189-251A: Algebra 2
 Final Exam
 Monday, April 23, 2012

This exam has 10 questions, worth 10 points each. Calculators and class notes are not allowed.

1. a) Let F be a field, let S be a finite set and let V be the vector space of functions from S to F. Compute the dimension of V by exhibiting an explicit basis for V.
b) Suppose S is infinite, but countable. Does V then have a countable basis? Justify your answer.
2. Let $p(x)$ be a non-zero polynomial of degree n with coefficients in a field F and let V be the quotient $F[x] /(p(x))$. Compute the dimension of V by exhibiting an explicit basis for V. (You should include a proof that the set of vectors you come up with is indeed a basis...)
3. a) Let V be the vector space of problem 2 , and let $T: V \longrightarrow V$ be the linear transformation given by $T(p(x))=x p(x)$.
a) Compute the minimal polynomial of T.
b) Compute the characteristic polynomial of T.
c) Give a necessary and sufficient condition on $p(x)$ for T to be diagonalisable over F.
d) Give a necessary and sufficient conditon on $p(x)$ for T to be invertible.
4. Give an example of a non-zero vector space V and a linear transformation $T: V \longrightarrow V$ satisfying $\operatorname{ker}(T)=$ image (T). Show that such a linear transformation is never diagonalisable.
5. Let V be the vector space of 2×2 matrices with entries in the field \mathbf{R} of real numbers, and let $T: V \longrightarrow V$ be the linear transformation given by

$$
T(M)=A M A^{-1}, \quad A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

Write down a basis for V and the matrix of T relative to this basis.
6. Let $T: V \longrightarrow V$ be a diagonalisable linear transformation, let $\lambda_{1}, \ldots, \lambda_{t}$ be the distinct eigenvalues for T and let

$$
V=\oplus_{i=1}^{t} V_{\lambda_{i}}
$$

be the associated decomposition of V into a direct sum of eigenspaces. Show that a linear transformation $U: V \longrightarrow V$ commutes with T if and only if all the eigenspaces $V_{\lambda_{i}}$ are stable under U. (I.e., if and only if U maps $V_{\lambda_{i}}$ to itself, for each i.)
7. Define the following terms:
a) The dual space V^{*} of a vector space V;
b) The dual linear map T^{*} attached to a linear transformation $T: V \longrightarrow$ W. Be sure to specify what the domain and target of T^{*} are, and to write down the formula defining T^{*}.
c) Show that $\left(T_{1} T_{2}\right)^{*}=T_{2}^{*} T_{1}^{*}$ for all $T_{1}: V \longrightarrow W$ and $T_{2}: U \longrightarrow V$.
8. State and prove the Cauchy-Scwartz inequality for real inner product spaces.
9. A linear transformation T on a finite-dimensional Hermitan inner product space is said to be skew-adjoint if it satisfies the relation $T^{*}=-T$.
a) Show that a skew-adjoint operator is normal.
b) Show that all the eigenvalues of a skew-adjoint operator are purely imaginary.
c) Show that every normal operator T can be written as a sum $T_{1}+T_{2}$ where T_{1} is self-adjoint, T_{2} is skew-adjoint, and $T_{1} T_{2}=T_{2} T_{1}$.
10. Let $V=\mathbf{R}^{n}$ equipped with the standard dot product and resulting distance function, and let W be the hyperplane (i.e., subspace of dimension $n-1$) defined by the equation

$$
W=\left\{\left(x_{1}, \ldots, x_{n}\right) \text { with } x_{1}+\cdots+x_{n}=0\right\}
$$

Show that the vector in W which is closest to the vector $\left(x_{1}, \ldots, x_{n}\right)$ is the vector $\left(x_{1}-\mu, \ldots, x_{n}-\mu\right)$, where $\mu:=\frac{x_{1}+\cdots+x_{n}}{n}$ is the mean of x_{1}, \ldots, x_{n}.

