¢ ~ 1) @ .. @ (™)
where oM., (™) are irreducible. Since G is abelian, the degree of each
¢©® is 1 (and hence n = m). Consequently, gogi) € C* for all g € G. Now if
T: C" — C" gives the equivalence of ¢ with ¢ @ --- @ (™ then

(pgl) 0O --- 0
(2)
Ty = 0 5
. . 0
0 0 oy
is diagonal for all g € G. O

As a corollary, we obtain the diagonalizability of matrices of finite order.

Corollary 4.1.10. Let A € GL,,(C) be a matriz of finite order. Then A is
diagonalizable. Moreover, if A" = I, then the eigenvalues of A are nt"-roots
of unity.

Proof. Suppose A" = I. Define a representation ¢: Z, — GL,,,(C) by

setting (k) = A¥. This is easily verified to give a well-defined representation
since A" = I. Thus there exists T € GL,(C) such that T~1AT is diagonal

by Corollary [£.1.9] Suppose
M 0 - 0

r-iar— |0 M
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Then
D" = (T7AT)" =T A" T =T IT = I

Therefore, we have

N0 -0
0 A3 _pr_g
: . -0
0 -~ 0 A
and so A} = 1 for all 7. This establishes that the eigenvalues of A are
nt'-roots of unity. O

4.2 The orthogonality relations

From this point onwards, the group G shall always be assumed finite. Let
¢: G — GLy(C) be a representation. Then ¢4 = (¢;;(g)) where ¢;;(g) € C,
1 <i,j < n. Thus there are n? functions ¢;;: G — C associated to ¢. What
can be said about the functions ¢;; when ¢ is irreducible and unitary? It
turns out that the functions of this sort form an orthogonal basis for C¢.

Definition 4.2.1 (Group algebra). Let G be a group and define
L(G)=C%={f|f: G—C}.

Then L(G) is an inner product space with addition and scalar multiplication
given by

(fr+ f2)(9) = filg) + f2(9)
(cf)(g) =c flg)

and with the inner product defined by

|G,Zf1

geG

(f1, f2) =

For reasons to become apparent later, L(G) is called the group algebra of G.

One of our goals in this chapter is to prove the following important result.
Recall that U, (C) is the group of n X n unitary matrices.

Theorem (Schur orthogonality relations). Suppose that p: G — Uy, (C) and
p: G — Un(C) are inequivalent irreducible unitary representations. Then:
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1. <pkf790’bj> :0;
1/n ifi=kandj=14{

0 else.

2. <80kéa<Pij> = {

The proof requires a lot of preparation. We begin with our second usage
of the “averaging trick.”

Proposition 4.2.2. Let ¢: G — GL(V) and p: G — GL(W) be represen-

tations and suppose that T:V — W is a linear transformation. Then:

1
(a) T = @ Z pg-1Tpy € Homea(yp, p)
geG

(b) If T € Homg(¢p, p), then T* =T.
(¢) The map P: Hom(V,W) — Homg(p, p) defined by P(T) = T* is an
onto linear map.
Proof. We verify (a) by a direct computation.

1
Thop = &P Zpg Ty = a7 > pg-1Togh. (4.1)
geG

The next step is to apply a change of variables x = gh. Since right multi-
plication by h is a permutation of G, as g varies over GG, so does x. Noting
that g*1 = haz~!, we conclude that the right hand side of (4.1 is equal to

1 |
,G| Z pha=1T0s = 1o > pnpa1 Ty = ar > pa1Tor = paT".

geG zeG

This proves T% € Homg(y, p).
To prove (b), notice that if "€ Homg/(¢p, p), then

1 1 1
Tﬁ:?Zpg,lmg:?ng,lpgT:?ZT—G\G|T T.
Gl =2 Gl 4= Gl 4= G|

Finally, for (c) we establish linearity by checking
P(eiTy + coTs) = (01T1 + coTh)f

Z pg-1(c1T1 + c2T)pg

e geG
=C1y 4 Z pg—1T1pg + 2= Z pg—1T204
|G| =2 G| =2

= ClTlﬁ + CQTQﬁ = Clp(Tl) + CQP(TQ).
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If T € Homg(i, p), then (b) implies T = T* = P(T) and so P is onto. [

The following variant of Schur’s lemma will be the form in which we
shall most commonly use it. It is based on the trivial observation that if I,
is the n x n identity matrix and A € C, then Tr(AI,,) = nA.

Proposition 4.2.3. Let ¢: G — GL(V), p: G — GL(W) be irreducible
representations of G and let T: V — W be a linear map. Then:

(a) If ¢ = p, then T* = 0;
Tr(T)

I.
deg

(b) If ¢ = p, then T* =

Proof. Assume first ¢ ~ p. Then Homg(p, p) = 0 by Schur’s lemma and
so T% = 0. Next suppose ¢ = p. By Schur’s lemma, T*% = A some \ € C.
Our goal is to solve for \. As T#: V — V, we have Tr(\) = \Tr(I) =

Tr(T*
Adim V = Adeg . It follows that 7% — )
degyp

On the other hand, we can also compute the trace directly from the
definition of T*. Using Tr(AB) = Tr(BA), we obtain

ZTr 1Tgg) = 15 ZT |g| Te(T) = Tr(T)
IgeG [l | 4= G|
Te(T
and so T% = re( )I , as required. ]
¥

If p: G — GL,(C) and p: G — GL,,(C) are representations, then
Hom(V, W) = Mp,,(C) and Homg(¢p, p) is a subspace of My,,(C). Hence
the map P from Proposition can be viewed as a linear transformation
P: Mpypn(C) = Mpyp(C). It would then be natural to compute the matrix
of P with respect to the standard basis for M,,,(C). It turns out that
when ¢ and p are unitary representations, the matrix for P has a special
form. Recall that the standard basis for M,,,(C) consists of the matrices
Er1, Era, ..., By, where Ejj is the m X n-matrix with 1 in position ij and
0 elsewhere. One then has (a;;) = _,; ai; Ei;.

The following lemma is a straightforward computation with the formula
for matrix multiplication.

Lemma 4.2.4. Let A € M, (C), B € My,s(C) and Ey; € Mpn(C). Then
the formula (AEy;B)e; = agpbij holds where A = (ai;) and B = (bsj).
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Proof. By definition

AEkz Zaéx Ekz Ty yj

But all terms in this sum are 0, except when z = k, y = ¢, in which case
one gets agb;;, as desired. ]

Example 4.2.5. This example illustrates Lemma [4.2.4}

air az| |0 1) tbir biz| _ |0 a1r| [bun biz| _ |aubar  anibao

az1 az| |0 O] [bar D22 0 a21| [ba1 D22 anibar  agibaa]|

Now we are prepared to compute the matrix of P with respect to the
standard basis. We state the result in the form in which we shall use it.

Lemma 4.2.6. Let ¢: G — U,(C) and p: G — Uy, (C) be unitary represen-
tations. Let A = Ey; € My (C). Then Agj = (pke, Pij)-

Proof. Since p is unitary, p,-1 = p; ' = pf. Thus pg(97") = pre(g). Keeping
this in mind, we compute

Zj |G‘ Z —lEkZQOQ)

geG

|G\ Zpgk Yeii(g) by Lemma [£.2.4]

geG
Z pké Soz]
geG

= Pkt %‘j)

as required. O

Remark 4.2.7. Let P: Myyn(C) — M, (C) be the linear transformation
given by P(T') = T* and let B be the matrix of P. Then B is an mn x mn
matrix whose rows and columns are indexed by pairs £7, ki where 1 < £,k <
m and 1 < 5,7 < n. The content of Lemma is that the £j, ki entry of
B is the inner product (pge, ij;)-

We can now prove the Schur orthogonality relations.

Theorem 4.2.8 (Schur orthogonality relations). Let ¢: G — U,(C) and
p: G — Upny(C) be inequivalent irreducible unitary representations. Then:
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1. <pkf790’bj> = 0;

1/n ifi=kandj="~4

0 else.

2. <90kea%'j> = {

Proof. For 1, let A = Ej; € Mp,,(C). Then A* = 0 by Proposition
On the other hand, Aﬁj = (pre, pij) by Lemma [4.2.6] This establishes 1.

Next, we apply Proposition and Lemma [£.2.6 with ¢ = p. Let
A = Ey; € M,(C). Then

_ Tr(Er)
o n

by Proposition Lemma shows that Agj = (@ke, ij). First sup-

pose that j # ¢. Then since Iy; = 0, it follows 0 = Agj = (@ke, pij). Next
suppose that ¢ # k. Then Fj; has only zeroes on the diagonal and so
Tr(Fg;) = 0. Thus we again have 0 = Agj = (@ke, pij). Finally, in the case
where ¢ = j and ¢ = k, Ej; has a single 1 on the diagonal and all other
entries are 0. Thus Tr(Ey;) =1 and so 1/n = Agj = (@i, pij). This proves
the theorem. O

Al I

A simple renormalization establishes:

Corollary 4.2.9. Let ¢ be an irreducible unitary representation of G of
degree d. Then the d* functions {\/ggoij |1 <i,j <d} form an orthonormal
set.

An important corollary of Theorem is that there are only finitely
many equivalence classes of irreducible representations of G. First recall
every equivalence class contains a unitary representation. Next, because
dim L(G) = |G|, no linearly independent set of vectors from L(G) can have
more than |G| elements. Theorem says that the entries of inequivalent
unitary representations of G form an orthogonal set of non-zero vectors in
L(G). It follows that G has at most |G| equivalence classes of irreducible rep-
resentations. In fact, if o), ... ©() are a complete set of representatives of
the equivalence classes of irreducible representations of G and d; = deg ¢,
then the d% + d% + -+ dg functions {\/ﬁcpgc) |1 <k <s,1<i,j<d}
form an orthonormal set of vectors in L(G) and hence s < d2+---+d? < |G|
(the first inequality holds since d; > 1 all 7). We summarize this discussion
in the following proposition.
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Proposition 4.2.10. Let G be a finite group. Let go(l), cee 4,0(5) be a com-
plete set of representatives of the equivalence classes of irreducible represen-
tations of G and set d; = deg ). Then the functions

k ..
(Ve 11 <k <s,1<4,j < dy}
form an orthonormal set in L(G) and hence s < d% +.+d2 <@

Later, we shall see that the second inequality in the proposition is in fact
an equality; the first one is only an equality for abelian groups.

4.3 Characters and class functions

In this section, we finally prove the uniqueness of the decomposition of a
representation into irreducible representations. The key ingredient is to
associate to each representation ¢ a function x,: G — C which encodes the
entire representation.

Definition 4.3.1 (Character). Let ¢: G — GL(V) be a representation.
The character x,: G — C of ¢ is defined by setting x,(g9) = Tr(pg). The
character of an irreducible representation is called an irreducible character.

So if ¢: G — GL,(C) is a representation given by ¢, = (¢i;(g)), then

Xe(9) = Z vii(9)-

In general, to compute the character one must choose a basis and so when
talking about characters, we may assume without loss of generality that we
are talking about matrix representations.

Remark 4.3.2. If ¢: G — C* is a degree 1 representation, then x, = ¢.
From now on, we will not distinguish between a degree 1 representation and
its character.

The first piece of information that we shall read off the character is the
degree of the representation.

Proposition 4.3.3. Let ¢ be a representation of G. Then x,(1) = deg .

Proof. Indeed, suppose that ¢: G — GL(V) is a representation. Then
Tr(p1) = Tr(I) = dim V = deg . O
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A key property of the character is that it depends only on the equivalence
class of the representation.

Proposition 4.3.4. If ¢ and p are equivalent representations, then x, =
Xp-

Proof. Since the trace is computed by selecting a basis, we are able to as-
sume that ¢, p: G — GL,(C). Then, since they are equivalent, there is
an invertible matrix T € GL,(C) such that ¢, = Tp,T !, for all g € G.
Recalling Tr(AB) = Tr(BA), we obtain

Xe(9) = Tr(pg) = Tr(Tp,T™") = Tr(T ™' Tpy) = Tr(pg) = X,(9)
as required. O

The same proof illuminates another crucial property of characters: they
are constant on conjugacy classes.

Proposition 4.3.5. Let ¢ be a representation of G. Then, for all g,h € G,
the equality x,(g) = xp(hgh™t) holds.

Proof. Indeed, we compute
Xeo(hgh™!) = Tr(ppgn-—1) = Tr(onpgey )
= Te(p;, "eng) = Tr(pg) = X (9)
again using Tr(AB) = Tr(BA). O

Functions which are constant on conjugacy classes play an important
role in representation theory and hence deserve a name of their own.

Definition 4.3.6 (Class function). A function f: G — C is called a class
function if f(g) = f(hgh™1) for all g, h € G, or equivalently, if f is constant
on conjugacy classes of G. The space of class functions is denoted Z(L(G)).

In particular, characters are class functions. The notation Z(L(G)) sug-
gests that the class functions should be the center of some ring, and this will
indeed be the case. If f: G — C is a class function and C' is a conjugacy
class, f(C) will denote the constant value that f takes on C.

Proposition 4.3.7. Z(L(G)) is a subspace of L(G).
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Proof. Let f1, fo be class functions on GG and let ¢1,co € C. Then

(c1fr + cafo)(hgh™) = c1 fi(hgh™) + cafo(hgh™)
= c1f1(g) + caf2(g) = (c1f1 + caf2)(g)

showing that c; fi 4+ caf2 is a class function. ]

Next, let’s compute the dimension of Z(L(G)). Let Cl(G) be the set of
conjugacy classes of G. Define, for C' € CI(G), the function dc: G — C by

dolg) = {(1) z Z g

Proposition 4.3.8. The set B = {dc | C € CI(G)} is a basis for Z(L(Q)).
Consequently dim Z(L(G)) = |Cl(G)|.

Proof. Clearly dc is constant on conjugacy classes, and hence is a class
function. Let us begin by showing that B spans Z(L(G)). If f € Z(L(Q)),
then one easily verifies that

f=Y flCc.

CeCl(G)

Indeed, if C’ is the conjugacy class of g, then when you evaluate the right
hand side at g you get f(C’). Since g € C’, by definition f(C’) = f(g).
To establish linear independence, we verify that B is an orthogonal set of
non-zero vectors. For if C,C" € CI(G), then

IC] _
1 — e Cc=C
=Y 0c(9)dcr(g) = { Gl

Gl =2 0 C#£C.

This completes the proof that B is a basis. Since |B| = |Cl(G)|, the calcu-
lation of the dimension follows. O]

The next theorem is one of the fundamental results in group represen-
tation theory. It shows that the irreducible characters form an orthonormal
set of class functions. This will be used to establish the uniqueness of the
decomposition of a representation into irreducible constituents and to obtain
a better bound on the number of equivalence classes of irreducible represen-
tations.
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Theorem 4.3.9 (First orthogonality relations). Let ¢, p be irreducible rep-
resentations of G. Then

1 e~p
(Xeor Xp) =
0 @ ~p.

Thus the irreducible characters of G form an orthonormal set of class func-
tions.

Proof. Thanks to Propositions and we may assume without loss
of generality that ¢: G — U,(C) and p: G — Up,(C) are unitary. Next we
compute

o) = 1 2 X9 (0)

geG
= ‘1| Z Z vii(9) Z pji(G)
geqG i=1 Jj=1
=33 S ulales ()
i=1 j=1 9eG
= Z Z<S%‘(9)a i (9))-
i=1 j=1

The Schur orthogonality relations (Theorem [4.2.8)) yield (vii(g), pj;i(g)) =0
if ¢ = p and s0 (X, Xp) = 0if @ = p. If ¢ ~ p, then we may assume ¢ = p
by Proposition [£.3.4] In this case, the Schur orthogonality relations tell us

(it @) = In i=j
Piiy Pjj) = 0 i ?é ]
and so
n n 1
(Xe» Xo) = Z(%’i,%’ﬁ = Z o= 1
i=1 i=1
as required. O

Corollary 4.3.10. There are at most |Cl(G)| equivalence classes of irre-
ducible representations of G.

Proof. First note that Theorem implies inequivalent irreducible repre-
sentations have distinct characters and, moreover, the irreducible characters
form an orthonormal set. Since dim Z(L(G)) = |Cl(G)| and orthonormal
sets are linearly independent, the corollary follows. ]
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Let us introduce some notation. If V' is a vector space, ¢ is a represen-
tation and m > 0, then we set

Xm Xm
mV =V - eVandmp=p&d ™ - &
Let oM, .., cp(s) be a complete set of irreducible unitary representations
of G, up to equivalence. Again, set d; = deg .
Definition 4.3.11 (Multiplicity). If p ~ mie™M @ mae® @ -« & myp®),
then m; is called the multiplicity of go(i) in p. If m; > 0, then we say that
0@ is an irreducible constituent of p.

It is not clear at the moment that the multiplicity is well defined because
we have not yet established the uniqueness of the decomposition of a repre-
sentation into irreducibles. To show that it is well defined, we come up with
a way to compute m; directly from the character of p. Since the character
only depends on the equivalence class, it follows that the multiplicity of gp(i)
will be the same no matter how we decompose p.

Remark 4.3.12. If p ~ m1o® @ map® & -+ @& myp®), then
deg p = mydy + mads + - - - + msds.
Lemma 4.3.13. Let o = p@ 1. Then x, = Xp + Xo-

Proof. We may assume that p: G — GL,,(C) and ¢: G — GL,,(C). Then
¢: G — GLptm(C) has block form

_|pg O }
Qg = .
! [0 Vg
Since the trace is the sum of the diagonal elements, it follows that

Xe(9) = Tr(pg) = Tr(pg) + Tr(vg) = Xx,(9) + xu(9)-
We conclude that x, = x, + Xy- O

The above lemma implies that each character is an integral linear com-
bination of irreducible characters. We can then use the orthonormality of
the irreducible characters to extract the coefficients.

Theorem 4.3.14. Let oV ... 0 be a complete set of representatives of
the equivalence classes of irreducible representations of G and let

Then m; = <X(p(i),Xp>. Consequently, the decomposition of p into irreducible
constituents is unique and p is determined up to equivalence by its character.
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Proof. By the previous lemma, x, = MIX 1) F 0+ MsX (o) - By the first
orthogonality relations

(X Xp) = M1 {X ), X)) + 7+ Mis(Xyp), Xopto)) = M,

proving the first statement. Proposition implies the second and third
statements. 0

Theorem [4.3.14] offers a convenient criterion to check whether a repre-
sentation is irreducible.

Corollary 4.3.15. A representation p is irreducible if and only if (xp, Xp) =
1.

Proof. Suppose p ~ mi1oM@&map@@- - -dmgp®). Using the orthonormality
of the irreducible characters, we obtain (x,,x,) = m3 + -+ m?2. The m;
are non-negative integers, so (x,, x,) = 1 if and only if there is an index j
so that m; = 1 and m; = 0 for ¢ # j. But this happens precisely if p is
irreducible. O

Let’s use Corollary to show that the representation from Exam-
ple|3.1.8)is irreducible.

Example 4.3.16. Let p be the representation of S3 from Example
Since Id, (1 2) and (1 2 3) form a complete set of representatives of the
conjugacy classes of S3, we can compute the inner product (x,, x,) from the
values of the character on these elements. Now x,(Id) = 2, x,((12)) =0
and x,((1 2 3)) = —1. Since there are 3 transpositions and 2 three-cycles,
we have

1
<Xanp> = 6 (22 +3-02+2- (_1)2) —1
and so p is irreducible.

Let us try to find all the irreducible characters of S3 and to decompose
the standard representation (c.f. Example [3.1.4)).

Example 4.3.17 (Characters of S3). We know that S5 admits the trivial
character x1: S3 — C* given by x1(c) = 1 for all 0 € S5 (recall we identify
a degree one representation with its character). We also have the character
x3 of the irreducible representation from Example [3.1.8] Since S5 has 3
conjugacy classes, we might hope that there are 3 inequivalent irreducible
representations of S3. From Proposition we know that if d is the
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degree of the missing representation, then 12 4+ d? +22 < 6 andso d = 1. In
fact, we can define a second degree one representation by

(o) 1 o is even
0’ =
X2 —1 o is odd

Let us form a table encoding this information (such a table is called
a character table). The rows of Table correspond to the irreducible
characters, whereas the columns correspond to the conjugacy classes.

Id|(12)|(123)
x1| 1 1 1
x2| 1| —1 1
X3 | 2 0 —1

Table 4.1: Character table of S3

The standard representation of Ss from Example [3.1.4] is given by the
matrices

10 0 0 1
0 0, vazgy=|1 00
1 0 10

Hence we have character values

Id[(12)](123)
Xo| 3] 1 0

Inspection of Tableshows that x, = x1+x3 and hence ¢ ~ x1®p, as was
advertised in Example Alternatively, one could use Theorem
to obtain this result. Indeed,

1
<X1,x¢>:6(3—|—3-1+2-0):1

<X27X¢>=%(3+3-(—1)+2-O):0

1
(X3, X¢) = 5 (6+3-0+2-0) = 1.

We will study the character table in detail later, in particular we shall
show that the columns are always pairwise orthogonal, as is the case in

Table {11
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4.4 The regular representation

Cayley’s theorem asserts that G is isomorphic to a subgroup of S,, where
n = |G|. The standard representation from Example provides a repre-
sentation ¢: S, — GL,(C). The restriction of this representation to G will
be called the regular representation of GG, although we will construct it in a
different way.

Let X be a finite set. We build synthetically a vector space with basis

X by setting
(CX:{Zczm]cme(C}.

reX
So CX consists of all formal linear combinations of elements of X. Two
elements )y a,x and )y b2 are declared to be equal if and only if
a, = by all x € X. Addition is given by

Z azx + Z byx = Z (az + by)x;

zeX rzeX zeX

scalar multiplication is defined similarly. We identify z € X with the linear
combination 1-z. Clearly X is a basis for CX. An inner product can be
defined on CX by setting

<Z 4z, Y bx:c> = Ggb,.

rzeX reX zeX

Definition 4.4.1 (Regular representation). Let G be a finite group. The
regular representation of G is the homomorphism L: G — GL(CG) defined

by
L, Z chh = Z chgh = Z Co15T, (4.2)

heG heG el

for ¢ € G (where the last equality comes from the change of variables x =
gh).

The L stands for “left.” Notice that on a basis element h € G, we
have Lyh = gh, i.e., Ly acts on the basis via left multiplication by g. The
formula in (4.2)) is then the usual formula for a linear operator acting on a
linear combination of basis vectors given the action on the basis. It follows
that Ly is a linear map for all g € G. The regular representation is never
irreducible when G is non-trivial, but it has the positive feature that it
contains all the irreducible representations of G as constituents. Let us first
prove that it is a representation.
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Proposition 4.4.2. The reqular representation is a unitary representation

of G.

Proof. We already pointed out the map L, is linear for g € G. Also if
g1,92 € G and h € G is a basis element of CG, then

L91L92h - Lg192h = g192h = L9192h

so L is a homomorphism. If we show that L, is unitary, it will then follow
L, is invertible and that L is a unitary representation. Now by (4.2)

<Lg > enh Ly Y khh> = <Z Co12T, > kg_lxa;> =Y Erigky 1,

heG heG zeG zeqG zeG
(4.3)
Setting y = g~ turns the right hand side of (4.3)) into
St~ { T S )
yeG yeG yeG
establishing that L, is unitary. O

Let’s next compute the character of L. It turns out to have a particularly
simple form.

Proposition 4.4.3. The character of the reqular representation L is given
by
G| g=1
L =
xL(9) { 0 g#1.

Proof. Let G = {g1,...,gn} where n = |G|. Then Lyg; = gg;. Thus if [L,]
is the matrix of L, with respect to the basis G with this ordering, then

1 gi=gg9;
Lglij =
[g]] {O else

_ 1 9=g9;"
0 else.

[Lglii = {1 9=1

0 else

In particular,
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from which we conclude

Gl g=1

XL<g>=Tr<Lg>={O o

as required. O

We now decompose the regular representation L into irreducible con-

stituents. Fix again a complete set {gp(l), ceey 4,0(5)} of inequivalent irreduci-
ble unitary representations of our finite group G and set d; = deg . For
convenience, we put y; = X (i) fori=1,...,s.

Theorem 4.4.4. Let L be the regular representation of G. Then the de-
composition
L~ d190(1) ® dQQD(Q) DD dsQD(S)

holds.

Proof. We compute

(x> XL)

‘G| ZX% XL

geG

1 —
= —xi(1)|G

gl
:deggo(i)

since x1,(g) = 0 for g # 1 and x (1) = |G|. This finishes the proof thanks
to Theorem [4.3.14] n

With this theorem, we may complete the line of investigation initiated
in this chapter.

Corollary 4.4.5. The formula |G| = d} +d3 + - - - + d? holds.

Proof. Since xr = di1x1 +daxa+ -+ dsxs by Theorem evaluating at
1 yields

G = xp(1) =dixa(1) + -+ +dsxs(1) = &t + -+ + 2

as required. O
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Consequently, we may infer that the matrix coefficients of irreducible
unitary representations form an orthogonal basis for the space of all func-
tions on G.

Theorem 4.4.6. The set B = {V/do)) | 1 <k < 5,1 <i,j < dy} is an
orthonormal basis for L(G).

Proof. We already know B is an orthonormal set by the orthogonality re-
lations (Theorem [4.2.8). Since |B| = d? + --- + d? = |G| = dim L(G), it
follows B is a basis. O

Next we show that xi,...,xs is an orthonormal basis for the space of
class functions.
Theorem 4.4.7. The set x1,...,Xxs is an orthonormal basis for Z(L(G)).

Proof. The first orthogonality relations (Theorem [4.3.9)) tell us that the
irreducible characters form an orthonormal set of class functions. We must
show that they span Z(L(G)) Let f € Z( (G)) By the previous theorem,

Z Cij SOZ]

3,5,k

for some cg?) € C where 1 < k <sand 1 <14,j < dg. Since f is a class
function, for any x € G, we have

ng zg)

gEG

ZZ o (g ag)

gEG z,] k

_Z zJ ’Z(’OW g xg)

1,7,k geG

=3l ‘G‘Zso Do E g ®)

1,79,k geG

B Z cw (px

7.]7

]

Yt
- w k)
57" deg w(

1
= c) Txla)
ik k
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This establishes that )
(k)
= c:.) —
f ;k i, Xk

is in the span of x1,..., Xxs, completing the proof that the irreducible char-
acters form an orthonormal basis for Z(L(G)). O

Corollary 4.4.8. The number of equivalence classes of irreducible repre-
sentations of G is the number of conjugacy classes of G.

Proof. The above theorem implies s = dim Z(L(G)) = |CI(G)]. O

Corollary 4.4.9. A finite group G is abelian if and only if it has |G| equiv-
alence classes of irreducible representations.

Proof. A finite group G is abelian if and only if |G| = |CI(G)|. O

Example 4.4.10 (Irreducible representations of Z,). Let w = €>™/". Define
Xk: Zp — C* by xx(m) = wk™ for 0 < k < n—1. Then xo,..., Xn_1 are
the distinct irreducible representations of Z,,.

The representation theoretic information about a finite group G can be
encoded in a matrix known as its character table.

Definition 4.4.11 (Character table). Let G be a finite group with irreduc-
ible characters x1,...,xs and conjugacy classes C,...,Cs. The character
table of G is the s x s matrix X with X;; = x;(C}). In other words, the
rows of X are indexed by the characters of G, the columns by the conju-
gacy classes of G and the ij-entry is the value of the i**-character on the

jt-conjugacy class.

The character table of S5 is recorded in Table while that of Z4 can
be found in Table 4.2l

0l 1123
x1]1] 1 1 1
xe|1|—-1| 1 |-1
xs|1l| ¢ |—-1] —2
X4 1] —2 | -1 7

Table 4.2: Character table of Z4

Notice that in both examples the columns are orthogonal with respect
to the standard inner product. Let’s prove that this is always the case.
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If g,h € G, then the inner product of the columns corresponding to their
S

conjugacy classes is Z Xi(g)xi(h).
i=1
Recall that if C' is a conjugacy class, then

dc(g) = {1 9€C

0 else.

The ¢ with C' € CI(G) form a basis for Z(L(G)), as do the irreducible char-
acters. It is natural to express the d¢ in terms of the irreducible characters.
This will yield the orthogonality of the columns of the character table.

Theorem 4.4.12 (Second orthogonality relations). Let C,C" be conjugacy
classes of G and let g € C and h € C'. Then

—~—— Gl/|lc] ¢=c'
> xil9)xi(h) = {
p— 0 C#C.
Consequently, the columns of the character table are orthogonal and hence

the character table is invertible.

Proof. Using that dc = Y7 (Xi,0c)Xi, we compute

s

dc(h) = (xis6c)xi(h)

=1

=3 LY a@e@)a(h)
|Gl
i=1

zeG

-y |g, S xe@xi(h)
=1

zeC
Cl ~——
O S~ o).
Gl =
Since the left hand side is 1 when h € C' and 0 otherwise, we conclude
~— Gl/|Ic] C=C"
i(g)xi(h) =
;x(g)x() {0 CC

as was required.

It now follows that the columns of the character table form an orthogonal
set of non-zero vectors and hence are linearly independent. This yields the
invertibility of the character table. O
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4.5 Representations of abelian groups

In this section, we compute the characters of an abelian group. Exam-
ple provides the characters of the group Z,. Since any finite abelian
group is a direct product of cyclic groups, all we need to know is how to
compute the characters of a direct product of abelian groups. Let us proceed
to the task at hand!

Proposition 4.5.1. Let G1,G2 be abelian groups. Let x1,...,Xm and
©1, .-, pn be the irreducible representations of G1,Ga, respectively. In par-
ticular, m = |G1| and n = |G2|. Then the functions a;j: G1 x Go — C* with
1<i1<m, 1< 5 <n given by

aij(g1,92) = Xxi(91)#;(92)
form a complete set of irreducible representations of G1 x Ga.

Proof. First we check that the a;; are homomorphisms. Indeed,

Oéij(gl,QQ)aij(gi,gé) = Xi(91)¢j(g2)Xi(gi)‘:@j(gé)
= xi(91)xi (9/1)903‘ (92)5(95)
= Xi(9191)¢;(9295)
= Qyj (919’17 9295)
= aij((91, 92) (91 93))-
Next we verify that a;; = oy, implies ¢ = k and j = ¢. For if this is the
case, then
xi(9) = @ij(g,1) = are(g,1) = xx(9)
and so i = k. Similarly, 7 = ¢. Since G x G has |G x Ga| = mn distinct

irreducible representations, it follows that the a;; with 1 <i<m,1<j<n
are all of them. O

Example 4.5.2. Let’s compute the character table of the Klein four group
Zo X Zs. The character table of Zsg is given in Table [£.3] and so for Zs X Zo

=

X1
X2

el =]

-1

Table 4.3: The character table of Zs

the character table is as in Table 4]
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(0,0) | (0,1) | (1,0) | (L, 1)
11 1 1 1 1
192 1 -1 1 —1
21 1 1 -1 -1
Q929 1 -1 -1 1

Table 4.4: The character table of Zy X Zo

Exercises

FEzercise 4.1. Let ¢: G — GL(V') be an irreducible representation. Let
Z(G)={a€G|ag=ga, Vg€ G}

be the center of G. Show that if a € Z(G), then p(a) = AI some A € C*.
Ezercise 4.2. Let sgn: S, — C* be the representation given by

(o) 1 o is even
sgn(o) =
& —1 o is odd.

Show that if x is the character of an irreducible representation of S, not
equivalent to sgn, then

Z sgn(o)x(o) = 0.

oES)

Ezercise 4.3. Let ¢: G — GL,(C) and p: G — GL,,(C) be representations.
Let V. = M;;»,(C) be the vector space of m x m-matrices over C. Define
7: G — GL(V) by 1,(A) = pgAgog where BT is the transpose of a matrix
B.

1. Show that 7 is a representation of G.

2. Show that
ToEre =Y pir(9)25e(9) Eij.
i?j

3. Prove that x-(9) = X,(9)Xxx(9). (Hint: you need to compute the
coefficient of Ejy in 74Ey, and add this up over all k, £.)

Ezxercise 4.4. Let a: S, — GL,(C) be the representation given by defining
Qo (€;) = ey(;) on the standard basis {e; ..., e,} for C".
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1. Show that x4 (o) is the number of fixed points of o, that is, the number
of elements k € {1,...,n} such that o(k) = k.

2. Show that if n = 3, then (xa, Xa) = 2 and hence « is not irreducible.

Ezercise 4.5. Let x be a non-trivial irreducible character of a finite group

G. Show that
> x(g) =0
geG

Ezercise 4.6. Let ¢: G — H be a surjective homomorphism and let ¢: H —

GL(V) be an irreducible representation. Prove that v o ¢ is an irreducible

representation of G.

Ezercise 4.7. Let G and G2 be finite groups and let G = G X G3. Suppose
p: Gi — GLp(C) and ¢: G2 — GL,(C) are representations. Let V =
M, (C) be the vector space of mxn-matrices over C. Define 7: G — GL(V)
)(A) = pg, Apl, where BT is the transpose of a matrix B.

by T(g1,95

1. Show that 7 is a representation of G.

2. Prove that x-(91,92) = Xp(91)Xx(92)-

3. Show that if p and ¢ are irreducible, then 7 is irreducible.

4. Prove that every irreducible representation of G1 X G2 can be obtained
in this way.

Ezercise 4.8. Let Q = {£1,+i, £, :l:ft} be the group of quaternions. The
key rules to know are that 92 = 2 = k? = ijk = —1.

1. Show that p: @ — GLy(C) defined by

p(il)—i[(ll (1)] p(ﬂ)-i[é 0.],

—1

. 0 1 - 0 4

p(£)) =+ [_1 0} ;o p(Ek) = [Z 0}

is an irreducible representation of (). Just verify that it is irreducible.

You may assume that it is a representation (although you should check
this on scrap paper for your own edification).

2. Find 4 inequivalent degree one representations of Q). Hint: N = {£1}
is a normal subgroup of Q and /N = Zg X Zs. Use this to obtain the
4 inequivalent representations of degree 1.
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3. Show that the conjugacy classes of Q are {1}, {—1}, {4}, {£7}, {£k}.
4. Write down the character table for Q.

Exercise 4.9. Let G be a group and let G’ be the commutator subgroup of
G. That is, G’ is the subgroup of G generated by all commutators [g, h] =
g 'h~'gh with g, h € G. You may take for granted the following facts that
are typically proved in a first course in group theory:

i. G’ is a normal subgroup of G.
ii. G/G’ is an abelian group.

iii. if N is a normal subgroup of G, then G/N is a abelian if and only if
G' C N.

Let ¢: G — G/G’ be the canonical homomorphism given by ¢(g9) = gG'.
Prove that every degree one representation p: G — C* is of the form ¢ o ¢
where 1: G/G" — C* is a degree one representation of the abelian group
G/G.

Ezercise 4.10. Show that if G is a finite group and g is a non-trivial element
of G, then there is an irreducible representation ¢ with ¢(g) # I.

Hint: Let L: G — GL(CG) be the regular representation. Show that L, #
1. Use the decomposition of L into irreducible representations to show that
g # I for some irreducible.



Chapter 5

Fourier Analysis on Finite
Groups

In this chapter we introduce an algebraic structure on L(G) coming from
the convolution product. The Fourier transform then permits us to analyze
this structure more clearly in terms of known rings. In particular, we prove
Wedderburn’s theorem for group algebras over the complex numbers. Due to
its applications in signal and image processing, Fourier analysis is one of the
most important aspects of mathematics. There are entire books dedicated
to Fourier analysis on finite groups. Unfortunately, we merely scratch the
surface of this rich theory in this text. In particular, the only application
that we give is to computing the eigenvalues of the adjacency matrix of a
Cayley graph of an abelian group.

5.1 Periodic functions on cyclic groups

We begin with the classical case of periodic functions on the integers.

Definition 5.1.1 (Periodic function). A function f: Z — C is said to be
periodic with period n if f(z) = f(z + n) for all x € Z.

Notice that if n is a period for f, then so is any multiple of n. It
is easy to see that periodic functions with period n are in bijection with
elements of L(Z,,), that is, functions f: Z, — C. Indeed, the definition of a
periodic function says precisely that f is constant on residue classes modulo
n. Now the irreducible characters form a basis for L(Z,) and are given in
Example It follows that if f: Z,, — C is a function, then

f: <X07f>X0+”'+<Xn—17f>X7l—1' (51)

47
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The Fourier transform encodes this information as a function.

Definition 5.1.2 (Fourier transform). Let f: Z, — C. Define the Fourier
transform f: Z, — C of f by

n—1

Fm) = nlxm, ) = e 2" (R)

k=0

It is immediate that the Fourier transform is a linear transformation
T: L(Zy) — L(Zy,) by the linearity of inner products in the second variable.

We can rewrite (5.1)) as:

Proposition 5.1.3 (Fourier inversion). The Fourier transform is invertible.
n—1

1 ~
More precisely, f = - Z fk)xk-
k=0

The Fourier transform on cyclic groups is used in signal and image pro-
cessing. The idea is that the values of f correspond to the wavelengths
associated to the wave function f. One sets to zero all sufficiently small val-
ues of f, thereby compressing the wave. To recover something close enough
to the original wave, as far as our eyes and ears are concerned, one applies
Fourier inversion.

5.2 The convolution product

We now introduce the convolution product on L(G), thereby explaining the
terminology group algebra for L(G).

Definition 5.2.1 (Convolution). Let G be a finite group and a,b € L(G).
Then the convolution a xb: G — C is defined by

ax*b(x) = Z a(zy Hb(y). (5.2)

yeG

Our eventual goal is to show that convolution gives L(G) the structure
of a ring. Before that, let us motivate the definition of convolution. To
each element g € G, we have associated the delta function d,. What could
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be more natural than to try and assign a multiplication * to L(G) so that
dg * O0p = Ogn? Let’s show that convolution has this property. Indeed

0g * Op(x Z(S (zy™ " )on(y
yeG
and the only non-zero term is when y = h and ¢ = 2y~' = zh™!, ie.,

x = gh. In this case, one gets 1, so we have proved:
Proposition 5.2.2. For g,h € G, dy * 0, = dgp. O
Now if a,b € L(G), then
= a(9)dg, b= b(g)d,
geG geG
so if L(G) were really a ring, then the distributive law would yield
axb= Z a(g)b(h)dg * 6y = Z a(g)b(h)dgh.
g,heG g9,heG

Applying the change of variables x = gh, y = h then gives us

a*b:Z Za(my_l)b(y) O

zeG \yeG

which is equivalent to the formula (5.2)). Another motivation for the defini-
tion of convolution comes from statistics; see Exercise

Theorem 5.2.3. The set L(G) is a ring with addition taken pointwise and
convolution as multiplication. Moreover, 01 is a multiplicative identity.

Proof. We will only verify that d; is the identity and the associativity of con-
volution. The remaining verifications that L(G) is a ring are straightforward
and will be left to the reader. Let a € L(G). Then

axdi(a) =3 alay o (y™) = alx)

yeG

since d1(y~!) = 0 except when y = 1. Similarly, §; * @ = a. This proves d;
is the identity.
For associativity, let a,b,c € L(G). Then

[(a*b)xc](x) = Z[a s b (xye(y Z Z a(zy™ 27 Hb(2)c(y). (5.3)

yeG yeG zeG
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We make the change of variables v = zy (and so y 'z~ ! =u~!, z = uy™1).

The right hand side of (5.3) then becomes

> > alwubluye(y) = Y alzut) Y bluyHe(y)

yeGueG ue@G yeG
= Z a(zu™ )b c|(u)
uelG

= [a * (bx*c)|(x)
completing the proof. O

It is now high time to justify the notation Z(L(G)) for the space of
class functions on G. Recall that the center Z(R) of a ring R consists of
all elements a € R such that ab = ba all b € R. For instance, the scalar
matrices form the center of M, (C).

Proposition 5.2.4. Z(L(Q)) is the center of L(G). That is, f: G — C is
a class function if and only if ax f = f xa for all a € L(QG).

Proof. Suppose first that f is a class function and let @ € L(G). Then
axf(z)=> al@y™)fly) = alay ") flayz™") (5.4)
yeG yeG

since f is a class function. Setting z = xy~! turns the right hand side of

(E4) into
> alz =2 f = fra()
zeG zeG

and hence a x f = f % a.
For the other direction, let f be in the center of L(G).

Claim. f(gh) = f(hg) for all g,h € G.

Proof of claim. Observe that

= flgy " )op-1(y) = f * 5-1(9)

yeG

=0p-1 5 f(9) =Y op-1(gy ) f (W) = f(hg)

yeG
since 8;-1(gy~!) is non-zero if and only if gy~! = h~1, that is, y = hg. O

To complete the proof, we note that by the claim f(ghg™!) = f(hg~'g) =
f(h), establishing that f is a class function. O
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5.3 Fourier analysis on finite abelian groups

In this section, we consider the case of abelian groups as the situation is much
simpler and frequently is sufficient for applications to signal processing and
number theory. In number theory, the groups of interest are usually Z,, and
7.

Let G = {g1,...,9n} be a finite abelian group. Then class functions on
G are the same thing as functions, that is L(G) = Z(L(G)). Therefore L(QG)
is a commutative ring. Let’s try to identify it (up to isomorphism) with a
known ring. We know that G has n = |G| irreducible characters x1, ..., xn
and that they form an orthonormal basis for L(G). The secret to analyzing
the ring structure on L(G) is the Fourier transform.

Definition 5.3.1 (Fourier transform). Let f: G — C be a complex-valued
function on G. Then the Fourier transform f: G — C is defined by

Fla) =nixi. £) = xi(9)f(9)-
geG
The complex numbers n(x;, f) are often called the Fourier coefficients of f.

Notice that the definition of the Fourier transform depends on an order-
ing of both G and the characters. For the case of G = Z,, there are natural
orderings for these, namely the ones used in Section

Example 5.3.2. If x; is an irreducible character of G, then

T0) = nlxinxi) = {” ‘=

0 else

by the orthogonality relations and so x; = ndg, -

Theorem 5.3.3 (Fourier inversion). If f € L(G), then
1 o -~
= n Z f(gi)xi-
=1

Proof. The proof is a straightforward computation:

n

F=> i f)xi = %an(i’f))(i = %Zf(gi)Xi
i=1 i=1

=1

as required. O
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Next we observe that the Fourier transform is a linear operator on L(G).

Proposition 5.3.4. The map T: L(G) — L(G) given by Tf = f belongs
to GL(L(G)).

Proof. By definition T'(c1 f1 + caf2) = 1 fl/-ljgfg. Now

o —

c1fi1+ 62f2(gi) = n<Xi7clf1 + 62f2>
= c1n{Xi, f1) + can(xi, f2)
= c1fi(g) + cafalgi)

and so ¢; fl/ﬁg fo= clfl —|—@f2, establishing that T is linear. Theorem
immediately implies T is injective and hence T is invertible. O

There are two ways to make L(G) into a ring: one way is to use convolu-
tion; the other is to use pointwise multiplication: (f-g)(z) = f(z)g(z). The
reader should observe that d; is the identity for convolution and that the
constant map to 1 is the identity for the pointwise product. The next theo-
rem shows that the Fourier transform gives an isomorphism between these
two ring structures, that is, it sends convolution to pointwise multiplication.

Theorem 5.3.5. The Fourier transform satisfies

—

axb=2a-b.

Consequently, the linear map T: L(G) — L(G) given by Tf = fprom'des a
ring isomorphism between (L(G),+,*) and (L(G),+, ).

Proof. We know by Proposition [5.3.4] that T' is an isomorphism of vector
spaces. Therefore, to show that 1t is a ring isomorphism it suffices to show
T(a*b) =Ta-Tb, that is a * 1% b=7a-b. Let us endeavor to do this.

a/*\b(gi) = n(xi, a * b)

ZXZ (axb)(x)

xEG

=Y xi(@) > alzyHb(y)

zeG yeG

= "b(y) Y xi@alzy™).

yeG zeG
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1

Changing variables, we put z = zy~" (and so z = zy). Then we obtain

axb(gs) = by) Y xilzy)a(z)

yeG zeG

=3 i) Y xi(z)alz)
yeq 2€G

- Z xi(2)a(z) Z xi()b(y)
zeG yed

::n<xha>‘n<th>

~

= a(g:)b(gi)
andso a*b=a- ?7\, as was required. O

Let us summarize what we have for the classical case of periodic functions
on Z.

Example 5.3.6 (Periodic functions on Z). Let f,g: Z — C have period n.
Their convolution is defined by

n—1
frglm) =" f(m—k)g(k).
k=0
The Fourier transform is then
n—1
f(m) _ ZB_szmk/nf(k?)-
k=0

The Fourier inversion theorem says that

The multiplication formula says that m = f g. In practice it is more
efficient to compute f - g and then apply Fourier inversion to obtain f * g
than to compute f x g directly thanks to the existence of the fast Fourier
transform.

The original Fourier transform was invented by Fourier in the continuous
context in the early 1800s to study the heat equation. For absolutely inte-
grable complex-valued functions f,g: R — C, their convolution is defined
by

frglz)= /Oo f(z —y)g(y)dy.
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@ (2)
NVAN

The Fourier transform of f is

fo = [ et sar

Fourier inversion says that
S . ~
f@) = [ e
—o0

Once again the multiplication rule f/*\g = f g holds.

5.4 An application to graph theory

A graph T consists of a set V' of vertices and a set F of unordered pairs of
elements of V', called edges. One often views graphs pictorially by selecting
a point for each vertex and drawing a line segment between two vertices
that form an edge.

For instance, if T' has vertex set V' = {1,2,3,4} and edge set F =
{{1,3},{2,3},{2,4},{3,4}}, then the picture is as in Figure

We shall only consider finite graphs in this section. One can usefully
encode a graph by its adjacency matrix.

Definition 5.4.1 (Adjacency matrix). Let I be a graph with vertex set
V = {vi,...,v,} and edge set E. Then the adjacency matrix A = (a;;) is
given by

0 else.

{1 {vi,vj} ekl
aij =

Example 5.4.2. For the graph in Figure the adjacency matrix is
010

A=

O = O O
—_ = O
=

1
1
0
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i
O—@

Figure 5.2: The Cayley Graph of Z4 with respect to {+1}

Notice that the adjacency matrix is always symmetric and hence diag-
onalizable with real eigenvalues by the spectral theorem for matrices. The
set of eigenvalues of A is called the spectrum of the graph. One can obtain
important information from the eigenvalues, such as the number of spanning
trees. Also one can verify that A is the number of paths of length n from
v; to vj. For a diagonalizable matrix, knowing the eigenvalues already gives
a lot of information about powers of the matrix. There is a whole area of
graph theory, called spectral graph theory, dedicated to studying graphs via
their eigenvalues. The adjacency matrix is also closely related to the study
of random walks on the graph.

A natural source of graphs, known as Cayley graphs, comes from group
theory. Representation theory affords us a means to analyze the eigenvalues
of Cayley graphs, at least for abelian groups.

Definition 5.4.3 (Cayley graph). Let G be a finite group. By a symmetric
subset of G, we mean a subset S C G such that:

e 1¢S5,
e s Simplies s~ € 9.

If S is a symmetric subset of GG, then the Cayley graph of G with respect to
S is the graph with vertex set G and with an edge {g,h} connecting g and
hif gh=' € S, or equivalently hg~' € S.

Remark 5.4.4. In this definition S can be empty, in which case the Cayley
graph has no edges. One can verify that the Cayley graph is connected (any
two vertices can be connected by a path) if and only if S generates G.

Example 5.4.5. Let G = Z4 and S = {4+1}. Then the Cayley graph of
G with respect to S is drawn in Figure [5.2 The adjacency matrix of this
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Figure 5.3: The Cayley graph of Zg with respect to {+1,+2}

Cayley graph is given by

01 01
1 010
01 01
1 010

Example 5.4.6. In this example we take G = Zg and S = {+1,+2}. The
resulting Cayley graph can be found in Figure [5.3l The adjacency matrix
of this graph is

— O R
=

0
1
1
0
1
1

— O~ O
— = O = = O
—_ O = = O

0 0

The graphs we have been considering are Cayley graphs of cyclic groups.
Such graphs have a special name.

Definition 5.4.7 (Circulant). A Cayley graph of Z, is a called a circulant
graph (on n vertices). The adjacency matrix of a circulant graph is called a
circulant matriz.

Our goal is to describe the eigenvalues of the Cayley graph of an abelian
group. First we need a lemma.

Lemma 5.4.8. Let G = {g1,...,9n} be an abelian group with irreducible
characters x1,...,xn and let a € L(G). Define the convolution operator
F: L(G) — L(G) by F(b) = axb. Then x; is an eigenvector of F with
eigenvalue a(g;) for all 1 < j < n. Consequently, F is a diagonalizable
operator.
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Proof. Using the distributivity of convolution over addition, it is easy to
verify that F' is linear. Next observe that

axx;=0a-X;=a-ndg,
where the last equality uses Example [5.3.2] Clearly, one has that

(@-nby,) (9 = {a(gj’" -

0 else

and so @ - nd,; = a(gj)ndy;. Applying the Fourier inversion theorem to
axx; = a(gj)ndy, and using that X; = ndy,, we obtain a * x; = a(g;)x;-
In other words, F(x;) = a(gj)x; and so x; is an eigenvector of F' with
eigenvalue a(g;).

Since x1i,...,Xn form an orthonormal basis of eigenvectors for F, it
follows that F'is diagonalizable. O

Lemma is the key ingredient to computing the eigenvalues of the
adjacency matrix of a Cayley graph of an abelian group. It only remains to
realize the adjacency matrix as the matrix of a convolution operator.

Theorem 5.4.9. Let G = {g1,...,9n} be an abelian group and S C G a
symmetric set. Let x1,...,Xn be the irreducible characters of G and let A
be the adjacency matriz of the Cayley graph of G with respect to S (using
this ordering for the elements of G). Then:

1. The eigenvalues of the adjacency matrixz A are the real numbers

A= xils)

SES

where 1 < i < n;

2. The corresponding orthonormal basis of eigenvectors is given by the
vectors {v1,...,v,} where v; = (xi(g1), .-, Xi(gn))T.

Proof. Let G = {g1,...,9n} and let 0g = > __g s be the characteristic (or
indicator) function of S; so
1 z€S
bs(x) = {

0 else.
Let F': L(G) — L(G) be the convolution operator
F(b) = (55 * b.



CHAPTER 5. FOURIER ANALYSIS ON FINITE GROUPS 58

Lemma [5.4.8] implies that the irreducible characters x; are eigenvectors of
F and that the corresponding eigenvalue is

35(g:) = nlxin0s) = > xi(@)ds(@) = Y _xil@) = Y xi(s) = A

zeG zeSs ses

where the penultimate equality is obtained by putting s = z~! and using
that degree one representations are unitary, whence x;(z~!) = x;(z), and
that S is symmetric.

It follows that if B is the basis {d4,,...,d4,} for L(G), then the ma-
trix [F]p of F with respect to this basis has eigenvalues Ai,..., A, and
eigenvectors vy, ..., v, (where the orthonormality of the v; follows from the
orthonormality of the x;). Therefore, it remains to prove that A = [F]p.

To this end we compute

F(0g,) = 05 % 0g; = Z(Ss *0g; = 2559]'
sesS seS

by Proposition Recalling that ([F] p);; is the coefficient of oy, in F'(d, ),
we conclude that

1 g; = sgj for some s € S

0 else
_ 1 gigj_l es
0 else

as required.
Finally, to verify that A; is real, we just observe that if s € S, then

either s = 571, and so x;(s) = xi(s7!) = xi(s) is real, or s # s71 € S and
x(s) + x(s71) = x(s) + x(s) is real. ]

Specializing to the case of circulant matrices, we obtain:

Corollary 5.4.10. Let A be a circulant matriz of degree n, say it is the
adjacency matrixz of the Cayley graph of Z, with respect to the symmetric
set S. Then the eigenvalues of A are

\p = Z eQm’k’s/n

ses
where k =0,...,n—1 and a corresponding basis of orthonormal eigenvectors
is given by vo, ..., vn—1 where v = (1, e2mik2/n ezmk(”*l)/”)T.
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Example 5.4.11. Let A be the adjacency matrix of the circulant graph in
Example Then the eigenvalues of A are A1, ..., \g where

A = ™R3 T mik/S L 2mik/3 4 o=2mik/3 — 9 cosk /3 4 2 cos 2mk /3
fork=1,...,6.

Remark 5.4.12. This approach can be generalized to non-abelian groups
provided the symmetric set S is closed under conjugation. For more on the
relationship between graph theory and representation theory, as well as the
related subject of random walks on graphs, see [1,3,4].

5.5 Fourier analysis on non-abelian groups

For a non-abelian group G, we have L(G) # Z(L(G)) and so L(G) is a
non-commutative ring. Therefore, we cannot find a Fourier transform that
turns convolution into pointwise multiplication (as pointwise multiplication
is commutative). Instead, we try to replace pointwise multiplication by
matrix multiplication. To achieve this, let us first recast the abelian case in
a different form.

Suppose G = {g1, ..., gn} is a finite abelian group with irreducible char-
acters xi,...,Xn- Lhen to each function f: G — C, we can associate its
vector of Fourier coefficients. That is, we define T': L(G) — C" by

o~ o~ -~

Tf=(nxy, f)nlxe, [ nlxn, 1)) = (f(91), f(g2), - - fgn))-

The map T'is injective by the Fourier inversion theorem since we can recover
f, and hence f, from T f. It is also linear (this is essentially a reformulation
of Proposition and hence a vector space isomorphism since dim L(G) =
n. Now C? = C x - - - x C has the structure of a direct product of rings where
multiplication is taken coordinate-wise:

(al, . ,an)(bl,. . ,bn) = (albl, .. .,anbn).

The map T is in fact a ring isomorphism since

—

T(axb) = (a*b(g1),...,a*b(gn)) = (@g1)b(g1),- - - ,@(gn)b(gn))

o~

= @(g1),--,a(9n))(b(g1), - - -, b(gn)) = Ta-Tbh

Consequently, we have reinterpreted Theorem [5.3.5in the following way.

Theorem 5.5.1. Let G be a finite abelian group of order n. Then L(G) =
cn.
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One might guess that this reflects the fact that all irreducible repre-
sentations of an abelian group have degree one and that for non-abelian
groups, we must replace C by matrix rings over C. This is indeed the case.
So without further ado, let G be a finite group of order n with complete
set cp(l), . ,cp(s) of unitary representatives of the equivalence classes of ir-
reducible representations of G. As usual, we put di, = deg¢®). The matrix
coefficients are the functions gogf): G — C given by goé ) = (goz(])( ))- Theo-

rem [4.4.6| tells us that the functions \/chgpl(f) form an orthonormal basis for
L(GY.

Definition 5.5.2 (Fourier transform). Define

T: L(G) — Mdl((C) X X MdS(C)

by Tf = (f(eM),..., () where
Fle®)y = nie®, 1) = 3 o®(g) (5.5)
geG
We call T'f the Fourier transform of f.
Notice that ((5.5)) can be written more succinctly in the form
> R0}
Fle™) =3 oM f(g)
geG

which is the form that we shall most frequently useﬂ Let us begin with the
Fourier inversion theorem.

Theorem 5.5.3 (Fourier inversion). Let f: G — C be a complez-valued
function on G. Then

1 ~ k
= Z dkf(@(k))ijsoz(j)‘
i,k
Proof. We compute

f Z \/7Q01 ) >\/67k90£ den sz] ) Sogc)

Jk 1,9,k

_ def ZJQOU

zyk

as required. O

1Some authors define f( (k )) = Z cp(k) f(g).
geqG
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Next we show that T is a vector space isomorphism.

Proposition 5.5.4. The map T: L(G) — My, (C)x---x My, (C) is a vector
space isomorphism.

Proof. To show that T is linear it suffices to prove

(eufitess) (6™) = 1 file®) + eafale®)

for 1 <k <s. Indeed,

(leir\@h) (™) = Z@(lel + c2f2)(9)

geG
=c1 ) 03 filg) + c2 > 03" f2(9)
geG geG

= c1f1(e™) + 2 fo (o)

as was to be proved.
The Fourier inversion theorem implies that T is injective. Since

dim L(G) = |G| = d2 + - -- 4 d* = dim My, (C) x - -- x My, (C)
it follows that 7" is an isomorphism. ]

All the preparation has now been completed to show that the Fourier
transform is a ring isomorphism. This leads us to a special case of a more
general theorem of Wedderburn that is often used as the starting point for
studying the representation theory of finite groups.

Theorem 5.5.5 (Wedderburn). The Fourier transform
T: L(G) — Mdl(C) X oo X Mds((C)
s an isomorphism of rings.

Proof. Proposition [5.5.4] asserts that 7" is an isomorphism of vector spaces.
Therefore, to show that it is a ring isomorphism it suffices to show T'(a*b) =
Ta-Th. In turn, by the deﬁniti/og of multiplication in a direct product, to
do this it suffices to establish a % b(¢®)) = @(e®)) - b(®) for 1 < k < s.
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The computation is analogous to the abelian case:

a*b ngk)a*b

zeG

= Z@Z a(zy)b(y)

zeG yeG
k
=0y Y ePa(a
yeG zeG

~1 (and so = = zy) yields

a*b Zb Z@T@)a(z)

Setting z = zy

yeG zeG
SO SELETE
yeG zeG
(k) (k)
= > Wa(z) > wlPby)
z€G yeqG
=a(p™) - (™)
This concludes the proof that 7' is a ring isomorphism. ]

For non-abelian groups, it is still true that computing T'a - T and in-
verting T' can sometimes be faster than computing a * b directly.

Remark 5.5.6. Note that
)= el5y () = oy
zelG

Since the conjugate of an irreducible representation is easily verified to be
irreducible, it follows that T'd, is a vector whose entries consist of the images
of g under all the irreducible representations of GG, in some order.

The next example gives some indication how the representation theory
of S, can be used to analyze voting.

Example 5.5.7 (Diaconis). Suppose that in an election each voter has to
rank n candidates on a ballot. Let us call the candidates {1,...,n}. Then
to each ballot we can correspond a permutation o € S,,. For example if
the ballot ranks the candidates in the order 312, then the corresponding

permutation is
(1 2 3
S \3 1 2)°
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An election then corresponds to a function f: S, — N where f(o) is the
number of people whose ballot corresponds to the permutation o. Using
the fast Fourier transform for the symmetric group, Diaconis was able an-
alyze various elections. As with signal processing, one can discard Fourier
coefficients of small magnitude to compress data. Also for .S, the Fourier

coefficients n!(gpg?), f) have nice interpretations. For instance, an appropri-
ate coefficient measures how many people ranked candidate m first amongst
all candidates. See [4,5].

Exercises

Ezercise 5.1. Let f: Zz — C be give by f(k) = sin(27k/3). Compute the
Fourier transform f of f.

Ezercise 5.2. Draw the Cayley graph of Zg with respect to the set S =
{£2, £3} and compute the eigenvalues of the adjacency matrix.

Ezxercise 5.3. Let G = {g1,...,9n,} be an abelian group with irreducible
characters x1,...,Xn. Let a,b € L(G). Prove the Plancherel formula

1~
by = —(a,b).
(o.0) = (@ 5)
Ezercise 5.4. Prove Lemma directly from the definition of convolution.
Ezercise 5.5. Prove that Z(M,(C)) ={A | A € C}.

Ezercise 5.6. Let G be a finite group of order n and let ™), ... »(®) be
a complete set of representatives of the equivalence classes of irreducible

. d.
representations of G. Let x; be the character of go(’) and let e; = —y; where
n
d; is the degree of ().
1. Show that if f € Z(L(G)), then

~ n
Fe™) = 2=, AT
k
2. Deduce that
I 1=k
(k)Y —
&™) {0 else.

3. Deduce that
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4. Deduce that e; + -- - + €5 is the identity §; of L(G).

Ezercise 5.7. Let G be a finite group of order n and let ¢, ... ¢ be
a complete set of representatives of the equivalence classes of irreducible
representations of G. Let x; be the character of ¢V and d; be the degree of
0. Suppose a € Z(L(G)) and define a linear operator F: L(G) — L(G)
by F(b) = a *b.

1. Fix 1 < k <'s. Show that %(;c) is an eigenvector of I’ with eigenvalue

ﬁ<Xk,a>. Hint: show that
dy,
n
“m —F,; m=k
P (M) = { dy
0 else.

Now compute a * gogf) using Exercise (1) and apply the Fourier in-
version theorem.

2. Conclude that F' is a diagonalizable operator.

3. Let S C G be a symmetric set and assume further that gSg=! = S for
all g € G. Show that the eigenvalues of the adjacency matrix A of the
Cayley graph of G with respect to S are Aq,..., s where

Ak = dlkZXk(S)

s€S
and that A; has multiplicity d%.

4. Compute the eigenvalues of the Cayley graph of S3 with respect to
$={(12),(13),23)}.

Ezercise 5.8. The following exercise is for readers familiar with probability
and statistics. Let G be a finite group and suppose that X,Y are random
variables taking values in G with distributions pu, v respectively, that is,

Prob[X = g] = u(g9) and Prob[Y = g] = v(g)

for g € G. Show that if X and Y are independent, then the random variable
XY has distribution the convolution u * v. Thus the Fourier transform is
useful for studying products of group-valued random variables [4].



Chapter 6

Burnside’s Theorem

In this chapter, we look at one of the first major applications of representa-
tion theory: Burnside’s pg-theorem. This theorem states that a non-abelian
group of order p®q® can never be simple; recall that a group is simple if it
contains no non-trivial proper normal subgroups. To prove this we shall
need to take a brief excursion into number theory.

6.1 A little number theory

A complex number is called an algebraic number if it is the root of a poly-
nomial with integer coefficients. Numbers that are not algebraic are called
transcendental. For instance % is algebraic, being a root of the polynomial
2z — 1, and so is v/2, as it is a root of 22 — 2. A standard course in rings
and fields shows that the set Q of algebraic numbers is a field. A fairly
straightforward counting argument shows that Q is countable, while C is
uncountable. Thus most numbers are not algebraic, but it is very hard
to prove that a given number is transcendental. For example e and 7 are
transcendental, but this is highly non-trivial to prove. Number theory is
concerned with integers and so for our purposes we are interested in a spe-

cial type of algebraic number called an algebraic integer.

Definition 6.1.1 (Algebraic integer). A complex number « is said to be an
algebraic integer if it is a root of a monic polynomial with integer coeflicients.
That is to say, there is a polynomial p(z) = 2" + an_12""! + -+ + ag with
ag,...,an—1 € Z and p(a) = 0.

The fact that the leading coefficient is 1 is crucial to the definition.
Notice that if « is an algebraic integer, then so is —a since if p(z) is a monic

65
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polynomial with integer coefficients such that p(«) = 0, then either p(—z) or
—p(—=2) is a monic polynomial and —« is a root of both these polynomials.

Example 6.1.2 (n'"-roots). Let m be an integer. Then 2™ — m is a monic
polynomial with integer coefficients, so any n'*-root of m is an algebraic
integer. Thus, for example, v/2 is an algebraic integer, as is €2™/™. In fact
any n'"-root of unity is an algebraic integer.

Example 6.1.3 (Eigenvalues of integer matrices). Let A = (a;;) with the
a;; € Z be an n X n integer matrix. Then the characteristic polynomial
pa(z) = det(z] — A) is a monic polynomial with integer coefficients. Thus
each eigenvalue of A is an algebraic integer.

A rational number like 1/2 is a root of a non-monic integral polynomial
2z — 1. One would guess then that rational numbers cannot be algebraic
integers unless they are integers. This is indeed the case, as follows from the
“Rational Roots Test” from high school.

Proposition 6.1.4. A rational number r is an algebraic integer if and only
if it is an integer.

Proof. Write r = m/n with m,n € Z, n > 0 and ged(m,n) = 1. Suppose r
is a root of 2¥ + ap_12F"1 + -+ + ap. Then

my\k my\ k-1
0:< ) +ak_1<—> +---+ap
n n

and so clearing denominators (by multiplying by n*) yields

0=mF+ ak_lmkfln + -+ almnkfl + aonk.
In other words,
mF = —n(ak_lmk_l 4+ amnt 4 aonk_l)

and so n | mF. As ged(m,n) =1, we conclude n =1. Thus r =m € Z. [

A general strategy to show that an integer d divides an integer n is to
show that n/d is an algebraic integer. Proposition then implies d | n.
First we need to learn more about algebraic integers. Namely, we want to
show that they form a subring A of C. To do this we need the following
lemma.
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Lemma 6.1.5. An element y € C is an algebraic integer if and only if there
exist y1,...,y: € C, not all zero, such that

t
yyi = Y iy
j=1
with the a;j € Z for all 1 < i <t (i.e., yy; is an integral linear combination
of the y; for all i).
Proof. Suppose first that y is an algebraic integer. Let y be a root of
p(2) = 2"+ ap_12" 4 +ag

and take y; = y*~! for 1 < i < n. Then, for 1 < i < n — 2, we have

yi=yy' ' =y =y and yyn 1 = y" = —ap — - — an1y" L
Conversely, if y1,...,y: are as in the statement of the lemma, let A =
(aij) and
W
Y2
Yy=|"|ecC
Ye

Then .
[AY]; = aijy; = yyi = y[Y]i
j=1
and so AY = yY. Since Y # 0 by assumption, it follows that y is an
eigenvalue of the ¢t x t integer matrix A and hence is an algebraic integer by

Example O

Corollary 6.1.6. The set A of algebraic integers is a subring of C. In
particular, the sum and product of algebraic integers is algebraic.

Proof. We already observed that A is closed under taking negatives. Let
v,y € A. Choose y1,y2,...,y: € C not all 0 and y},...,y, € C not all 0
such that

t s
Yy = Z aijy, Y'Y = Z br;j ¥
=1 =1

as guaranteed by Lemma [6.1.5] Then

t s
(W + ¥ )ik = yyivh + YUY = > aij¥ivh + D brjyys
p= =
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is an integral linear combination of the y;y;, establishing that y +v' € A by
Lemma Similarly, yy'v;y,. = yyiy'y,, is an integral linear combination
of the y;y; and so yy' € A. O

We shall also need that the complex conjugate of an algebraic integer
is an algebraic integer. Indeed, if p(z) = 2" + ap_12" '+ --- + ag is a
polynomial with integer coefficients and « is a root of p(z), then

p(a) —a" + anilan—l 4+ dag=am + anilanfl +iitap = p(Oé) =0.

6.2 The dimension theorem

The relevance of algebraic integers to group representation theorem becomes
apparent with the following corollary to Corollary

Corollary 6.2.1. Let x be a character of a finite group G. Then x(g) is an
algebraic integer all g € G.

Proof. Let ¢: G — GL,,(C) be a representation with character y. Let n be

the order of G. Then g" =1 and so pg = I. Corollary then implies

that ¢4 is diagonalizable with eigenvalues A1,..., A, that are nt'-roots of

unity. In particular, the eigenvalues of ¢, are algebraic integers. Since
X(9) = Tr(pg) = A+ -+ Am

and algebraic integers form a ring, we conclude that y(g) is an algebraic
integer. O

Remark 6.2.2. Notice that the proof of Corollary shows that x,(g) is

a sum of m n'P-roots of unity. We shall use this fact later.

Our next goal is to show that the degree of an irreducible representation
divides the order of the group. To do this we need to conjure up some more
algebraic integers.

Theorem 6.2.3. Let p be an irreducible representation of a finite group G
of degree d. Let g € G and let h be the size of the conjugacy class of g. Then

8)(@(9) is an algebraic integer.
Proof. Let C4,...,Cs be the conjugacy classes of G. Set h; = |C;| and let

h.
Xi be the value of x, on the class C;. We want to show that szi is an

algebraic integer for each i¢. Consider the operator

Ti:Z%~

zeC;
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h;
Claim. T; = EXi ..

Proof of claim. We first show that ¢ Tjp,—1 =T; for all g € G. Indeed,
0gTiPg-1 = Y PgPapg-1 = ¥ Pgpg1 = oy =T,
zeC; zeC; yel;

since C} is closed under conjugation and conjugation by ¢ is a permutation.
By Schur’s lemma, T; = Al some A € C. Then since [ is the identity operator
on a d-dimensional vector space

d\ = Tr(\) = Z Tr(p,) Z Xo(T) = Z xi = |Cilxi = hixi

zeC zeC; zeC;
h; - :
and so A = X establishing the claim. O

We need yet another claim, which says the T; “behave” like algebraic
integers.

Claim. T;T; = Y74 ai,T) some ayji, € Z.
Proof of claim. Routine calculation shows
zeC; yeC; zeC;,yeC; geG

where a;j4 € Z is the number of ways to write g = xy with x € C; and y € Cj.
We claim that a;;, depends only on the conjugacy class of g. Suppose that
this is indeed the case and let a;;; be the value of a;jq with g € C). Then

Z QijgPg = Z Z QijgPg = Zawk Z Yg = Zawka

geG k=1 geCy geCl

proving the claim.
So let’s check that a;j, depends only on the conjugacy class of g. Let

Xy ={(z,y) € Ci x Cj | xy = g};
so ajjg = |X4|. Let ¢’ be conjugate to g. We show that |X,| = |Xg|.
Suppose that ¢’ = kgk™! and define a bijection ¢: X, — X;] by
Y(a,y) = (kak™" kyk™).

Notice that kzk~! € C;, kyk™! € C; and kak ™ kyk™! = kayk™! = kgk™1 =
g', and so ¥(z,y) € X;. Evidently, ¢ has inverse 7: X, — X, given by
(@, y') = (k~'2'k,k~1y'k) so 1 is a bijection and hence |X,| = |Xy|. O
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We now complete the proof of the theorem. Substituting the formula for
the T; from the first claim into the formula from the second claim yields

hi hj - Ry
<dXi> : <dej> = ;aijk <ka>

Iy
and so szi is an algebraic integer by Lemma |6.1.5 O

Theorem 6.2.4 (Dimension theorem). Let ¢ be an irreducible representa-
tion of G of degree d. Then d divides |G]|.

Proof. The first orthogonality relations (Theorem |4.3.9)) provide
1= <X<p7Xsa a Z Xgo ch
|Gl poere

and so

|f; = ZX@(Q) X@ég)' (6.1)

geG

Let C1,...,Cs be the conjugacy classes of G and let x; be the value of x,
on Cj. Let h; = |C;|. Then from (6.1)) we obtain

!G| S v g:iZXZ( ) ZX2< Xz). (6.2)

i=1 geC} 1=1 geC}

I
But glxi is an algebraic integer by Theorem [6.2.3] while % is an algebraic

integer by Corollary[6.2.1]and the closure of algebraic integers under complex
conjugation. Since the algebraic integers form a ring, it follows from
that |G|/d is an algebraic integer and hence an integer by Proposition
Therefore, d divides |G]. O

The following corollaries are usually proved using facts about p-groups
and Sylow’s theorems.

Corollary 6.2.5. Let p be a prime and |G| = p?>. Then G is a abelian.

Proof. Let dy,...,ds be the degrees of the irreducible representations of G.
Then d; can be 1, p or p?. Since the trivial representation has degree 1 and

=|Gl=d3+---+d°

it follows that all d; = 1 and hence G is abelian. O
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Recall that the commutator subgroup G’ of a group G is the subgroup
generated by all elements of the form g~'h~'gh with g, h € G. It is a normal
subgroup and has the properties that G/G’ is abelian and if N is any normal
subgroup with G/N abelian, then G’ C N.

Lemma 6.2.6. Let G be a finite group. Then the number of degree one
representations of G divides |G|. More precisely, if G' is the commutator
subgroup of G, then there is a bijection between degree one representations
of G and irreducible representations of the abelian group G/G'. Hence G
has |G/G'| =[G : G'] degree one representations.

Proof. Let ¢: G — G /G’ be the canonical projection. Ifp: G/G' — C* is an
irreducible representation, then ¥¢: G — C* is a degree one representation.
We now show that every degree one representation of GG is obtained in this
way. Let p: G — C* be a degree one representation. Then Im p = G/ ker p
is abelian. Therefore G’ C ker p. Define ¢: G/G' — C* by ¥ (g9G’) = p(g).
This is well defined since if gG' = hG’, then h™'g € G’ C kerp and so
p(h~'g) = 1. Thus p(h) = p(g). Clearly ¥(9G'hG") = (ghG’) = p(gh) =
p(g)p(h) = ¥(gG")¢Y(RG") and so 9 is a homomorphism. By construction
p = Y, completing the proof. O

Corollary 6.2.7. Let p, q be primes with p < q and ¢ Z 1 mod p. Then any
group G of order pq is abelian.

Proof. Let dy,...,ds be the degrees of the irreducible representations of G.
Since d; divides |G|, p < g and

pq=|Gl=di+-- +d

it follows that d; = 1, p all i. Let n be the number of degree p representations
of G and let m be the number of degree 1 representations of GG. Then
pq = m+np?. Since m divides |G| by Lemma m > 1 (there is at least
the trivial representation) and p | m, we must have m = p or m = pq. If
m = p, then ¢ = 1 + np contradicting that ¢ Z 1 mod p. Therefore, m = pq
and so all the irreducible representations of G have degree one. Thus G is
abelian. O

6.3 Burnside’s theorem

Let G be a group of order n and suppose that ¢: G — GL4(C) is a rep-
resentation. Then x,(g) is a sum of d nt'-roots of unity, as was noted in
Remark This explains the relevance of our next lemma.
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Lemma 6.3.1. Let A, ..., \q be n'"-roots of unity. Then
A1+ + Ml < d
and equality holds if and only if Ay = o = -+ = Ag.
Proof. If v,w € R? are vectors, then
lv 4+ wl® = [[o]|* + 2(v, w) + [w]* = [[o]* + 2[|v] - [|w]| cos § + [|w]*

where 6 is the angle between v and w. Since cosf < 1 with equality if and
only if = 0, it follows that |jv + w|| < ||v|| + |Jw|| with equality if and only
if v = Aw or w = A\v some X > 0.

Induction then yields [A; +- - -+ Ag| < [A1]+---+|A\g| with equality if and
only if the \; are non-negative scalar multiples of some complex number z.
But [A1] = -+ =|Ag| = 1, so they can only be non-negative multiples of the
same complex number if they are the equal. This completes the proof. [J

Let w = >/, Denote by Q[w] the smallest subfield of C containing w.
This is the smallest subfield F' of C so that 2" —1 = (z —ay) -+ (2 — )
with a1,...,a, € F, i.e., the splitting field of 2™ — 1. Fields of the form
Q[w] are called cyclotomic fields. Let ¢ be the Euler ¢-function; so ¢(n) is
the number of positive integers less than n that are relatively prime to it.
The following is usually proved in a course on rings and fields.

Lemma 6.3.2. The field Q[w] has dimension ¢(n) as a Q-vector space.

Actually, all we really require is that the dimension is finite, which fol-
lows since w is an algebraic number. We shall also need a little bit of Galois
theory. Let I' = Gal(Q[w] : Q). That is I' is the group of all field auto-
morphisms o: Q[w] — Q[w] such that o(r) = r all r € Q (actually this last
condition is automatic). It follows from the fundamental theorem of Galois
theory that |T'| = ¢(n) since dim Q[w] = ¢(n) as a Q-vector space and Q[w]
is the splitting field of the polynomial z” — 1. In fact, one can prove that
I' = Z7, although we will not use this; for us the important thing is that I"
is finite.

A crucial fact is that if p(z) is a polynomial with rational coefficients,
then T' permutes the roots of p in Qw].

Lemma 6.3.3. Let p(z) be a polynomial with rational coefficients and sup-
pose that o € Q[w] is a root of p. Then o(«) is also a root of p all o € T'.
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Proof. Suppose p(z) = apz® + ax_12"" + - -+ + ag with the a; € Q. Then

p(o(@)) = apo()* + ap_10(@) 1+ +ag

= (akak +ap_qaF M ap)

since o(a;) = a; for all 4. O

Corollary 6.3.4. Let a be an n'*-root of unity. Then o(c) is also an n'"-

root of unity for all o € T'.
Proof. Apply Lemma [6.3.3] to the polynomial 2" — 1. O

Remark 6.3.5. The proof that I' = Z; follows fairly easily from Corol-
lary we sketch it here. Since I' permutes the roots of 2™ — 1, it acts
by automorphisms on the cyclic group C,, = {w¥ | 0 < k < n — 1} of order
n. As the automorphism group of a cyclic group of order n is isomorphic
to Z7, this determines a homomorphism 7: I' — Z7 by 7(0) = o|¢,. Since
Q[w] is generated over Q by w, each element of I" is determined by what it
does to w and hence 7 is injective. Since |I'| = ¢(n) = |Z}|, it must be that
T is an isomorphism.

Corollary 6.3.6. Let o € Qw] be an algebraic integer and suppose o € T'.
Then o(«) is an algebraic integer.

Proof. If « is a root of the monic polynomial p with integer coefficients, then
so is o(«) by Lemma O

Another consequence of the fundamental theorem of Galois theory that
we shall require is:

Theorem 6.3.7. Let o € Qw]. Then o(a) = a all o € T if and only if
a € Q.

The following corollary is a thinly disguised version of the averaging
trick.

Corollary 6.3.8. Let o € Qw]. Then [],.po(a) € Q.
Proof. Let 7 € I'. Then we have

; (H a(a)> =[] o) =[] r(e

oel’ oel’ pel’
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where the last equality is obtained by setting p = 7. Theorem [6.3.7| now
yields the desired conclusion. O

The next theorem is of a somewhat technical nature, but is crucial to
proving Burnside’s theorem.

Theorem 6.3.9. Let G be a group of order n and let C be a conjugacy
class of G. Let ¢: G — GL4(C) be an irreducible representation and assume
h = |C| is relatively prime to d. Then either

1. ¢4 = A some A € C* for all g € C; or
2. Xo(9) =0allgeC.

Proof. Set x = x,. First note that if ¢4 = Al for some g € C, then ¢, = A\
for all x € C since conjugating a scalar matrix does not change it. Also
since x is a class function, if it vanishes on any element of C', it must vanish
on all elements of C. Therefore it suffices to show that if ¢, # AI for some
g € C, then x,(g) = 0.

h
By Theorem [6.2.3| we know that —x(g) is an algebraic integer; also x(g)

is an algebraic integer by Corollary Since ged(d, h) = 1, we can find
integers k, j so that kh + jd = 1. Let

o=k (@) +ixto) = 50 = X2,

Then « is an algebraic integer. By Corollary [4.1.10}, ¢, is diagonalizable and
its eigenvalues A1, ..., \q are nt*-roots of unity. Since g is diagonalizable
but not a scalar matrix, its eigenvalues are not all the same. Applying

Lemma to x(g9) = A\ + -+ + Ag yields |x(g)| < d, and so

ol = [12

<

Also note that a € Q[w]. Let 0 € I'. Lemma implies that o(«) is an
algebraic integer. Corollary tells us that

o(x(g)) =c(M) +---+0(Xa)

is again a sum of d n'-roots of unity, not all equal. Hence, another appli-

cation of Lemma yields

o(x(9))

ofe)| = |72

<
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Putting all this together, we obtain that ¢ = [[, < o(a) is an algebraic

integer with

[Teo@|=]]le(@l <1
el oel
But Corollary [6.3.8] tells us that ¢ € Q. Therefore, ¢ € Z by Proposi-
tion [6.1.4] Since |g| < 1, we may conclude that ¢ = 0 and hence o(a) = 0
for some o € I'. But since ¢ is an automorphism, this implies a = 0. We
conclude x(g) = 0, as was to be proved. O

lq| =

We are just one lemma away from proving Burnside’s theorem.

Lemma 6.3.10. Let G be a finite non-abelian group. Suppose that there is
a conjugacy class C # {1} of G such that |C| = pt with p prime, t > 0.
Then G is not simple.

Proof. Assume that G is simple and let @), ... ©() be a complete set of
representatives of the equivalence classes of irreducible representations of G.
Let x1, ..., xs be their respective characters and dy, . . ., ds their degrees. We
may take ¢(1) to be the trivial representation. Since G is simple, ker p(*) =
{1} for k > 1 (since ker p*) = G implies ©¥ is the trivial representation).
Therefore, go(k) is injective for k£ > 1 and so, since G is non-abelian and C* is
abelian, it follows that di > 1 for kK > 1. Also, since G is simple, non-abelian
Z(G) ={1} and so t > 0.

Let g € C and k > 1. Let Z; be the set of all elements of G such that
@ék) is a scalar matrix. Let H = {A\4, | A € C*}; then H is a subgroup
of GLg,(C) contained in the center, and hence normal (actually it is the
center). As Zj is the inverse image of H under gp(k), we conclude that Zj,
is a normal subgroup of G. Since dp > 1, we cannot have Z; = G. Thus
Zy = {1} by simplicity of G. Suppose for the moment that p { di; then
xk(g9) = 0 by Theorem [6.3.9]

Let L be the regular representation of G. Recall L ~ dj¢o™M @ - - @ dgp®).
Since g # 1, Proposition [4.4.3] yields

0= XL(g) = d1X1(9) R dsXs(g)

=1+ Z dixk(9)
k=2

=14 dpxi(g)

pld
=14pz
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where z is an algebraic integer. Hence 1/p = —z is an algebraic integer,
and thus an integer by Proposition This contradiction establishes the
lemma. O

We are now ready to prove the deepest theorem in this text.

Theorem 6.3.11 (Burnside). Let G be a group of order p®q® with p,q
primes. Then G is not simple unless it is cyclic of prime order.

Proof. Since an abelian group is simple if and only if it is cyclic of prime
order, we may assume that G is non-abelian. Since groups of prime power
order have non-trivial centers, if a or b is zero, then we are done. Suppose
next that a,b > 1. By Sylow’s theorem, G has a subgroup H of order ¢.
Let 1 # g € Z(H) and let Ng(g9) = {z € G | vg = gz} be the normalizer of
gin G. Then H C N¢(g) as g € Z(H). Thus

p* =G : H| =[G : Na(9)l[Na(g) : H]

and so [G : Ng(g)] = p' for some ¢t > 0. But [G : Ng(g)] is the size of
the conjugacy class of g. The previous lemma now implies that G is not
simple. O

Remark 6.3.12. Burnside’s theorem is often stated in the equivalent form
that all groups of order p®q®, with p, ¢ primes, are solvable.

Exercises

Ezercise 6.1. Let G be a non-abelian group of order 39.

1. Determine the degrees of the irreducible representations of G and how
many irreducible representations GG has of each degree.

2. Determine the number of conjugacy classes of G.
Ezercise 6.2. Prove that if there is a non-solvable group of order p®q® with
P, q primes, then there is a simple non-abelian group of order pa/qb/.

Ezercise 6.3. Show that if ¢: G — GL4(C) is a representation with character
X, then g € ker ¢ if and only if x(¢g) = d. Hint: Use Corollary [4.1.10] and
Lemma [6.3.1



Chapter 7

Group Actions and
Permutation Representations

In this chapter we link representation theory with the theory of group actions
and permutation groups. Once again, we are only able to provide a brief
glimpse of these connections; see [1] for more. In this chapter all groups are
assumed to be finite and all actions of groups are taken to be on finite sets.

7.1 Group actions

Let us begin by recalling the definition of a group action. If X is a set, then
Sx will denote the symmetric group on X. We shall tacitly assume |X| > 2,
as the case |X| =1 is uninteresting.

Definition 7.1.1 (Group action). An action of a group G on a set X is a
homomorphism o: G — Sx. We often write o, for o(g). The cardinality of
X is called the degree of the action.

Example 7.1.2 (Regular action). Let G be a group and define A\: G — Sg
by Ag(z) = gz. Then X is called the regular action of G on G.

A subset Y C X is called G-invariant if o4(y) € Y forally € Y, g € G.
One can always partition X into a disjoint union of minimal G-invariant
subsets called orbits.

Definition 7.1.3 (Orbit). Let 0: G — Sx be a group action. The orbit of
z € X under G is the set G- = = {o4(z) | g € G}.

7
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Clearly the orbits are G-invariant. A standard course in group theory
proves that distinct orbits are disjoint and the union of all the orbits is X,
that is, the orbits form a partition of X. Of particular importance is the
case where there is just one orbit.

Definition 7.1.4 (Transitive). A group action o: G — Sx is transitive if,
for all z,y € X, there exists g € G such that o4(x) = y. Equivalently, the
action is transitive if there is one orbit of G on X.

Example 7.1.5 (Coset action). If G is a group and H a subgroup, then
there is an action 0: G — Sg /g given by oy(xH) = grH. This action is
transitive.

An even stronger property than transitivity is that of 2-transitivity.

Definition 7.1.6 (2-transitive). An action 0: G — Sx of G on X is 2-
transitive if given any two pairs of distinct elements z,y € X and 2,y € X,
there exists g € G such that o4(z) = 2’ and o4(y) =y

Example 7.1.7 (Symmetric groups). For n > 2, the action of S, on
{1,...,n} is 2-transitive. Indeed, let i # j and k # (¢ be pairs of ele-
ments of X. Let X ={1,...,n}\ {i,j} and Y = {1,...,n}\ {k,¢}. Then
| X| =n—2=1Y], so we can choose a bijection a: X — Y. Define 7 € S,
by

k m =1
T(m) =</ m=j
a(m) else.

Then 7(i) = k and 7(j) = ¢. This establishes that S,, is 2-transitive.
Let’s put this notion into a more general context.

Definition 7.1.8 (Orbital). Let 0: G — Sx be a transitive group action.
Define 02: G — Sxxx by

03(3617 x2) = (0g(21), 04(22)).

An orbit of 62 is termed an orbital of . The number of orbitals of is called
the rank of o.

Let A = {(z,z) | z € X}. As ag(a:,:v) = (04(x),04(x)), it follows from
the transitivity of G on X that A is an orbital. It is called the diagonal or
trivial orbital.
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Remark 7.1.9. Orbitals are closely related to graph theory. If G acts tran-
sitively on X, then any non-trivial orbital can be viewed as the edge set
of a graph with vertex set X (by symmetrizing). The group G acts on the
resulting graph as a vertex-transitive group of automorphisms.

Proposition 7.1.10. Let 0: G — Sx be a group action (with X > 2).
Then o is 2-transitive if and only if o is transitive and rank(o) = 2.

Proof. First we observe that transitivity is necessary for 2-transitivity since
if G is 2-transitive on X and x,y € X, then we may choose 2/ # z and
y' # y. By 2-transitivity there exists g € G with o4(z) =y and o4(2") = v/'.
This shows that ¢ is transitive. Next observe that

(X x X)\A = {(z,y) | = # y}

and so the complement of A is an orbital if and only for any two pairs x # y
and 2’ # y' of distinct elements there exists g € G with o4(x) = 2’ and
o4(y) =y, that is, o is 2-transitive. O

Consequently the rank of S, is 2. Let 0: G — Sx be a group action.
Then, for g € G, we define

Fix(g) = {z € X | 05(x) = v}

to be the set of fized points of g. Let Fix?(g) be the set of fixed points of g on
X x X. The notation is unambiguous because of the following proposition.

Proposition 7.1.11. Let 0: G — Sx be a group action. Then the equality
Fix?(g) = Fix(g) x Fix(g)
holds. Hence |Fix*(g)| = |Fix(g)|%.

Proof. Let (x,y) € X x X. Then o7 (z,y) = (04(x),04(y)) and so (z,y) =
ag(x,y) if and only if o4(z) = z and 0,(y) = y. We conclude Fix*(g)
Fix(g) x Fix(g).

Ol

7.2 Permutation representations

Given a permutation representation o: G — S,, we may compose it with
the standard representation a: S,, — GL,,(C) to obtain a representation of
G. Let us formalize this.
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Definition 7.2.1 (Permutation representation). Let o: G — Sx be a group
action. Define a representation o: G — GL(CX) by setting

59 <Z Cxx> = Z Cxo-g(x) = Z 00971(y)y'
zeX rxeX yeX
One calls ¢ the permutation representation associated to o.

Remark 7.2.2. Notice that o, is the linear extension of the map defined on
the basis X of CX by sending x to o4(x). Also observe that the degree of
the representation o is the same as the degree of the group action o.

Example 7.2.3 (Regular representation). Let A\: G — Sg be the regular
action. Then one has A\ = L, the regular representation.

The following proposition is proved exactly as in the case of the regular
representation, so we omit the proof.

Proposition 7.2.4. Let 0: G — Sx be a group action. Then the permuta-
tion representation o: G — GL(CX) is a unitary representation of G.

Next we compute the character of .
Proposition 7.2.5. Let 0: G — Sx be a group action. Then
Xz(g) = [Fix(g)|.

Proof. Let X = {x1,...,2,} and let [04] be the matrix of & with respect to
this basis. Then o4(z;) = o4(x) so

[ogij = {1 s = 7(23)

0 else.

In particular,
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Like the regular representation, permutation representations are never
irreducible (if | X| > 1). To understand better how it decomposes, we first
consider the trivial component.

Definition 7.2.6 (Fixed subspace). Let ¢: G — GL(V) be a representa-
tion. Then
VE={veV|p,v)=vallge G}
is the fixed subspace of G.
One easily verifies that V¢ is a G-invariant subspace and the subrepre-
sentation |, ¢ is equivalent to dim V& copies of the trivial representation.

Let us prove that V© is the direct sum of all the copies of the trivial repre-
sentation in ¢.

Proposition 7.2.7. Let ¢: G — GL(V) be a representation and let x1 be
the trivial character of G. Then (x1, x,) = dim Va.

Proof. Write V.= mV; @ --- ® msVs where Vp,...,Vy are irreducible G-
invariant subspaces whose associated subrepresentations range over the dis-
tinct equivalence classes of irreducible representations of G (we allow m; =
0). Without loss of generality, we may assume that V; is equivalent to the
trivial representation. Let ¢ be the restriction of ¢ to V;. Now if v € V,
then v = v1 + - - - + v with the v; € m;V; and

0gv = (m1eW) o1 +- - -+ (msp) gug = v1 + (M@ gug + - - -+ (M) yvg
and so g € V& if and only if v; € miViG for all 2 < ¢ < s. In other words,
VE =mVi @ maViE @ - @ mVE.

Let ¢ > 2. Since Vj is irreducible and not equivalent to the trivial represen-
tation and ViG is G-invariant, it follows ViG = 0. Thus V€ = m;V; and so
the multiplicity of the trivial representation in ¢ is dim V¢, as required. [

Now we compute CX & when we have a permutation representation.

Proposition 7.2.8. Let 0: G — Sx be a group action. Let O1,...,O,, be
the orbits of G on X and define v; = eroi x. Then vy,...,vy is a basis
for CXE and hence dim CXC is the number of orbits of G on X.

Proof. First observe that

Tqv; = Z og(x) = Z Y=

z€0; yeO;
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as is seen by setting y = o,(z) and using that o, permutes the orbit O;.

Thus v1,...,vm € CX%. Since the orbits are disjoint, we have
Oil i=j
<Ui,vj>:{ =
0 i#J
and so {v1,...,vs} is an orthogonal set of non-zero vectors and hence linearly

independent. It remain to prove that this set spans CX©.
Suppose v = Y x Cal € CX©%. We show that if z € G -y, then Cy = Cs.
Indeed, let z = 04(y). Then we have

Z Cpk =V =04V = Z Cp0q4() (7.1)
rzeX zeX

and so the coefficient of z in the left hand side of (7.1)) is ¢, while the
coefficient of z in the right hand side is ¢, since z = o4(y). Thus ¢, = ¢,.

It follows that there are complex numbers ci,..., ¢, such that ¢, = ¢; all
z € O;. Then
m m m
v = Zcxxzz Z cxa;:Zci Zx:Zcivi
reX i=1 2€0; =1 zeO; =1
and so v1,. .., Um span CX%, completing the proof. O

Since G always has at least one orbit on X, the above result shows that
the trivial representation appears as a constituent in & and so if | X| > 1, then
o is not irreducible. As a corollary to the above proposition we prove a useful
result known as Burnside’s lemma, although it seems to have been known
earlier to Cauchy and Frobenius. It has many applications in combinatorics
to counting problems. The lemma says that the number of orbits of G on
X is the average number of fixed points.

Corollary 7.2.9 (Burnside’s lemma). Let 0: G — Sx be a group action
and let m be the number of orbits ofG on X. Then

Z |Fix(g)
geG

Proof. Let x1 be the trivial character of G. By Propositions [7-2.7]
and [[.2.8 we have

m = (x1,Xs) = |G|ZX1 #(9) |G|Z|F1X

geG

as required. O
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As a corollary, we obtain two formulas for the rank of o.

Corollary 7.2.10. Let 0: G — Sx be a transitive group action. Then the
equalities
rank(o Z |Fix(g) X5+ X5)
| geG
hold.

Proof. Since rank(c) is the number of orbits of 2 on X x X and the number
of fixed points of g on X x X is |Fix(g)|?> (Proposition [7.1.11)), the first
equality is a consequence of Burnside’s lemma. For the second we compute

(X5, X5) Fix(g)||Fix(g Fix(g
=G Z\ )| =G Z\

geG geqG
completing the proof. O

Assume now that o: G — Sx is a transitive action. Let vg = Za:EX x.
Then CX¢ = Cuvy by Proposition _ Since o is a unitary representatlon
Vo = (Cvo is a G-invariant subspace (c.f. the proof of Proposition .
Usually Cuy is called the trace of o and Vj is called the augmentation of .
Let ¢’ be the restriction of & to Vy; since CX = V; @ Cup, it follows that
Xs = X&' + X1 where 7 is the trivial character. We now characterize when
the augmentation representation ¢’ is irreducible.

Theorem 7.2.11. Let 0: G — Sx be a transitive group action. Then o’ is
irreducible if and only if G is 2-transitive on X.

Proof. This is a simple calculation using Corollary [7.2.10|and the fact that G
is 2-transitive on X if and only if rank(c) = 2 (Proposition [7.1.10)). Indeed,
if x1 is the trivial character of G, then

X3/, X5/) = (X5 — X1, X7 — X1)

=Xz, X5) — (X5 x1) — (X1, X5) + (X1, X1)- (7.2)

Now by Proposition (X1,X5) = 1, since G is transitive, and hence
(xz,x1) = 1. Also (x1,x1) = 1. Thus (7.2) becomes, in light of Corol-

lary [7.2.10

(X&', X51) = rank(o) — 1

and so gz is an irreducible character if and only if rank(c) = 2, that is, if
and only if G is 2-transitive on X. O
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Remark 7.2.12. The decomposition of the standard representation of S3 in
Example corresponds precisely to the decomposition into the direct
sum of the augmentation and the trace.

With Theorem [7.2.11]in hand, we may now compute the character table
of 54.

Example 7.2.13 (Character table of Sy). First of all Sy has 5 conjugacy
classes, represented by Id, (1 2),(1 2 3),(1 2 3 4),(1 2)(3 4). Let x1 be
the trivial character and x4 the character of the sign homomorphism. Since
Sy acts 2-transitively on {1,...,4}, Theorem implies that the aug-
mentation representation is irreducible. Let x4 be the character of this
representation; it is the character of the standard representation minus the
trivial character so x4(g) = |Fix(g)] — 1. Let x5 = x2 - x4a. That is if
T is the representation associated to x4, then we can define a new repre-
sentation 7X2: Sy — GL3(C) by 75 = x2(g)7y. It is easily verified that
xrx2(g9) = x2(9)xa(g) and 7X2 is irreducible. This gives us four of the five
irreducible representations. How do we get the fifth? Let d be the degree of
the missing representation. Then

24 =Sy =12+ 12+ d?>+32+32 =20+ d?

and so d = 2. Let x3 be the character of the missing irreducible representa-
tion and let L be the regular representation of Sy. Then

XL = X1+ X2 +2x3 + 3x4 + 3x5

so for Id # g € S4, we have

(—x1(9) — x2(9) — 3xa(g) — 3x5(9)) -

N

x3(9) =

In this way we are able to produce the character table of S4 in Table

Id[(12)[(123) 12341234
vi| 1] 1 1 1 1
Yol 1| =1 1 ~1 1
xs| 2] 0 —1 0 2
yal 3| 1 0 ~1 ~1
s | 3| -1 0 1 ~1

Table 7.1: Character table of Sy
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The reader should try to produce a representation with character ys. As
a hint, observe that K = {Id, (1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} is a normal
subgroup of Sy and that Sy /K = S3. Construct an irreducible representation
by composing the surjective map S;4 — S3 with the degree 2 irreducible
representation of S3 coming from the augmentation representation for Ss.

Exercises

Ezercise 7.1. Show that if 0: G — Sx is a group action, then the orbits of
G on X partition X.

Ezercise 7.2. Let o: G — Sx be a transitive group action. If z € X, let
Gy ={9€G|oy(z) =1z} (7.3)

You may take for granted that G, is a subgroup of G (called the stabilizer
of z). Prove that the following are equivalent:

1. Gy is transitive on X \ {z} for some = € X;
2. G, is transitive on X \ {z} for all z € X;
3. G acts 2-transitively on X.
Ezercise 7.3. Compute the character table of A4. Hints:

1. Let K = {Id,(12)(34),(13)(24),(14)(23)}. Then K is a normal sub-
group of Ay and Ay/K = Zs. Use this to construct 3 degree one
representations of Ay.

2. Show that A4 acts 2-transitively on {1,2,3,4}.
3. Conclude that A4 has 4 conjugacy classes and find them.
4. Produce the character table.

Ezxercise 7.4. Let G be a group. Define a representation \: G — GL(L(G))
by Ag(f)(h) = f(g~"h).

1. Verify that X is a representation.

2. Prove that A is equivalent to the regular representation.
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3. Let K be a subgroup of G. Let L(G/K) be the subspace of L(G)
consisting of functions f: G — C that are right K-invariant, that
is, f(gk) = f(g) for all k € K. Show that L(G/K) is a G-invariant
subspace of L(G) and that the restriction of A to L(G/K) is equivalent
to the permutation representation C(G/K).

Ezercise 7.5. Two group actions 0: G — Sx and 7: G — Sy are isomorphic
if there is a bijection ¥: X — Y such that 1o, = 749 for all g € G.

1. Show that if 7: G — Sx is a transitive group action, z € X and G, is
the stabilizer of x (c.f. (7.3))), then 7 is isomorphic to the coset action
0:G— Sqa,-

2. Show that if ¢ and 7 are isomorphic group actions, then the corre-
sponding permutation representations are equivalent.

Exercise 7.6. Suppose that G is a finite group of order n with s conjugacy
classes. Suppose that one chooses a pair (g, h) € G x G uniformly at random.
Prove that the probability g and h commute is s/n. Hint: Apply Burnside’s
lemma to the action of G on itself by conjugation.



Chapter 8

Induced Representations

If v: G — H is a group homomorphism, then from any representation
¢: H — GL(V) we can obtain a representation p: G — GL(V) by com-
position: set p = @ o 1. If 9 is onto and ¢ is irreducible, one can verify
that p will also be irreducible. Lemma shows that every degree one
representation of G is obtained in this way by taking ¢: G — G/G’. As
G/G' is abelian, in principle, we know how to compute all its irreducible
representations. Now we would like to consider the dual situation: suppose
H is a subgroup of G; how can we construct a representation of G from a
representation of H? There is a method to do this, due to Frobenius, via
a procedure called induction. This is particularly useful when applied to
abelian subgroups since we know how to construct all representations of an
abelian group.

8.1 Induced characters and Frobenius reciprocity

We use the notation H < G to indicate that H is a subgroup of G. Our goal
is to first define the induced character on G associated to a character on
H. This induced character will be a class function; we’ll worry later about
showing that it is actually the character of a representation. If f: G — C
is a function, then we can restrict f to H to obtain a map Resg’} f:H—-C
called restriction. So Res% f(h) = f(h) for h € H.

Proposition 8.1.1. Let H < G. Then Res$: Z(L(G)) — Z(L(H)) is a
linear map.

Proof. First we need to verify that if f: G — C is a class function, then so
is Res% f. Indeed, if x,h € H, then Res$, f(xha™") = f(zha™') = f(h) =

87



CHAPTER 8. INDUCED REPRESENTATIONS 88

Resg f(h) since f is a class function. Linearity is immediate:

Resg(clfl + cofa)(h) =c1fi(h) + cafa(h) =1 Resg fi(h) + ¢ Resg f2(h).
This completes the proof. O

Our goal now is to construct a linear map Z(L(H)) — Z(L(G)) going
the other way. First we need a piece of notation. If H < G and f: H — C
is a function, let us define f: G — C by

v ) flx) zeH
f(x)_{o v ¢ H.

The reader should verify that the assignment f — f is a linear map from
L(H) to L(G). Let us now define a map Ind%: Z(L(H)) — Z(L(G)), called
induction, by the formula

Ind f (z1gx).
“

In the case x is a character of H, one calls Indf] x the induced character on
G.
Proposition 8.1.2. Let H < G. Then the map
nd%: Z(L(H)) — Z(L(G))
1s linear.

Proof. First we verify that Indg f is really a class function. Let y,g € G,
then

Indf; f(y~'gy) > fay  gyr) > f(z7"g2) = Indf; f(9)
!H! !H!

zeG zeG

where the penultimate equality follows by setting z = yx. Next we check
linearity. Indeed, we compute

IndH(01f1 + cafa)(g Z c1fa + CQfQ(x g:L‘)

xEG’
=Clig7 e gﬂf C2 7 2@ 956
=c il )+ fa(
| | zeG ’H| zeG

= IndH fi(g) + c2 IDdH f2(9)

establishing the linearity of the induction map. O
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The following theorem, known as Frobenius reciprocity, asserts that the
linear maps Resg and Ind% are adjoint. What it says is in practice is that
if x is an irreducible character of G and 6 is an irreducible character of H,
then the multiplicity of x in the induced character Ind%@ is exactly the
same as the multiplicity of 6 in Res% X-

Theorem 8.1.3 (Frobenius reciprocity). Suppose that H is a subgroup of
G and let a be a class function on G and b be a class function on H. Then
the formula

(Res% a,b) = (a,Ind$ b)

holds.
Proof. We begin by computing
1 _
(a,Indf b) = @] 2 ) Indf b(g) (8.1)
geG
1 — 1 o
= @l a g)ﬁ Z b(x™ gx) (8.2)
geCG reG
11 S
= GITH] a(g)b(z™ " gx). (8.3)
zeG geG

Now in order for (')(:rflgx) not to be 0, we need z~'gx € H, that is, we need
g = rhz~! with h € H. This allows us to re-index the sum in (8.3)) as

I PPl \GH DI

r€G heH r€G heH
Z Res T a,b)
:J:EG
= <Res i a,b)
where the first equality uses that a is a class function on G. O

The following formula for induction in terms of coset representatives is
often extremely useful, especially for computational purposes.

Proposition 8.1.4. Let G be a group and H a subgroup of G. Letty,... tm,
be a complete set of representatives of the left cosets of H in G. Then the

formula
m

ndf f(g) = f(t; 'gti)
i=1
holds for any class function f on H.
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Proof. Using that G is the disjoint union ¢t H U --- U t,, H, we obtain
1 & s,
Ind% |H| Zf =1 |Z > F(  gth). (8.4)
i=1 heH

Now if h € H, then h_lti_lgtih € H if and only if t;lgti € H. Since f is
a class function on H, it follows that f(h_lt;lgtih) = f(t;lgti) and so the
right hand side of ({8.4) equals

‘ZZf (t; ' gti) = |H‘Zth gts) —Zf(t{lgt»
i=1 heH heH i=1 i=1

completing the proof. O

8.2 Induced representations

If p: G — GL(V) is a representation of G and H < G, then we can restrict
¢ to H to obtain a representation Res% ¢: H — GL(V). Since, for h € H,

Xresg o (h) = Tr(Res o(h)) = Tr(p(h)) = x,p(h) = Resf x,(h)

it follows that xg..c , = Resg X Thus the restriction map sends characters
P

to characters. In this section, we show that induction also sends characters

to characters, but the construction in this case is much more complicated.

Let’s look at some examples to see why this might indeed be the case.

Example 8.2.1 (Regular representation). Let x; be the trivial character
of the trivial subgroup {1} of G. Then

Ind?l} x1(9) = Z x1(z tgx),
zeG

but 7 1gx € {1} if and only if g = 1. Thus

G| g=1

nd?, =
n {1}X1(g) {O g#l,

ie., Ind?l} x1 is the character of the regular representation of G.

This example can be generalized.
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Example 8.2.2 (Permutation representations). Let H < G and consider
the associated group action o: G — Sg, g given by og(xH) = gxH. Notice
that 2H € Fix(g) if and only if grH = 2 H, that is, 2~ 'gz € H. Now there
are |H| elements x giving the coset xH so |Fix(g)| is 1/|H| times the number
of x € G such that = 'gx € H. Let x1 be the trivial character of H. Then

a( 1 ) 1 zlgveH
rgr) =
x g 0 v lgz¢ H

and so we deduce

Yo(9) = [Fix(g)| = ,1H, S (el ge) = nd§ xa(g)
zeG

showing that Indg X1 is the character of the permutation representation o.

Fix now a group G and a subgroup H. Let m = [G : H] be the index
of H in G. Choose a complete set of representatives t1,...,t, of the left
cosets of H in G. Without loss of generality we may always take t; = 1.
Suppose ¢: H — GL4(C) is a representation of H. Let us introduce a dot
notation in this context by setting

. )P reH
70 z¢H

where 0 is the d x d zero matrix. We now may define a representation
Indf] ¢: G — GLpy(C), called the induced representation, as follows. First,
for ease of notation, we write & for Indf] . Then, for g € G, we construct
<ng as an m x m block matrix with d x d blocks by setting [gng]ij = gbt__1gtj
for 1 <i,j < m. In matrix form we have '

Pirtgn Prilgto o Pr gt
G _ Sleg_lgh gOtg_lgta
Yg = . )
('Ot,_nl,lgtm
[Pitgtn 7 Piitgtmer Pralgtm

Before proving that Ind%  is indeed a representation, let’s look at some
examples.
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Example 8.2.3 (Dihedral groups). Let G = D,,, the dihedral group of order
2n. If r is a rotation by 27/n and s is a reflection, then D,, = {r"™ sr" |
0 <m < n-—1}. Let H = (r); so H is a cyclic subgroup of order n
and index 2. For 0 < k < n —1, let xx: H — C* be the representation
given by xg(r™) = e2mikm/n - Let’s compute the induced representation
o) = Indf] Xk- We choose coset representatives t| = 1 and 2 = s. Then

tr My =™ tT sr™ty = sr™
tl_lrmtg =rTMs=gr ™ tflsrmtg =srMs=r""
ty ™ty = sr™ ty tsr™ty = ™
ty My =™ tytsr™ty = rMs = sr™
and so we obtain
ol = [Sm) KO [ ]
Xe(sr™)  xE(r—™) 0 e~ 2mikm/n

(k) _ Xk(srm) )'(k(rim) _ 0 6727rikm/n
Psrm Xk(,r.m) Xk(Sr_m) e2mikm/n 0 :

In particular, Ind$ x(r™) = 2cos(2wkm/n) and Ind$ xi(s7™) = 0. It is
easy to verify that ¢® is irreducible for 1 < k < 5 and that this range of
values gives inequivalent irreducible representations. Note that Ind% Xk =
Indg Xn—Fk, S0 there is no need to consider k¥ > 5. One can show that the
o) cover all the equivalence classes of irreducible representations of D,
except for the degree one representations. If n is odd there are two degree
one characters while if n is even there are four degree one representations.

Example 8.2.4 (Quaternions). Let @ = {£1,+i, £7, il%} be the group of
quaternions. Here —1 is central and the rules 2 = 7> = k2 = ijl;: = —1 are
valid. One can verify that Q' = {£1} and that Q/Q" = Zy x Z5. Thus Q
has four degree one representations. Since each representation has degree
dividing 8 and the sum of the squares of the degrees is 8, there can be only
one remaining irreducible representation and it must have degree 2. Let’s
construct it as an induced representation. Let H = (7). Then |H| = 4 and
so [@ : H] = 2. Consider the representation ¢: H — C* given by ((i%) = .
Let t; =1 and t, = ). Then one can compute

Q _ 10 Q _ 1 0

Q 0 -1 Q 0 —
g0iﬁ_i[1 0]’ ‘pﬂc_i{—z’ 0]'
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It is easy to see that % is irreducible since goiQ and gog have no common
eigenvector. The character table of () appears in Table

tl-1] a5k
vill| 1| 1]1]1
vo 1] 1|1 |-1]-1
ys|1] 1 |=1]1]-1
yall| 1 |=1]-1]1
vs|2]=2] 0] 010

Table 8.1: Character table of the quaternions

We are now ready to prove that Indg  is a representation with character
G
Ind xp-

Theorem 8.2.5. Let H be a subgroup of G of index m and suppose that
@: H — GL4(C) is a representation of H. ThenInd$ ¢: G — GLypq(C) is a
representation and Xmd§ o = Indg Xe- In particular, Indg maps characters
to characters.

Proof. Let t1,...,t, be a complete set of representatives for the cosets of H
in G. Set ¢ = Ind% @. We begin by showing that ¢ is a representation.
Let z,y € G. Then we have

m m
G G G G : p
[‘px Py ]ij = Z[gpm ]Zk[gpy ]kj = Z wtflxtkwtglytj' (85)
k=1 k=1

The only way gbt;1ytj # 0 is if t,;lytj € H, or equivalently ¢, H = yt; H. So
if ty is the representative of the coset yt; H, then the right hand side of (8.5))
becomes <,bt;1zt£g0tz1ytj. This in turn is non-zero if and only if ti_lfL’tg € H,
that is, t,H = xtyH = xyt;H or equivalently ti_la:ytj € H. If this is the
case, then the right hand side of (8.5)) equals

-1 1, =1
Potat, Py yt; = Piy eyt

and hence [gofgog lij = @p-14,. = [gogy]ij, establishing that ¢ is a homomor-

zyt;
phism from G to M,,4(C). Next observe that [¢{];; = $-1,,, but t7lt, e H

implies ¢;H = t; H, which in turn implies t; = ¢;. Thus

pr=1 i=j
[o$]i; = o
70 i ]
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and so ¢f = I. Therefore, if g € G then @f@?_l = cp?g_l = =1

establishing that (gog)_l = go?,l and therefore ¢ is a representation. Let’s
compute its character.

Applying Proposition we obtain
m m
Xpe(9) = Tr(eg) =) Tr(py-14,) = D Xelti'gti) = Indf x,
i=1 i=1

as required. O

8.3 Mackey’s irreducibility criterion

There is no guarantee that if x is an irreducible character of H, then Indg X
will be an irreducible character of G. For instance, L = Ind?l} X1 is not irre-
ducible. On the other hand, sometimes induced characters are irreducible,
as we saw with the dihedral groups and the quaternions. There is a criterion,
due to Mackey, describing when an induced character is irreducible. This is
the subject of this section. By Frobenius reciprocity,

<Indg X Indg Xg) = <Resg Indg Xes Xe)
and so our problem amounts to understanding Resg Indg X

Definition 8.3.1 (Disjoint representations). Two representations ¢ and p
of G are said to be disjoint if they have no common irreducible constituents.

Proposition 8.3.2. Representations ¢ and p of G are disjoint if and only
if Xp and x, are orthogonal.

Proof. Let o) ... ©() be a complete set of representatives of the equiva-
lence classes of irreducible representations of G. Then

for certain non-negative integers m;,n;. From the orthonormality of irre-
ducible characters, we obtain

<X<,07 Xp> =mini + -+ Mmgns. (86)

Clearly the right hand side of is 0 if and only if m;n; = 0 all ¢, if and
only if ¢ and p are disjoint. O
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To understand Res$ Ind$ f, it turns out not much more difficult to
analyze Resg Ind]G( f where H, K are two subgroups of G. To perform this
analysis we need the notion of a double coset.

Definition 8.3.3 (Double coset). Let H, K be subgroups of a group G.
Then define a group action o: H x K — G by o, 1)(9) = hgk~—!. The orbit
of g under H x K is then the set

HgK ={hgk |he H ke K}

and is called a double coset of g. We write H\G/K for the set of double
cosets of H and K in G.

Notice that the double cosets are disjoint and have union G. Also, if H
is a normal subgroup of G, then H\G/H = G/H.

Example 8.3.4. Let G = GL2(C) and B be the group of invertible 2 x 2

1
upper triangular matrices over C. Then B\G/B = {B ,B {(1) O] B}.
The following theorem of Mackey explains how induction and restriction
of class functions from different subgroups interact.

Theorem 8.3.5 (Mackey). Let H,K < G and let S be a complete set of
double coset representatives for H\G/K. Then, for f € Z(L(K)),

G G ¢ __ H sKs™1 s
Resp Ind% f = ZIHdHﬂsKs*1 Resysps—1 f
s€S

where f € Z(L(sKs™1)) is given by f*(z) = f(s tws).

Proof. For this proof it is important to construct the correct set T of left
coset representatives for K in G. Choose, for each s € S, a complete set
V, of representatives of the left cosets of H N sKs~! in H. Then H =
Upevs v(H N sKs~!) and the union is disjoint. Now

HsK = HsKs 's = U v(HNsKs 1)sKs s = U vsK
vEVs vEVs

and moreover this union is disjoint. Indeed, if vsK = v'sK with v,v" € Vg,
then s~'v1v's € K and so v~ € sKs™!. But also v,v' € H so v~/ €
H N sKs ! and hence v(H N sKs ') = v/(HNsKs 1) and so v = v’ by
definition of Vj.
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Let Ty = {vs | v € Vi} and let T' = | J,c g Ts. This latter union is disjoint
since if vs = v's’ for v € V5 and v/ € Vy, then HsK = Hs'K and so s = &/,
as S is a complete set of double coset representatives, and therefore v = v’.
Putting this together we have

G=JHsK =) |Jvsk =) | tKk=JtK

seS seSveEV, seESteTs teT

and all these unions are disjoint. Therefore, T" is a complete set of represen-
tatives for the left cosets of K in G.
Using Proposition for h € H, we compute

md$ f(h) = 3 f(t"he)

teT

- Y

seS teTy

= Z Z f(s~ ™ hos)

seES veV;

=> > )

SGS 'UEVSa
v thvesKs™!

=3 > Resifg. 0 ho)

sES UGV97
v lhveHNsKs™ 1

_ H sKs™1 s
- § :IndHﬁsKs—l }{eSHﬁsKs—1 f
seS

again by an application of Proposition This completes the proof. [
From Theorem [8.3.5] we can obtain Mackey’s irreducibility criterion.

Theorem 8.3.6 (Mackey’s irreducibility criterion). Let H be a subgroup of
G and let ¢: H — GL4(C) be a representation. Then Ind% @ 1s irreducible
if and only if:

1. ¢ s irreducible;

. -1 S
2. the representations Resgm sHs—1 P and Resjﬁfs -1 ©° are disjoint

for all s ¢ H, where p*(x) = (s 'as) for x € sHs™ 1.
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Proof. Let x be the character of ¢. Let S be a complete set of double coset
representatives of H\G/H. Assume without loss of generality that 1 € S.
Then, for s = 1, notice that H NsHs™' = H, p* = ¢. Let S* = S\ {1}.
Theorem then yields

—1
Res% Ind% v = x + Z Indf_ i Resiils x5
sest

Applying Frobenius reciprocity twice, we obtain

(Indf; x, Ind§; x) = (Res% Ind% x, x)

-1
- <X’ X> + Z <IndgﬁsHs*1 RGSEI%SSHS,l X% X>
sest

—1
= <X’ X> + Z <Rese;{l—£1ssHs*1 XS’ ResgﬁsHs*I X>
sest

Since (x, x) > 1 and all terms in the sum are non-negative, we see that the
inner product (Ind% y,Ind% x) is 1 if and only if (y,x) = 1 and

sHs™ 1 s H _
<ReSHﬂsHs—1 X 7ReSHﬂsHs—1 X> =0

all s € S*. Thus Indg © is irreducible if and only if ¢ is irreducible and the
representations Resﬁﬁfsﬁ 1 ¢° and Resgﬁ <is—1 @ are disjoint for all s € St
Now any s ¢ H can be an element of S* for an appropriately chosen set S

of double coset representatives, from which the theorem follows. O

Remark 8.3.7. The proof shows that one need only check that 2 holds for all
s ¢ H from a given set of double coset representatives, which is often easier
to deal with in practice.

Mackey’s criterion is most readily applicable for normal subgroups. If
H <G is a normal subgroup, then H\G/H = G/H and HNsHs™ ! = H. So
Mackey’s criterion in this case boils down to checking that ¢: H — GL4(C)
is irreducible and that ¢*: H — GL4(C) does not have ¢ as an irreducible
constituent for s ¢ H. Actually, one can easily verify that ¢* is irreducible
if and only if ¢ is irreducible, so basically one just has to check that ¢ and
©* are inequivalent irreducible representations when s ¢ H. In fact, one just
needs to check this as s ranges over a complete set of coset representatives
for G/H.
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Example 8.3.8. Let p be a prime and let
a bl _ .
G:{[O 1] |anp,beZp},

n-{[f 9 ises,).

Then H = Z,, H <G and G/H = Z; (consider the projection to the upper
left corner). A complete set of coset representatives is

a 0, _ ¥
S:{[O 1 \aEZp}.

Let ¢: H — C* be given by
——1

1 b _ 2mib/p
(o o) =
a

Then if s = { — ﬂ with @ # 1, we have

AR - -

and so @, p°® are inequivalent irreducible representations of H. Mackey’s
criterion now implies that Ind$ ¢ is an irreducible representation of G of
degree [G : H] = p — 1. Notice that

p—1+@p-1=@-11+p-1=@p@-1)p=IG|.

Since one can lift the p — 1 degree one representations of G/H = Z,, to

G, the above computation implies that Indggo and the p — 1 degree one
representations are all the irreducible representations of G.

Exercises

Ezercise 8.1. Prove that if G = GL2(C) and B = { [8 i] | ac # 0}, then

B\G/B = {B,B [(1) (1)} B}. Prove that G/B is infinite.
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Ezxercise 8.2. Let G be a group with a cyclic normal subgroup H = (a) of
order k. Suppose that Ng(a) = H, that is, sa = as implies s € H. Show
that if y: H — C* is the character given by x(a™) = e*™™/* then Ind% x
is an irreducible character of G.

FEzercise 8.3.

1. Construct the character table for the dihedral group D4 of order 8.
Suppose that s is the reflection over the z-axis and r is rotation by
7/2. Hint: Observe that Z = {1,72} is in the center of Dy (actually,
it is the center) and D4/Z = 7y x Zo. Use this to get the degree one
characters. Get the degree two character as an induced character from
a representation of the subgroup (r) = Z,.

2. Is the action of D4 on the vertices of the square two-transitive?

Ezercise 8.4. Compute the character table for the group in Example [8.3.8
of the text when p = 5.

Ezercise 8.5. Let N be a normal subgroup of a group G and suppose that
¢: N — GL4(C) is a representation. For s € G, define ¢*: N — GL4(C) by
©*(n) = p(s~'ns). Prove that ¢ is irreducible if and only if ¢* is irreducible.
Ezercise 8.6. Show that if G is a non-abelian group and ¢: Z(G) — GL4(C)
is an irreducible representation of the center of G, then Indg(G) @ is not
irreducible.

Exercise 8.7. A representation is called faithful if it is one-to-one.
1. Let H be a subgroup of G and suppose ¢: H — GL4(C) is a faithful

representation. Show that & = Indfl © is a faithful representation of
G.

2. Show that every representation of a simple group which is not a direct
sum of copies of the trivial representation is faithful.

Ezercise 8.8. Let G be a group and let H be a subgroup. Let o: G — Sg,
be the group action given by o4(xH) = gxH.
1. Show that o is transitive.

2. Show that H is the stabilizer of the coset H.

3. Recall that if 1y is the trivial character of H, then Ind% 1 is the
character x5 of the permutation representation o: G — GL(C(G/H)).
Use Frobenius reciprocity to show that the rank of ¢ is the number of
orbits of H on G/H.
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4. Conclude that G is two-transitive on G/H if and only if H is transitive
on the set of cosets not equal to H in G/H.

5. Show that the rank of ¢ is also the number of double cosets in H\G/H
either directly or by using Mackey’s Theorem.

Ezercise 8.9. Use Frobenius reciprocity to give another proof that if p is an
irreducible representation of G, then the multiplicity of p as a constituent
of the regular representation is the degree of p.

Ezercise 8.10. Let G be a group and H a subgroup. Suppose p: H — GL(V)
is a representation. Let W be the vector space of all functions f: G — V
such that f(hg) = p(h)f(g) for all g € G and h € H equipped with pointwise
operations. Define a representation ¢: G — GL(W) by ¢4(f)(g90) = f(909)-
Prove that ¢ is a representation of G' equivalent to Indg p-



Chapter 9

Another Theorem of
Burnside

In this chapter we give another application of representation theory to fi-
nite groups, again due to Burnside. The result is based on a study of real
characters and conjugacy classes.

9.1 Conjugate representations

If A = (a;;) is a matrix, then A4 is the matrix (a;;). One easily verifies
that AB = A - B and that if A is invertible, then so is A and moreover
A" = AT Hence if ¢: G — GL4(C) is a representation of G, then we
can define the conjugate representation o by g, = pg. If f: G — Cis a
function, then define f by f(g) = f(g).

Proposition 9.1.1. Let ¢: G — GL4(C) be a representation. Then we
have Xz = X.

Proof. First note that if A € My(C), then

Tr(A) = @i + -+ @ad = a11 + - + aaqg = Tr(A).

Thus xz(g9) = Tr(@g) = Tr(eg) = Xx(9), as required. O

As a consequence, we observe that the conjugate of an irreducible rep-
resentation is again irreducible.

Corollary 9.1.2. Let p: G — GL4(C) be irreducible. Then @ is irreducible.

101
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Proof. Let x = x,. We compute

X X) = |(1;| > x(9)x(g) = |61;| > x(9)x(9) = box) =1
geG

geG
and so p is irreducible. O

Quite often one can use the above corollary to produce new irreducible
characters for a group. However, the case when Y = x is also of importance.

Definition 9.1.3 (Real character). A character x of G is called realE] if
X = X, that is, x(g) € R for all g € G.

Example 9.1.4. The trivial character of a group is always real. The groups
S3 and S4 have only real characters. On the other hand, if n is odd then Z,
has no non-trivial real characters.

Since the number of irreducible characters equals the number of conju-
gacy classes, there should be a corresponding notion of a “real” conjugacy
class. First we make two simple observations.

Proposition 9.1.5. Let x be a character of a group G. Then x(g~!) = x(g).

Proof. Without loss of generality, we may assume that y is the character of
a unitary representation ¢: G — U, (C). Then

X(g71) = Tr(py1) = Te(y") = Ti(py) = Ti(py) = X(9)

as required. O

1

Proposition 9.1.6. Let g and h be conjugate. Then g—* and h=" are con-

jugate.
Proof. Suppose g = xhaz~!'. Then ¢~ = zh~ 1z~ % O

So if C is a conjugacy class of G, then C~' = {g~! | g € C} is also a
conjugacy class of G'and moreover if x is any character then x(C~1) = x(C).

Definition 9.1.7 (Real conjugacy class). A conjugacy class C of G is said
to be real if C = C~1.

The following proposition motivates the name.

'Some authors divide what we call real characters into two subclasses: real characters
and quaternionic characters.
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Proposition 9.1.8. Let C' be a real conjugacy class and x a character of

G. Then x(C) = x(C), that is, x(C) € R.
Proof. 1If C is real then x(C) = x(C~1) = x(C). O

An important result of Burnside is that the number of real irreducible
characters is equal to the number of real conjugacy classes. The elegant
proof we provide is due to Brauer and is based on the invertibility of the
character table. First we prove a lemma.

Lemma 9.1.9. Let ¢: S,, — GL,(C) be the standard representation of Sy,
and let A € M,(C) be a matriz. Then, for g € Sy, the matriz pzA is
obtained from A by permuting the rows of A according to g and Apg is

obtained from A by permuting the columns of A according to g~".

Proof. We compute (pgA4)ga); = D ope1 ©(9)g()kArj = Aij since

() )1 k=i
PN )g(k = 0 else.

Thus ¢4A is obtained from A by placing row i of A into row g¢(i). Since
the representation ¢ is unitary, Ap, = (cpgAT)T = (py-1AT)T the second
statement follows from the first. O

Theorem 9.1.10 (Burnside). Let G be a finite group. The number of real
irreducible characters of G equals the number of real conjugacy classes of G.

Proof (Brauer). Let s be the number of conjugacy classes of G. Our stand-
ing notation will be that x1,...,xs are the irreducible characters of G and
Ci,...,Cs are the conjugacy classes. Define o, 8 € S5 by Xi = Xq(;) and
C’;l = Cp(;). Notice that x; is a real character if and only if a(i) = i
and similarly C; is a real conjugacy class if and only if 3(i) = i. Therefore,
|Fix(a)| is the number of real irreducible characters and |Fix(3)| is the num-
ber of real conjugacy classes. Notice that o = a~! since o swaps the indices
of x; and X;.

Let ¢: Sy — GL4(C) be the standard representation of Ss;. Then we
have x, (o) = |Fix(cv)| and x,(8) = |Fix(5)] so it suffices to prove Tr(pq) =
Tr(¢g). Let X be the character table of G. Then by Lemma ©aX is
obtained from X by swapping the rows of X corresponding to x; and ; for
each i. But this means that p,X = X. Similarly, Xpg is obtained from X by
swapping the columns of X corresponding to C; and C;” ! for each i. Since
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K(C’_l) = x(C) for each conjugacy class C, this swapping again results in

X. In other words, B
PaX = X = Xpg.

But by the second orthogonality relations (Theorem the columns
of X form an orthogonal set of non-zero vectors and hence are linearly
independent. Thus X is invertible and so ¢, = chgX_l. We conclude
Tr(¢a) = Tr(pg), as was required. O

As a consequence we see that groups of odd order do not have non-trivial
real irreducible characters.

Proposition 9.1.11. Let G be a group. Then |G| is odd if and only if G
does not have any non-trivial real irreducible characters.

Proof. By Theorem it suffices to show that {1} is the only real con-
jugacy class of G if and only if |G| is odd. Suppose first G has even order.
Then there is an element ¢ € G of order 2. Since g = ¢!, if C is the
conjugacy class of ¢, then C = C~! is real.

Suppose conversely that G contains a non-trivial real conjugacy class C.
Let g € C and N¢(g9) = {x € G | zg = gz} be the normalizer of g. Then
|C| =[G : Ng(g)]. Suppose that hgh™' = g=1. Then

h2gh72 — hgflhfl _ (hghfl)fl =g

and so h? € Ng(g). If h € (h?), then h € Ng(g) and so g~ = hgh™! = g.
Hence in this case g> = 1 and so |G| is even. If h ¢ (h?), then h? is not
a generator of (h) and so 2 divides the order of h. Thus |G| is even. This
completes the proof. O

From Proposition we deduce a curious result about groups of odd
order that doesn’t seem to admit a direct elementary proof.

Theorem 9.1.12 (Burnside). Let G be a group of odd order and let s be
the number of conjugacy classes of G. Then s = |G| mod 16.

Proof. By Proposition [9.1.11] G has the trivial character xo and the re-
maining characters come in conjugate pairs x1,Xx},--., Xk X} of degrees
di,...,dg. In particular, s = 1 4+ 2k and

k
2
Gl =1+ 2d.
j=1
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Since d; divides |G| it is odd and so we may write it as d; = 2m; + 1 for
some non-negative integer m;. Therefore, we have

k k
Gl =1+ "20@2m;+1)2 =1+ (8m? +8m; +2)
j=1 j=1

k k
=142k+8) my(m;+1)=s+8>_ m;(m;+1)
j=1 j=1

= s mod 16

since exactly one of m; and m; + 1 is even. O

Exercises
Ezercise 9.1. Let G be a finite group.

1. Prove that two element g,h € G are conjugate if and only if x(g) =
x(h) for all irreducible characters Y.

2. Show that the conjugacy class C' of an element g € G is real if and
only if x(g) = x(g) for all irreducible characters Y.




Chapter 10

Representation Theory of
the Symmetric Group

In this chapter, we construct the irreducible representations of the symmetric
group Sp,.

10.1 Partitions and tableaux

We begin with the fundamental notion of a partition of n. Simply speaking,
a partition of n is a way of writing n as a sum of positive integers.

Definition 10.1.1 (Partition). A partition of n is a tuple A = (A1,..., \¢)
of positive integers such that Ay > Ao > --- > Apand Ay +--- 4+ Ay =n. To
indicate that A is a partition of n, we write A F n.

For example, (2,2, 1,1) is partition of 6 and (3, 1) is partition of 4. Note
that (1,2, 1) is not a partition of 4 since the second entry is bigger than the
first.

There is a natural partition of n associated to any permutation o € S,
called the cycle type of o. Namely, type(o) = (A1,..., A\¢) where the \; are
the lengths of the cycles of o in decreasing order (with multiplicity). Here we
must count cycles of length 1, which are normally omitted from the notation
when writing cycle decompositions.

106
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Example 10.1.2. Let n = 5. Then

type((1 2)(5 3 4)) = (3,2)
type((12 3)) = (3,1, 1)
type((12 3 4 5)) = (5)

type((1 2)(3 4)) = (2,2, 1),

It is typically shown in a first course in group theory that two permuta-
tions are conjugate if and only if they have the same cycle type.

Theorem 10.1.3. Let o,7 € S,. Then o is conjugate to 7 if and only if
type(o) = type(7).

It follows that the number of irreducible representations of S, is the
number of partitions of n. Thus we expect partitions to play a major role in
the representation theory of the symmetric group. Our goal in this chapter
is to give an explicit bijection between partitions of n and irreducible repre-
sentations of 5,. First we need to deal with some preliminary combinatorics.

It is often convenient to represent partitions by a Tetris-like picture called
a Young diagram.

Definition 10.1.4 (Young diagram). If A = (A1,..., \p) is a partition of n,
then the Young diagram (or simply diagram) of A consists of n boxes placed
into ¢ rows where the i*" row has \; boxes.

This definition is best illustrated with an example. If A = (3,1), then
the Young diagram is as follows.

[ ] (10.1)

Conversely, any diagram consisting of n boxes arranged into rows such that
the number of boxes in each row is non-increasing is the Young diagram of
some partition of n.

Definition 10.1.5 (Conjugate partition). If XA - n, then the conjugate par-
tition AT of X is the partition whose Young diagram is the transpose of the
diagram of \, that is, the Young diagram of AT is obtained from the diagram
of A by exchanging rows and columns.

Again, a picture is worth one thousand words.
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Example 10.1.6. If A = (3,1), then its diagram is as in (10.1). The
transpose diagram is
|

and so AT = (2,1,1).

Next we want to introduce an ordering on partitions. Given two parti-
tions A and p of n, we want to say that A dominates u, written A > p, if,
for every ¢ > 1, the first ¢ rows of the diagram of A\ contain at least as many
boxes as the first ¢ rows of u.

Example 10.1.7. For instance, (5,1) > (3,3) as we can see from

) =L L] and 3,3 =

But neither (3,3,1) > (4,1,1,1), nor (4,1,1,1) > (3,3,1) because (4,1,1,1)
has more elements in the first row, but (3,3,1) has more elements in the
first two rows.

(3537 1) = (47111a1) =

Let us formalize the definition. Observe that the number of boxes in the
first @ rows of A = (Aq,...,Ap) IS Ap -+ + A

Definition 10.1.8 (Domination order). Suppose that A = (A1,...,\¢) and
= (p1,..., ) are partitions of n. Then A is said to dominate u if

Mg+t A > et

for all ¢ > 1 where if ¢ > ¢, then we take \; = 0, and if ¢ > m, then we take
i = 0.

The domination order satisfies many of the properties enjoyed by >.
Proposition 10.1.9. The dominance order satisfies:
1. Reflexivity: AD> X;

2. Anti-symmetry: A> p and p > X\ implies A = p;
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3. Transitivity: A> p and p> p implies A > p.

Proof. Reflexivity is clear. Suppose A = (A1,...,A¢) and p = (1, ..., fim)
are partitions of n. We prove by induction on n that A\> p and g > A implies
A=p. If n=1, then A = (1) = p and there is nothing to prove. Otherwise,
by taking ¢ = 1, we see that A\; = py. Call this common value & > 0. Then
define partitions X,y of n — k by N = (Ag,..., \¢) and p/ = (u2, .-, tm)-
Since

Mttt AN = pe

for all © > 1 and A\; = py, it follows that
Ao+ N =g+

for all # > 1 and hence X' > p/ and p/ > N. Thus by induction X = x/ and
hence A = p. This establishes anti-symmetry.
To obtain transitivity, simply observe that

MA- XNt = prt o
and so A > p. OJ

Proposition [10.1.9] says that > is a partial order on the set of partitions
of n.

Example 10.1.10.

Y
Y

(T e e

Young tableaux are obtained from Young diagrams by placing the inte-
gers 1,...,n into the boxes.

Definition 10.1.11 (Young tableaux). If A F n, then a \-tableaux (or
Young tableauz of shape \) is an array t of integers obtained by placing
1,...,n into the boxes of the Young diagram for A. There are clearly n!
A-tableaux.

This concept is again best illustrated with an example.

Example 10.1.12. Suppose that A = (3,2,1). Then some A-tableaux are
as follows.

1[2]3] 1[2] [3][2]6]
4[5] 5], [1]5
16 4]

NEE




CHAPTER 10. THE SYMMETRIC GROUP 110

A rather technical combinatorial fact is that if ¢* is a A-tableaux and
st is a p-tableaux such that the integers in any given row of s* belong to
distinct columns of ¢}, then \ > p.

To prove this, we need the following proposition, which will be useful in
its own right.

Proposition 10.1.13. Let A = (A1,...,\¢) and = (1, ..., m) be parti-
tions of n. Suppose that t* is a \-tableaux and s* is a p-tableauz such that
entries in the same row of s* are located in different columns of t». Then
we can find a \-tableauz u such that:

1. The j** columns of t* and u contain the same elements for 1 < j < {;

2. The entries of the first i rows of s* belong to the first i rows of u” for
each 1 <i<m.

Proof. For each 1 < r < m, we construct a A\-tableaux ti‘ such that:
(a) The j** columns of t* and ¢ contain the same elements for 1 < j < 4;

(b) The entries of the first i rows of s* belong to the first i rows of ¢ for
1<r<m.

Setting v = t\, will then complete the proof. The construction is by in-
duction on r. Let us begin with r = 1. Let k be an element in the first row
of s* and let c(k) be the column of ¢* containing k. If k is in the first row
of t*, we do nothing. Otherwise, we switch in ¢* the first entry in c(k) with
k. Because each element k of the first row of s* is in a different column of
t*, the order in which we do this doesn’t matter, and so there results a new
A-tableaux t7 satisfying properties 1 and 2.

Next suppose that t;\ with the desired two properties has been con-
structed for 1 < r <m — 1. Define tf)ﬂ as follows. Let k be an entry of row
741 of s# and let c(k) be the column in which k appears in . If k already
appears in the first  + 1 rows of ¢, there is nothing to do. So assume that
k does not appear in the first » + 1 rows of ¢,. Notice that if row r + 1 of .}
does not intersect c¢(k), then since the sizes of the rows are non-increasing,
it follows that k already appears in the first 7 rows of . Thus we must
have that c¢(k) intersects row r + 1 and so we can switch k£ with the element
in row r 4+ 1 and column c(k) of t}. Again, because each entry of row r + 1
of s* is in a different column of ¢*, and hence of ) by property (a), we can
do this for each such k independently. In this way, we have constructed ti‘ 1
satisfying (a) and (b). O
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Let us illustrate how this works with an example.

Example 10.1.14. Suppose that t* and s* are given by

8/5[4[2]7] 1/2[3]4]
=013 and s =56 .
6] 718

No two elements in the same row of s* belong to the same column of t*.
We construct ti\ by switching in t* each element appearing of the first
row of s* with the element in its column of the first row of t*. So

1[3[4]2]7]
=185 .
16

Now by switching 8 and 6, we obtain the A-tableaux

1[3[4]2]7]
ty =165
18]

which has every element in the first ¢ rows of s* located in the first i rows
of t for i = 1,2,3. Hence we can take u* = .

Our first use of Proposition [10.1.13]is to establish the following combi-
natorial criterion for domination.

Lemma 10.1.15 (Dominance lemma). Let A and u be partitions of n and
suppose that t* and s* are tableaux of respective shapes A and p. Moreover,
suppose that integers in the same row of s* are located in different columns
of t*. Then A > p.

Proof. Let A = (A1,...,A¢) and pu = (p1,..., 4m). By Proposition [10.1.13
we can find a \-tableaux u” such that, for 1 < i < m, the entries of the first

i rows of s are in the first i rows of v*. Then since A\; + --- + \; is the
number of entries in the first i rows of u* and ju; 4 - - - + p; is the number of
entries in the first ¢ rows of s#, it follows that Ay + -+ X\; > p1 4+ -+ + 1
for all © > 1 and hence A > p. O

10.2 Constructing the irreducible representations

If X C{1,...,n}, we identify Sy with those permutations in S,, that fix all
elements outside of X. For instance, S(y3) consists of {Id, (2 3)}.
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Definition 10.2.1 (Column stabilizer). Let ¢ be a Young tableaux. Then
the column stabilizer of t is the subgroup of S,, preserving the columns of
t. That is, o € C; if and only if ¢(7) is in the same column as ¢ for each

ie{l,...,n}.
Let us turn to an example.

Example 10.2.2. Suppose that

1[3]7]
t=\4|5| .
216
Then C; = S{1,2,4}S{3,5,6}S{7} = 5{17274} X S{3,5,6} X 5{7} SO, for example,
(14),(124)(35) € Ct. Since Sgyy = {Id}, it follows [Cy| = 3! - 3! = 36.

The group 5, acts transitively on the set of A-tableaux by applying
o € S, to the entries of the boxes. The result of applying o € S,, to t is
denoted ot. For example, if

_[1]3]4]
i
and o = (1 3 2), then
ot = 3 2‘4‘.
1

Let us define an equivalence relation ~ on the set of A-tableaux by
putting ¢ ~ to if they have the same entries in each row. For example,

1[2[3] [3]1]2]
415 54

since they both have {1,2,3} in the first row and {4, 5} in the second row.

Definition 10.2.3 (Tabloid). A ~-equivalence class of A-tableaux is called
a A-tabloid or a tabloid of shape A. The tabloid of a tableaux t is denoted
[t]. The set of all tabloids of shape A is denote T*. Denote by T} the tabloid
with 1,..., A1 inrow 1, A\ +1,..., A1 + A2 in row 2 and in general with
M4 FXN1+1, ..., A+ -+ A in row 7. In other words T, is the tabloid
corresponding to the tableaux which has j in the j* box.

For example, T(39) is the equivalence class of

12]3]
415]

Our next proposition shows that the action of S, on A-tableaux induces a
well-defined action of S, on tabloids of shape A.
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Proposition 10.2.4. Suppose that t1 ~ to and o € S,,. Then oty ~ ots.
Hence there is a well-defined action of S, on T given by putting o[t] = [ot]
for t a A-tableaux.

Proof. To show that ot; ~ oto, we must show that 4, j are in the same row
of ot; if and only if they are in the same row of ots. But 4,5 are in the
same row of ot; if and only if 0~!(i) and o~1(4) are in the same row of t1,
which occurs if and only if 071(i) and 0~1(j) are in the same row of t5. But
this occurs if and only if ¢, are in the same row of ots. This proves that
oty ~ oty. From this it is easy to verify that o[t] = [ot] gives a well-defined
action of S,, on T*. ]

The action of S;, on A-tabloids is transitive since it was already transitive
on A-tableaux. Suppose that A = (\1,...,A¢). The stabilizer Sy of T} is

Sx = 501,001 X St Ataat X X S et A g 1,0}

Thus |T?| =[S, : Sa] = n!/A!--- Al
For a partition A, set M* = CT* and let ©*: S, — GL(M?) be the
associated permutation representation.

Example 10.2.5. Suppose that A = (n — 1,1). Then two A-tableaux are
equivalent if and only if they have the same entry in the second row. Thus
T* is in bijection with {1,...,n} and ¢* is equivalent to the standard rep-
resentation. On the other hand, if A\ = (n), then there is only one A-tabloid
and so ¢ is the trivial representation.

If A # (n), then ¢* is a non-trivial permutation representation of S,, and
hence is not irreducible. Nonetheless, it contains a distinguished irreducible
constituent that we now seek to isolate.

Definition 10.2.6 (Polytabloid). Let A, u - n. Let t be a A-tableaux and
define a linear operator A;: M* — MH* by

Ay = Z sgn () pk.

weCy

In the case A = p, the element

er = Ayt] = Z sgn(m)7[t]

weCly

of M is called the polytabloid associated to t.
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Our next proposition shows that the action of 5,, on A-tableaux is com-
patible with the definition of a A-tabloid.

Proposition 10.2.7. If 0 € S,, and t is a A-tableauz, then gpget = €g¢.

Proof. First we claim that C,; = 0Cio~!. Indeed, if X; is the set of entries
of column ¢ of ¢, then o(Xj;) is the set of entries of column i of ot. Since 7
stabilizes X; if and only if o7o~! stabilizes o(X;), the claim follows. Now
we compute

erAr = sgn(m)pe)
TeCy
= Z sgn(a‘lTU)goc’}@:},lm
7€Cst
= Aat()@é

where we have made the substitution 7 = omo 1.

Thus @le; = @rAi[t] = Agrpp[t] = Aot[ot] = ey This completes the
proof. O

We can now define our desired subrepresentation.

Definition 10.2.8 (Sprecht representation). Let A be a partition of n. De-
fine S* to be the subspace of M* spanned by the polytabloids e; with
t a A-tableaux. Proposition implies that S* is Sy,-invariant. Let
Yr: S, — GL(SY) be the corresponding subrepresentation. It is called the
Sprecht representation associated to A.

Remark 10.2.9. The e; are not in general linearly independent. See the next
example.

Our goal is to prove that the ¢ form a complete set of irreducible
representations of S,,. Let’s look at an example.

Example 10.2.10 (Alternating representation). Consider the partition A =
(1,1,...,1) of n. Since each row has only one element, A-tableaux are the
same thing as A-tabloids. Thus ¢” is equivalent to the regular representation
of S,. Let t be a A-tableaux. Because t has only one column, trivially

Cy = 5,. Thus
e = Z sgn(m)mlt].
TESy

We claim that if o € S,, then p)e; = sgn(o)e;. Since we know that
cpg\ret = e, by Proposition |10.2.7, it will follow that S = Ce; and that
Y is equivalent to the degree one representation sgn: S, — C*.
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Indeed,

> sen(m)eaonlt]

WESn
=) sgn(o ')t
TESn

= sgn(o)ey

A
Polt

where we have performed the substitution 7 = om.

The proof that the 1)* are the irreducible representations of S,, proceeds
via a series of lemmas.

Lemma 10.2.11. Let \, i - n and suppose that t* is a \-tableaux and s*
is a p-tableaux such that Ap[s*] # 0. Then N> u. Moreover, if X = u, then
Atk [Su] — :i:et)\.

Proof. We use the dominance lemma. Suppose that we have two elements i, j
that are in the same row of s and the same column of t*. Then (i j)[s"] =
[s#] = Id[s"] and thus

(g — s )] = 0. (10.2)

Let H = {Id,(i j)}. Then H is a subgroup of Cj; let oy,...,04 be a
complete set of left coset representatives for H in Cpx. Then we have

Ap[sf]= ) sgu(m)ehls"]

ﬂECt)\

k
=3 (sen(on)eh, +sen(on(i D)2 ;) ) [5"]

r=1
k
_ Z sgn(or) s, (Vg — ¢y j))1s"]
r=1
=0

where the last equality uses . This contradiction implies that the
elements of each row of s* are in different columns of t}. The dominance
lemma (Lemma now yields that A > pu.

Next suppose that A = p. Let u* be as in Proposition The
fact that the columns of t and v have the same elements implies that the
unique permutation o with u* = ot* actually belongs to C;x. On the other



CHAPTER 10. THE SYMMETRIC GROUP 116

hand, for all ¢ > 1, the first ¢ rows of s# belong to the first i rows of u*. But
since A\ = y, this implies [u}] = [s#]. Indeed, the first row of s* is contained
in the first row of u*, but they have the same number of boxes. So these
rows contain the same elements. Suppose by induction, that each of the
first i rows of u* and s* have the same elements. Then since each element
of the first i + 1 rows of s* belongs to the first i + 1 rows of u”, it follows
from the inductive hypothesis that each element of row i + 1 of s belongs
to row i + 1 of . Since these tableaux both have shape ), it follows that
they have the same (i + 1) row. We conclude that [u] = [s"].
It follows that

Ap[s"] = D sen(m)ep[s"]

WECtA

= Y sen(roeden i [u]
TECV\

=sgn(o!) D sen(r)r(t’]

TECt)\
— :I:et/\

where in the second equality we have performed the change of variables
7 = wo. This completes the proof. ]

The next lemma continues our study of the operator A;.

Lemma 10.2.12. Let t be a A-tableaux. Then the image of the operator
Ay: M — M? is Cey.

Proof. From the equation e; = A;[t], it suffices to show that the image
is contained in Ce;. To prove this, it suffices to check on basis elements
[s] € TA. If Ay[s] = 0, there is nothing to prove; otherwise, Lemma
yields A;[s] = t+e; € Ce;. This completes the proof. d

Recall that M* = CT? comes equipped with an inner product for which
T is an orthonormal basis and that, moreover, the representation ¢* is
unitary with respect to this product. Furthermore, if ¢ is a A-tableaux, then

Af =) sea(m)(pp)" = ) sen(r)er = A

TelClt T7eC}

where the penultimate equality is obtained by setting 7 = 7~! and using
that ¢ is unitary. Thus A; is self-adjoint.

The key to proving that the ¥* are the irreducible representations of S,
is the following theorem.
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Theorem 10.2.13 (Subrepresentation theorem). Let A be a partition of n
and suppose that V is an Sy-invariant subspace of M». Then either S* C V
or V. .C (SM)*.

Proof. Suppose first that there is a A-tableaux ¢ and a vector v € V such
that Asv # 0. Then by Lemma and Sy-invariance of V, we have
0 # Aw € Ce; NV, It follows that e; € V. Hence, for all o € S,,, we have
ot = go{}et € V. Because S,, acts transitively on the set of A-tableaux, we
conclude that S* C V.

Suppose next that, for all A-tableaux ¢ and all v € V, one has A;v = 0.
Then we have

<U7et> = <U7At[t]> = <A2<U7 [t]> = (Atvv [t]> =0

because Ay = A; and A;v = 0. As t and v were arbitrary, this shows that
V C (SM)*, completing the proof. O

As a corollary we see that S* is irreducible.
Corollary 10.2.14. Let A n. Then *: S, — GL(S™) is irreducible.

Proof. Let V be a proper Sp-invariant subspace of S*. Then by Theo-
rem [10.2.13) we have V C (S*)+ N 8* = {0}. This yields the corollary. [

We have thus constructed, for each partition A of n, an irreducible rep-
resentation of .S,,. The number of conjugacy classes of S, is the number of
partitions of n. Hence if we can show that A # p implies that ¢ ~ 1*, then
it will follow that we have found all the irreducible representations of .S,,.

Lemma 10.2.15. Suppose that A\, F n and let T € Homg, (¢*, o"). If
SA ¢ ker T, then A u. Moreover, if A = p, then T|gx is a scalar multiple
of the identity map.

Proof. Theorem implies that ker T C (S*)*. So, for any A-tableaux
t, it follows that 0 # Te, = TA[t] = A/T[t], where the last equality uses
that T commutes with ¢*(S,) and the definition of A;. Now TJ[t] is a
linear combination of p-tabloids and so there exists a p-tabloid [s] such that

Ai[s] # 0. But then A > p by Lemma [10.2.11
Suppose now that A = u. Then

Te; = AtT[t] € Ce C S)\

by Lemma [10.2.12l Thus T leaves S* invariant. Since S* is irreducible,
Schur’s lemma implies T'|gx = ¢I for some ¢ € C. O
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As a consequence we obtain the following result.

Lemma 10.2.16. If Homg, (¢*, ") # 0, then A> p. Moreover, if X = u,
then dim Homg, (¢, o*) = 1.

Proof. Let T: S* — M*" be a non-zero homomorphism of representations.
Then we can extend T' to M* = S* @ (S*)+ by putting T'(v + w) = Tw
for elements v € S* and w € (S*)*. This extension is a homomorphism of
representations because (S*)1 is S,-invariant and so

T(y(v+w)) = T(ppv + ppw) = Tppv = ehTv = phT (v + w).

Clearly S* ¢ kerT and so A > u by Lemma [10.2.15, Moreover, if A = g,
then T must be a scalar multiple of the inclusion map by Lemma [10.2.15
and so dim Homg, (¢, o#) = 1. O

We can now prove the main result.

Theorem 10.2.17. The Sprecht representations ¥ with A - n form a
complete set of inequivalent irreducible representations of Sy,.

Proof. All that remains is to show that 1* ~ o* implies A\ = u. But
Y ~ 9#, implies that 0 # Homg, (¢, ") C Homg, (¥}, o). Thus A > u
by Lemma A symmetric argument shows that u > A and so A =
by Proposition [10.1.9] This establishes the theorem. O

In fact, we can deduce more from Lemma [10.2.16

Corollary 10.2.18. Suppose p = n. Then y* appears with multiplicity one
as an irreducible constituent of *. Any other irreducible constituent 1 of
pH satisfies A > p.

Exercises

Ezercise 10.1. Verify that the relation ~ on A-tableaux is an equivalence
relation.

Exercise 10.2. Verify that the action in Proposition [10.2.4] is indeed an ac-
tion.

Ezercise 10.3. Prove that if A = (n — 1,1), then the corresponding Sprecht
representation of .S, is equivalent to the augmentation subrepresentation of
the standard representation of S,.

Ezercise 10.4. Compute the character table of Ss.
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