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(1) We want to compute the reduced residue of 3N+1 where N = some big
power of 10. Note that the following works as long as the power of 10 is bigger
than 0, and not just in the particular case of our interest!

First step is to observe that 33 = 27 ≡ 1 (mod 13). Secondly, we have
N ≡ 1(mod 3), and hence N +1 ≡ 2, and so N +1 = 3k+2 for some integer k.

From these two facts we get

3N+1 = 33k+2

= (33)k32

≡ (1)k32

≡ 9,

where all congruences are modulo 3.

(2) Take R = Z[x]. Then the ideal I = (2, x) is not principal and the quotient
R/I is Z/2Z.

(3) a) If p is of the form 3m+ 1 then

xp − x = x(xp−1 − 1)

= x(x3m − 1)

= x((x3)m − 1)

= x(x3 − 1)((x3)m−1 + (x3)m−2 + · · ·+ x3 + 1).

Hence x3 − 1|xp − x, and gcd(x3 − 1, xp − x) = x3 − 1.
b)For this case we use the fact that gcd(x3 − 1, xp − x) in the ring Z/pZ[x],

is a polynomial of degree d equal to the number of distinvt roots of x3 − 1 in
Z/pZ (proved in exercise 10 part (c) of assignment 3.)

We show that x3 − 1 has only one root in Z/pZ;
If a is such a root then we have a3 = 1. But a ∈ Z/pZ and hence ap = a by

Fermat’s Little Theorem, so
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a = ap

= a3m+2

= (a3)ma2

= (1)ma2 = a2.

So a(a − 1) = a2 − a = 0 and hence, as Z/pZ is a field and has no zero-
divisors, a is either 0 or 1. But a can not be zero, as a3 = 1, so a = 1 is the
only option, that is the only root of x3 − 1. This shows that d = 1.

Now x−1|x3−1 = (x−1)(x2+x+1) and x−1|xp−x = x(x−1)(xp−2+· · ·+1),
so x− 1|gcd(x3 − 1, xp − x). Since the latter has degree 1 we get

x− 1 = gcd(x3 − 1, xp − x)

(4) Any element of order t of the group G is in fact a root of the polynomial
xt − 1, as the group operation on G is multiplication in F and the identity is
just 1. But xt−1 is a polynomial of degree t ≥ 1 in F [x] and hence has at most
t roots. This implies that G has at most t elements of order t.

(5) Fermat’s Little Theorem states that for every prime number p and every
integer a ̸≡ 0 mod p, we have

ap−1 ≡ 1 mod p.

Lagrange’s Theorem says that for every finite group G and each of its subgroupe
H we have

|H|||G|.

The proof of Fermat’s Little Theorem using Lagrange’s Theorem goes as
follows; Take G = Z/pZ×, the group operation being multiplication in Z/pZ.
Such a as in the assumption of FLT gives an element of G. Further take H to
be the cyclic subgroup generated by a. Then |H| = ord(a) and by Lagrange’s
Theorem ord(a) = |H| divides |G| = p − 1. So p − 1 = k × ord(a) for some
integer k. Now we have

ap−1 = ak×ord(a)

= (aord(a))k

≡ (1)k

= 1.

This proves FLT.
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(6) To prove that 1 +
√
−11 is irreducible we use the norm function f :

Z[
√
−11] → Z, introduced in the solution of exercise 1 of assignment 2. We

saw that this function is ”mutiplicative”:

f((a+ b
√
−11)(c+ d

√
−11)) = f(a+ b

√
−11)f(c+ d

√
−11).

Now assume 1 +
√
−11 = (a + b

√
−11)(c + d

√
−11). We will prove that either

a+ b
√
−11 or c+ d

√
−11 is equal to one or minus one.

By multiplicity of the norm function we get

12 = f(1 +
√
−11)

= f((a+ b
√
−11)(c+ d

√
−11))

= f(a+ b
√
−11)f(c+ d

√
−11)

= (a2 + 11b2)(c2 + 11d2).

So f(a+b
√
−11) and f(c+d

√
−11) will have to be one of the following numbers

±1,±2,±3,±4,±6,±12.

Now we show that Z[
√
−11] has no elements of norm ±2,±3,±6. In fact, a2 +

11b2 = f(a + b
√
−11) is always positive since a2 and b2 are positive and if b is

non-zero then a2+11b2 ≥ 11, and so we cannot get any of the 6 numbers above.
On the other hand 2, 3 and 6 are not perfect sqaures so cannot equal a2.

So we have proved that f(a + b
√
−11) is 1, 4 or 12. But 4 cannot occur as

otherwise f(c+ d
√
−11) = 3 which is impossible.

Now if f(a + b
√
−11) = 1 then we should have b = 0 and a = ±1, and so

a+ b
√
−11 = ±1.

On the other hand, if f(a + b
√
−11) = 12 then f(c + d

√
−11) = 1 and so

c+ d
√
−11 = ±1.

This shows that 1 +
√
−11 is irreducible.

Now we show the ideal (3, 1 +
√
−11) is not principal;

If there was an element α such that (α) = (3, 1+
√
−11) then we shold have

3 = αβ and 1+
√
−11 = αγ for some β, γ ∈ Z[

√
−11]. But then we should have

9 = f(3) = f(α)f(β)

and
12 = f(1 +

√
−11) = f(α)f(γ).

So f(α) should devide gcd(9, 12) = 3 and hence should equal 1 or 3. But
we’ve already seen that our ring has no elements of norm 3, so f(α) = 1 which
implies α = ±1 in which case the ideal generated by α is the whole ring. But
(3, 1 +

√
−11) is not the whole ring (it does not contain 1, for example.) This

is a contradiction and proves that (3, 1 +
√
−11) is not principal.

Now define a map
ϕ : Z[

√
−11] → Z/3Z

which sends a+ b
√
−11 to the class [a− b] of a− b in Z/3Z. We show first that

this map is a ring homomorphism;
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• ϕ(1) = [1]

•

ϕ((a+ b
√
−11) + (c+ d

√
−11)) = ϕ(a+ c+ (b+ d)

√
−11)

= [a+ c− (b+ d)]

= [a− b] + [c− d]

= ϕ(a+ b
√
−11) + ϕ(c+ d

√
−11)

•

ϕ((a+ b
√
−11)(c+ d

√
−11)) = ϕ(ac− 11bd+ (ad+ bc)

√
−11)

= [ac− 11bd− (ad+ bc)]

= [ac+ bd− ad− bc]

= [(a− b)(c− d)]

= ϕ(a+ b
√
−11)ϕ(c+ d

√
−11).

Second we show it is surjective; in fact image of {0, 1, 2} as a subset of
Z[
√
−11] is the whole ring Z/3Z and so ϕ is surjective.
Next we see that (3, 1+

√
−11) is in the kernel; in fact ϕ(3) = [3−0] = [3] =

[0] and ϕ(1 +
√
−11 = [1− 1] = [0].

Further if a + b
√
−11 is in Ker(ϕ), then [a − b] = 0 and hence a = b + 3k

for some integer k. We have

a+ b
√
−11 = 3k + b+ b

√
−11 = 3k + b(1 +

√
−11) ∈ (3, 1 +

√
−11).

This shows that Kerϕ = (3, 1 +
√
−11).

Now by the First Isomorphism Theorem we have

Z[
√
−11]/Ker(ϕ) ∼= Im(ϕ).

By the obove observation this formula reads

Z[
√
−11]/(3, 1 +

√
−11) ∼= Z/3Z.

(7) For a 2× 2 matrix A =

[
a b
c d

]
with a, b, c, d,∈ {0, 1} to be invertible we

should have ad − bc = det(A) ̸= 0 ∈ Z/2Z. So we shold have ad − bc ≡ 1 mod
2. This happens when (1) ad = 1 and bc = 0 or when (2) ad = 0 and bc = 1.

In the first case we have [
1, 0
0, 1

]
,

[
1, 1
0, 1

]
,

[
1, 0
1, 1

]
.
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And in the second case [
0, 1
1, 0

]
,

[
1, 1
1, 0

]
,

[
0, 1
1, 1

]
.

This gives us all 2 by 2 invertible matrices with entries in Z/2Z. SoGL2(Z/2Z)
has cardinality 6.

Now each 2 by 2 matrix acts by matrix multiplication on the set of column
vectors (2 by 1) with entries in Z/2Z, namely the set

{
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]
}

Further if the matrix is invertible, then it fixes the first vector and permutes the
other three. We use this idea to define a group isomorphim from GL2(Z/2Z) to
S3.

Label the four vectors above {0, 1, 2, 3} and define a map ϕ : GL2Z/2Z → S3

by letting ϕ(A)to be the permutation on {1, 2, 3} given by the action of A on
the vectors 1, 2 and 3.

It is clear that if A fixes all three vectors (in fact even if it only fixes the first
two, then it automatically fixes the third which is the sum of the other two)
then A is the identity matrix.

The group operation on both sides is just composition of maps and hence ϕ
respects the operation and so is a group homomorphism which is injective by
the previous paragraph.

Now an injective map of finite sets is surjective if and only if the sets have
the same cardinality. In this case both GL2 and S3 have 6 elements and so ϕ is
also surjective and hence gives and isomorphism of groups.

(8) To prove that H is normal in G we need to show that for every g ∈ G
gH = Hg.

H has index 2 in G, so the number of left cosets (which equals the number
of right cosets) of H in G is 2. Since G is the disjoint union of all the left cosets
(or the right cosets) we have

G = H ⊔ aH

for some a ∈ G such that aH ̸= H or equivalently a /∈ H.
Now for this a, H and Ha give two right cosets of H in G. Since a /∈ H

these two right cosets are distinct (hence disjoint) and since we only have two
distinct right cosets {H,Ha} gives the set of all right cosets of H in G. So we
have

G = H ⊔Ha.

This proves that aH = Ha and for any h ∈ H in particular, we have
ah ∈ aH = Ha and so ah = h′a for some h′ ∈ H.

Now for g ∈ G, if g ∈ H then we have

gH = H = Hg.
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And if g ∈ G but g /∈ H then g ∈ aH and so g = ah for some h ∈ H and we
have

gH = ahH = aH = Ha = Hh′a = Hah = Hg,

as desired, where h′ ∈ H is such that ah = h′a.
This proves that H is normal in G.

(9) Firstly, the intersection of any two subgroups is a subgroup, so N ∩H is
a subgroup of G that is included in H and so is a subgroup of H. Now we show
it is normal in H;

For any element n ∈ N∩H and h ∈ H we want to prove that hnh−1 ∈ N∩H.

• h ∈ H and n ∈ H so hnh−1 ∈ H, as H is a subgroup.

• h ∈ G and n ∈ N so hnh−1 ∈ N as N is normal in G.

This shows that hnh−1 ∈ H ∩N. Hence H ∩N is normal in H.

(10) We know that for any group homomorphism f : G → G′,Ker(f) is a
normal subgroup of G. So since G is assumed to be simple, Ker(f) is either {e}
or the whole group.

If, further, the homomorphism is non-trivial, Ker(f) ̸= G, and so we should
have Ker(f) = {e}. This implies that any such f is injective, as desired.
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