189-251B: Algebra 2 Practice Midterm Exam

1. Give the definitions of:
a) A vector space over a field F.
b) Linear independence of vectors.
c) A basis of a vector space.
d) The dimension of a vector space.
2. Let V be a vector space over a field F, and let $\left(v_{1}, \ldots, v_{n}\right)$ be a list of vectors in V. Let $T: F^{n} \rightarrow V$ be the linear transformation defined by

$$
T\left(x_{1}, \ldots, x_{n}\right)=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n} .
$$

a) Give a necessary and sufficient condition involving the list $\left(v_{1}, \ldots, v_{n}\right)$ guaranteeing that T is injective.
b) Give a necessary and sufficient condition involving the list $\left(v_{1}, \ldots, v_{n}\right)$ guaranteeing that T is surjective.
3. Let T be a linear transformation on a finite-dimensional vector space and let $m(x)$ be its minimal polynomial. Show that T is invertible if and only if $m(0) \neq 0$.
4. Let V denote the vector space of 2×2 matrices with entries in F, and let T be the linear transformation that sends a matrix M to its transpose:

$$
T\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
$$

Suppose that $2 \neq 0$ in F. Show that T is diagonalisable, by producing a basis of eigenvectors for T. List the eigenvalues of T, and the dimensions of the associated eigenspaces.

Bonus question 5. Let T be a linear transformation and let $m(x) \in F[x]$ be its minimal polynomial. Show that $g(T)$ is invertible if and only if $\operatorname{gcd}(m(x), g(x))=1$.

