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(1) 3x2 − 5x+ 8

x2 + x+ 1
)

3x4 − 2x3 + 6x2 − x+ 2
− 3x4 − 3x3 − 3x2

− 5x3 + 3x2 − x
5x3 + 5x2 + 5x

8x2 + 4x+ 2
− 8x2 − 8x− 8

− 4x− 6

So q(x) = 3x2 − 5x+ 8 and r(x) = −4x− 6.

(2) x3 − x2 + 1

x2 + x+ 1
)

x5 − x+ 1
− x5 − x4 − x3

− x4 − x3

x4 + x3 + x2

x2 − x+ 1
− x2 − x− 1

− 2x
And −2x ≡ 0 modulo 2. So we get

(x5 − x+ 1) ≡ (x2 + x+ 1)(x3 − x2 + 1) mod 2

≡ (x2 + x+ 1)(x3 + x2 + 1) mod 2

(3) First note that the function f : Z[x] → Z assigns to each polynomial its
value at 0, i.e. f(p) = a0 = p(0).
Now let p1, p2 ∈ Z[x], be given by p1(x) = a0 + a1x + ... + anx

n and p2(x) =
b0 + b1x+ ...+ bmxm, then
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f(p1 + p2) = (p1 + p2)(0)

= p1(0) + p2(0)

= f(p1) + f(p2).

Similarly,

f(p1p2) = (p1p2)(0)

= p1(0)p2(0)

= f(p1)f(p2).

(4) We proceed using Euclidean Algorithm; in the first step we get
x2 + 3x− 1

x2 + 1
)

x4 + 3x3 − 2x+ 4
− x4 − x2

3x3 − x2 − 2x
− 3x3 − 3x

− x2 − 5x+ 4
x2 + 1

− 5x+ 5
But −5x+ 5 ≡ 0 modulo 5, so we have

x4 + 3x3 − 2x+ 4 = (x2 + 1)(x2 + 3x− 1),

hence x4 + 3x3 − 2x+ 4 is divisible by x2 + 1 modulo 5 and so we have

gcd(x4 + 3x3 − 2x+ 4, x2 + 1) = x2 + 1.

(5) First we make the following claim:

Claim A polynomial of degree 3 in F [x] is irreducible over F if and only if it
has no roots in F.

Proof of the Claim If f ∈ F [x] has a root t in F, then (x − t)|f(x). So we
have f(x) = (x − t)g(x), for some g ∈ F [x], of degree 2. As neither x − t
nor g(x) are unit or equal to f(x) (not having degree 0 or 3,) this gives a
decomposition of f. so if f has a root then it is reducible. Conversely, assume
f is reducible, say f = gh for some g, h ∈ F [x] with 0 < deg(g), deg(h). Then
as 3 = deg(f) = deg(g) + deg(h), one of g and h should have degree 1 (and the
other should be of degree 2.) So without loss of generality we can assume that
deg(g) = 1; Let g = rx + s. Then we have t = −s/r is a root of g and hence a
root of f. This proves that if f is reducible then it has a root, or equivalently if
f does not have a root, then it is irreducible.
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Now going back to our problem; a monic polynomial of degree 3 in Z/2Z is
of the form

f(x) = x3 + ax2 + bx+ c,

where a, b, c ∈ {0, 1}(a complete set of representatives mod 2.)
By the claim we just proved, f is reducible iff it has a root in Z/2Z i.e. either

f(0) = 0 or f(1) = 0. But f(0) = c and f(1) = 1 + a+ b+ c. So f is reducible
if and only if

c = 0

or

c = 1 and a+ b ≡ 1 + a+ b+ 1 ≡ 0 mod 2.

Note that the condition a+ b ≡ 0 (mod 2) is equivalent to a = b.
We conclude that f is irreducible if and only if

c ̸= 0 and a ̸= b.

So the only irreducible polynomials of degree three in Z/2Z are

x3 + x2 + 1

x3 + x+ 1.

(6) If p = 4m + 1, then by Wilson’s theorem we have (4m)! ≡ −1, in other
words (4m)! + 1 ≡ 0. So if we prove a2 ≡ (4m)! modulo p then by the above
congruence relation, we have shown that a is a root of the polynomial x2 + 1
mod p.

Note first that 4m+ 1 ≡ 0 modulo p which implies 2m+ i ≡ −2m+ (i− 1)
(mod p) = −(2m− (i− 1)). So we have the following congruences mod p

(2m+ 1)...(2m+ (2m− 1))(2m+ 2m)

≡ (−1)2m(2m)...(2m− (2m− 2))(2m− (2m− 1))

≡ (2m)(2m− 1)...(2)(1)

= (2m)!.

Which gives

(4m)! = (2m)!(2m+ 1)...(2m+ 2m)

≡ (2m)!(2m)!

= (2m)!2,

as desired.
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Now assume p = 4m+ 3; any element a ∈ Z/pZ satisfies a4m+2 = ap−1 ≡ 1
modulo p. If in adition, a is a root of x2 + 1, then we can substitute a2 in the
first relation, by −1 to get

1 = a4m+2

= (a2)2m+1

= (−1)2m+1

= −1,

which is a contradiction. This shows that x2 + 1 does not have a root in
Z/pZ for such p.

(7) First we consider the case of p = 2, 3 separately; we have

02 + 0 + 1 = 1

12 + 1 + 1 = 3 ≡ 1 mod 2

So, modulo 2, this polynomial has no roots. On the other hand, 1 is a root of
x2 + x+ 1 modulo 3.

Now any prime bigger than 3 is either of the form 6m+1 or 6m+5. Indeed
any number of the form 6m, 6m+2, 6m+3 and 6m+4 is divisible by either 2
or 3 and hence is composite.

Now note that a is a root of x2 + x + 1 if and only if a is a root of x3 − 1
that is not equal to 1; in fact, x3 − 1 = (x− 1)(x2 + x+ 1).

So in the following, we look at the roots of f(x) = x3 − 1.
First we consider the case p = 6m + 5; any element a ∈ Z/pZ satisfies

a6m+4 = ap−1 ≡ 1 modulo p. If a is also a root of f then we have a3 = 1, and
so

1 ≡ a6m+4

≡ (a3)2m+1a

≡ (1)2m+1a

≡ a

So the only root of f mosulo p is 1.
But if p = 6m+1, again any a ∈ Z/pZ satisifies ap−1 = a6m = 1. This shows

that for any a ∈ Z/pZ, a2m is a root of f. So we only need to check whether
we can find a ∈ Z/pZ such that a2m ̸= 1. But the polynomial x2m − 1 is a
polynomial of degree 2m and hence has at most 2m roots over the field Z/pZ.
Now if we take a ∈ Z/pZ to be any element other than these 2m roots then
a2m ̸= 1 and is a root of f. This shows that x2 + x + 1 has a root modulo any
prime of the form 6m+ 1.

Below we list all the primes modulo which x2 + x+ 1 has a root
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{3, 7, 13, 19, 31, 37, 43}.

(8) We are looking for a polynomial of the form f(x) = x2 +Ax+B ∈ Z/6Z
with four roots. We can do that by finding two different factorizations of f into
linear factors

f(x) = (x− a)(x− b) = (x− c)(x− d).

But to have such factorizations we should have

x2 − (a+ b)x+ ab = (x− a)(x− b) = (x− c)(x− d) = x2 − (c+ d)x+ cd.

In other words, we want a, b, c, d ∈ Z/6Z such that

a+ b ≡ c+ d and ab ≡ cd mod 6.

For example we can take a = 2, b = 3, c = 0, d = −1 ≡ 5, then f(x) =
(x− 2)(x− 3) = x2 − 5x+ 6 ≡ x2 + x = x(x+ 1).

Finally, his does not contradict the theorem mentioned, because the theorem
is about polynomials in F [x] for F a field. But since 6 is not a prime, Z/6Z has
zero divisors and is not a field.

(9) a. We use the Euclidean algorithm

x4 − x3 − x2 + 1 =
(
x3 − 1

)
·

(
x− 1

)
+
(
− x2 + x

)
x3 − 1 =

(
− x2 + x

)
·
(
− x− 1

)
+
(
x− 1

)
− x2 + x =

(
x− 1

)
· − x + 0

.

So we have
gcd(x4 − x3 − x2 + 1, x3 − 1) = x− 1.

And

x− 1 = (x3 − 1) + (x+ 1)(−x2 + x)

= (x3 − 1) + (x+ 1)[(x4 − x3 − x2 + 1)− (x− 1)(x3 − 1)]

= (x3 − 1)(1− (x2 − 1)) + (x+ 1)(x4 − x3 − x2 + 1)

= (x3 − 1)(2− x2) + (x+ 1)(x4 − x3 − x2 + 1)

c.

x4 + 3x3 + 2x+ 4 = (x2 − 1)(x2 + 3x+ 1) + (5x+ 5)

≡ (x2 − 1)(x2 + 3x+ 1) mod 5.

So x4 + 3x3 + 2x+ 4 is divisible by x2 − 1, and hence

gcd(x4 + 3x3 + 2x+ 4, x2 − 1) = x2 − 1.
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We have
x2 − 1 = 0(x4 + 3x3 + 2x+ 4) + 1(x2 − 1).

e.

x3 − ıx2 + 4x− 4ı = (x2 + 1)(x− ı) + 3(x− ı)

x2 + 1 = (3x− 3ı)(x/3 + ı/3)

So
gcd(x3 − ıx2 + 4x− 4ı, x2 + 1) = 3(x− ı),

and
3(x− ı) = (x3 − ıx2 + 4x− 4ı)− (x2 + 1)(x− ı).

f.

x4 + x+ 1 = (x2 + x+ 1)(x2 − x) + 2x+ 1

≡ (x2 + x+ 1)(x2 − x) + 1 mod 2

So x4 + x+ 1 and x2 + x+ 1 are coprime and we have

gcd(x4 + x2 + 1, x2 + x+ 1) = 1.

Further
1 ≡ (x4 + x+ 1)− (x2 + x+ 1)(x2 − x) mod 2.

(10) a. we know that for any field F and any polynomial f(x) ∈ F [x] if
f(a) = 0 for some a ∈ F then f(x) = (x − a)g(x) for some g(x) ∈ F [x]. In
particular take f(x) = xp − x and F = Z/pZ. Note that by Fermat’s Little
Theorem, for every element a ∈ Z/pZ, we have f(a) = 0. Take a = 0 to get
g0 ∈ F [x] such that

f(x) = (x− 0)g0(x).

Now since f(1) = 0 and (x − 0)(1) = 1 ̸= 0 we deduce that g0(1) = 0, and so
we have

g0(x) = (x− 1)g1(x),

and
f(x) = x(x− 1)g1(x).

Proceeding inductively, if for 0 ≤ n ≤ p− 2 we have gn(x) ∈ Z/pZ such that

f(x) = x(x− 1)...(x− n)gn(x),

since n+1 is a root of f but not a root of x(x−1)...(x−n), we deduce that n+1
is a root of gn and hence gn(x) = (x − (n + 1))gn+1(x), for some polynomial
gn+1 over F. Continuing in this manner, we get

f(x) = x(x− 1)...(x− (p− 1))gp−1(x).
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But gp−1 has degree 0 and both f and x(x− 1)...(x− (p− 1)) are monic poly-
nomials so gp−1 = 1. This gives the factorization

xp − x = x(x− 1)...(x− (p− 1)),

of f into p− 1 linear factors.
b. a ∈ F is a root of g if and only if (x − a) divides g. But we know that

(x − a) divides f anyway! So a is in fact a root if and only if (x − a) divides
gcd(f, g).

Now if a, b ∈ F are different roots, then (x − a) and (x − b) are relatively
prime, and so (x − a)|g(x) and (x − b)|g(x) implies (x − a)(x − b)|g(x) and so
again (x− a)(x− b)|gcd(g(x), f(x)).

This implies that if a1, ...ad are distinct roots of g then

(x− a1)...(x− ad)|gcd(g(x), f(x)).

Conversely, if x−a divides gcd(g, f) it obviously divides g and so a is a root
of g and so is included among a1, ...ad. Note also that since gcd(g(x), f(x))|f(x)
and f is factorizable into linear facors by (a), gcd(g(x), f(x)) is also factorizable
to linear factors, sp by what we have seen it is factorizable to product of (x−a)’s
where a is a root. So we have

gcd(g(x), f(x)) = (x− a1)...(x− ad).

c.The solution to this part of the question was discussed in detail in class,
and so is not included here.
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