
189-251B: Algebra 2

Assignment 10
Due: Wednesday, March 26

1. Let T be a normal operator on a finite-dimensional complex inner product
space. Show that T has a square root, i.e., there is a normal operator S such
that S2 = T .

2. Show that a self-adjoint operator T on a finite-dimensional real inner
product space need not have a square root. Does it always have a cube root,
i.e., is there a self-adjoint linear transformation S such that S3 = T ?

3. Let V = Mn(C) be the complex vector space of n × n matrices with
complex entries, and define a complex-valued function on V × V by the rule

〈A, B〉 = trace(AB∗),

where B∗ denotes the conjugate transpose of the matrix B, and the trace of
a matrix is the sum of its diagonal entries.

(a) Show that this function defines a complex inner product on V .
(b) Given a matrix M ∈ Mn(C), define a linear transformation TM :

V −→ V by the rule TM(A) = MA. Show that T ∗
M = TM∗ . (Hint: the

identity trace(AB) = trace(BA) may be useful.)

4. A linear operator T on a real inner product space is called an isometry (or
an orthogonal transformation) if ||T (v)|| = ||v|| for all v ∈ V . An n×n matrix
M is called orthogonal if its columns are an orthonormal set of vectors relative
to the standard inner product on R

n. Justify this multiple use of the word
“orthogonal ” by showing that the matrix of an orthogonal transformation
relative to an orthonormal basis for V is an orthogonal matrix. (We already
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did this, pretty much, in class, but perhaps a bit quickly: this exercise is just

to give you a chance to go over your notes...).

5. Show that if T is any linear operator on an inner product space V , then
TT ∗ is self-adjoint.

6. A linear transformation on an inner product space is said to be skew-

adjoint if T ∗ = −T . Show that ever linear transformation T on a (real or
complex) inner product space can be uniquely writen as the sum of a self-
adjoint transformation T1 and a skew-adjoint transformation T2, and that T1

and T2 commute if and only if T is normal.

7. Let V be the vector space of infinite sequences (a1, a2, . . .) with entries
in a field F . The goal of this exercise is to lead you to prove that V never

admits a countable basis. In class, we proved this when F is a finite field,
by observing that a vector space over F with a countable basis would have
to be countable, while V (as a set) is uncountable. As some of you pointed
out to me after class, this argument is not completely satisfying: it does not
extend to the case where F is uncountable (F = R for example) and besides,
such a statement really ought to admit a proof that is “independent of the
field”.

a) Show that, if V admits a countable basis, then there is a nested se-
quence of subspaces

W1 ⊂ W2 ⊂ · · · ⊂ Wn ⊂ · · ·

satisfying
dim(Wj) = j, ∪∞

j=1
Wj = V.

(The latter equality asserts that every vector v in V belongs to some Wj, for
j sufficently large and depending of course on v.)

b) It will be convenient to represent a sequence (an)n≥1 as a concatenation
of sequences (s2, s3, s4, . . .) where sj is a sequence of length j. For each j ≥ 2,
show that there is a sequence Sj of length j with the property that

sj = Sj ⇒ (s2, . . . , sj, . . .) /∈ Wj−1.
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c) Use b) and a diagonalisation argument analogous to Cantor’s to con-
struct a vector v ∈ V which does not belong to any of the Wj’s. Conclude
that V does not have a countable basis.
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