189-251B: Algebra 2 Assignment 6 Due: Wednesday, February 19.

1. Let $T: V \longrightarrow V$ be a nilpotent linear transformation, and let

$$d_j := \dim(\ker(T^j)), \qquad d'_j := d_{j+1} - d_j.$$

(a) Show that the sequence d_j is increasing, so that $d'_j \ge 0$ for all j.

(b) Show that the sequence d'_j is (non-strictly) decreasing and tends to zero.

(c) Show that $T^j = 0$ if and only if $d'_j = 0$.

2. Compute the minimal and characteristic polynomials of the linear transformation T(f) = f' acting on the following finite-dimensional vector spaces V of continuous functions on the interval [0, 1].

(a) V = the real vector space of polynomials of degree at most d with real coefficients (with d some fixed integer).

(b) The real vector space spanned by the real-valued functions $\sin(x)$, $\cos(x)$, $\sin(2x)$, $\cos(2x)$.

(c) The complex vector space spanned by the functions $\sin(x)$, $\cos(x)$, $\sin(2x)$, $\cos(2x)$ (viewed here as complex valued functions on [0, 1].)

(d) The real vector space spanned by the functions e^x , xe^x , x^2e^x , e^{2x} .

3. Compute the characteristic and minimal polynomials of the following matrices with entries in the field \mathbf{Z}_2 with two elements.

$$(a) \left(\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right)$$

(b)
$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4. Write down the eigenspaces and generalised eigenspaces in \mathbf{Z}_2^4 for the matrices in question 3.

5. An *linear involution* on a vector space V over a field F is a linear transformation whose square is the identity. Show that any involution is diagonalisable when $2 \neq 0$ in F. Give an example of a non-diagonalisable involution on a vector space over \mathbf{Z}_2 .