Basic Algebra 1
Solutions to Assignment 3

Bahare Mirza

November 8, 2012

(1) 32% — br + 8
x2+x+1) 3zt — 223 + 622 —x+2
—32% — 323 — 322
— 523 +32%2 —x
523 + 52 + bz
822 + 4w + 2
— 822 -8z —38
—4x —6
So g(z) = 32% — 5z + 8 and 7(z) = —4z — 6.

(2) 23 — 2 +1
x2+x—|—1) xb —x+1

— b — gt — 28

—zt =3

2t 4 23 4 12
2?2 —x+1
—z2 —z-—1
—2x

And —2z = 0 modulo 2. So we get

(2 —z+1)=(@®+24+1)(2®—2>+1) mod 2
=@ +a+ 1)@ +2+1) mod 2

(3) First note that the function f : Z[x] — Z assigns to each polynomial its
value at 0, i.e. f(p) = ap = p(0).

Now let p1,p2 € Zlz], be given by p1(z) = ag + a1 + ... + a,z™ and pa(z) =
bo +b1x + ... + b, 2™, then



1+ p2)(0)
1(0) + p2(0)
(p1) + f(p2)-

Jf(p1+p2) =

(p
p
f
Similarly,

(plpz) (plpz)()
= p1(0)p2(0)
= f(p1)f(p2)-

(4) We proceed using Euclidean Algorithm; in the first step we get

22 +3zx—1
:172+1) xt 4+ 323 —2x+4
! _ g2
323 — 2% — 2z
— 323 — 3z
—22—bzx+4
2 +1
—5r+5

But —5z + 5 = 0 modulo 5, so we have
ot 4323 — 20+ 4= (2 + 1) (2 + 3z - 1),
hence z# 4 323 — 22 + 4 is divisible by 22 + 1 modulo 5 and so we have

ged(xt 4+ 32% — 20 + 4,22 + 1) = 2% + 1.
(5) First we make the following claim:

Claim A polynomial of degree 3 in F[x] is irreducible over F' if and only if it
has no roots in F.

Proof of the Claim If f € F[z] has a root ¢ in F, then (z — t)|f(x). So we
have f(x) = (x — t)g(x), for some g € F[z], of degree 2. As neither z — ¢t
nor g(x) are unit or equal to f(x) (not having degree 0 or 3,) this gives a
decomposition of f. so if f has a root then it is reducible. Conversely, assume
f is reducible, say f = gh for some g,h € F[z] with 0 < deg(g),deg(h). Then
as 3 = deg(f) = deg(g) + deg(h), one of g and h should have degree 1 (and the
other should be of degree 2.) So without loss of generality we can assume that
deg(g) = 1; Let g = rx + s. Then we have t = —s/r is a root of g and hence a
root of f. This proves that if f is reducible then it has a root, or equivalently if
f does not have a root, then it is irreducible.



Now going back to our problem; a monic polynomial of degree 3 in Z/2Z is

of the form
f(z) =2 + az® + bx + ¢,

where a, b, c € {0,1}(a complete set of representatives mod 2.)

By the claim we just proved, f is reducible iff it has a root in Z/2Z i.e. either
f(0)=0o0r f(1) =0. But f(0) =cand f(1) =1+ a+b+c. So f is reducible
if and only if

c=0
or
c=1 and a+b=14+a+b+1=0 mod 2.

Note that the condition @ + b = 0 (mod 2) is equivalent to a = b.
We conclude that f is irreducible if and only if

c#0 and a#b.

So the only irreducible polynomials of degree three in Z/2Z are

232?41
23+ 1.
(6) If p = 4m + 1, then by Wilson’s theorem we have (4m)! = —1, in other

words (4m)! + 1 = 0. So if we prove a? = (4m)! modulo p then by the above
congruence relation, we have shown that a is a root of the polynomial 22 + 1

mod p.
Note first that 4m + 1 = 0 modulo p which implies 2m +i = —2m + (i — 1)
(mod p) = —(2m — (i — 1)). So we have the following congruences mod p

(2m+1)...2m + (2m — 1))(2m + 2m)

(=1)*™(2m)...(2m — (2m — 2))(2m — (2m — 1))
(2m)(2m — 1)...(2)(1)

= (2m)!.

Which gives

as desired.



Now assume p = 4m + 3; any element a € Z/pZ satisfies a*™ 2 = P~ =
modulo p. If in adition, a is a root of #2 4 1, then we can substitute a? in the
first relation, by —1 to get

1 — a4m+2
—_ (a2)2m+1

= (—1)m+1

=1,

which is a contradiction. This shows that z2 + 1 does not have a root in
Z/pZ for such p.

(7) First we consider the case of p = 2, 3 separately; we have

0°+0+1=1
124141=3=1 mod 2

So, modulo 2, this polynomial has no roots. On the other hand, 1 is a root of
22 + 2 + 1 modulo 3.

Now any prime bigger than 3 is either of the form 6m+1 or 6m+5. Indeed
any number of the form 6m, 6m + 2, 6m + 3 and 6m + 4 is divisible by either 2
or 3 and hence is composite.

Now note that a is a root of 22 + x + 1 if and only if a is a root of 23 — 1
that is not equal to 1; in fact, 2° — 1 = (z — 1)(2%? + 2 + 1).

So in the following, we look at the roots of f(x) = 2% — 1.

First we consider the case p = 6m + 5; any element a € Z/pZ satisfies
a%*t4 = gP~! = 1 modulo p. If a is also a root of f then we have a® = 1, and
SO

6m+4

H
1[I
—~ @

a3)2m+1a

— 1)2m+1a

Il
—~

Il
S

So the only root of f mosulo p is 1.

But if p = 6m+ 1, again any a € Z/pZ satisifies a?~! = a%™ = 1. This shows
that for any a € Z/pZ,a®™ is a root of f. So we only need to check whether
we can find a € Z/pZ such that a®™ # 1. But the polynomial 2™ — 1 is a
polynomial of degree 2m and hence has at most 2m roots over the field Z/pZ.
Now if we take a € Z/pZ to be any element other than these 2m roots then
a®™ # 1 and is a root of f. This shows that 22 + 2 4+ 1 has a root modulo any
prime of the form 6m + 1.

Below we list all the primes modulo which z? + = 4 1 has a root



{3,7,13,19,31, 37,43}

(8) We are looking for a polynomial of the form f(x) = 22 + Az + B € Z/6Z
with four roots. We can do that by finding two different factorizations of f into
linear factors

flx) = (z—a)(x-b) = (z —c)(x—d).
But to have such factorizations we should have
22— (a+b)x+ab=(z—a)(x—b) = (x—c)(z—d) =2 — (c+d)z + cd.
In other words, we want a,b, ¢, d € Z/6Z such that
a+b=c+d and ab=cd mod 6.
For example we can take a = 2,0 = 3,¢ = 0,d = —1 = 5, then f(x) =
(x=2)(x—3)=a?-bz+6=a?+z=a(xz+1).
Finally, his does not contradict the theorem mentioned, because the theorem

is about polynomials in F[z] for F' a field. But since 6 is not a prime, Z/6Z has
zero divisors and is not a field.

(9) a. We use the Euclidean algorithm

pt—ad -2+ 1= (:103—1) . (;U—l) +(—m2+x).
m?’—l:(—x2—|—m)-(—a:—1)+(a:—1)

2’ 4= (xfl) - —z +0
So we have
ged(zx* — 2% — 2 +1,2° — 1) = — 1.
And
r—1= -1+ (z+1)(—2* +2)
=@ -D+@+D)[a* -2 -2 +1) — (z - 1)(z® - 1)]
=@ -1DA-@*-1))+ @+ 1)@* —2® -2+ 1)
=@ -1D2-2)+ (x+1)(z* —2® 22 +1)
c.

ot 4323 20+ 4= (2% — 1) (w2 + 3z + 1) + (5 +5)
=2 - 1)(z2+3z+1) mod 5.

So z* 4 323 + 22 + 4 is divisible by 22 — 1, and hence

ged(z +32% + 22 4+ 4, 2% — 1) = 2% — 1.



We have
22 —1=0(z* +32° + 2z + 4) + 1(2* — 1).

e.

23 —x? +dr — 4o = (2% + 1) (2 — 1) + 3(z — 1)

22+ 1= (32 — 31)(x/3 +1/3)
So
ged(x® — 1 +4x — 4,22 +1) = 3(x — 1),
and

3(x —1) = (2® —12® + 4o — &) — (2% + 1)(z — ).

f.

e+ l=@ o+ D)2 —2)+22+1
=@+ D@2 —2)+1 mod 2

So 2 + 2 + 1 and 22 + 2 + 1 are coprime and we have
ged(z* + 2?2 + 1,22 + 2 +1) = 1.

Further
=@ +2+1) - (2 +z+1) (22 —2) mod 2.

(10) a. we know that for any field F' and any polynomial f(z) € Flz] if
f(a) = 0 for some a € F then f(x) = (z — a)g(x) for some g(z) € Flz]. In
particular take f(z) = a2 — x and F = Z/pZ. Note that by Fermat’s Little
Theorem, for every element a € Z/pZ, we have f(a) = 0. Take a = 0 to get
go € Flx] such that

f(z) = (z = 0)go(x).
Now since f(1) = 0 and (z — 0)(1) = 1 # 0 we deduce that go(1) = 0, and so
we have

go(z) = (= 1)gr(x),
and

f(x) = x(x = 1)gi ().
Proceeding inductively, if for 0 < n < p — 2 we have g, (z) € Z/pZ such that

f(z) = z(z = 1)...(x = n)gn(2),

since n+1 is a root of f but not a root of z(x—1)...(x —n), we deduce that n+1
is a root of g, and hence g,(z) = (z — (n 4+ 1))gn+1(z), for some polynomial
gn+1 over F. Continuing in this manner, we get

fl@) =2(@ = 1)..(z = (p = 1))gp-1(2)-



But g,—1 has degree 0 and both f and z(z — 1)...(x — (p — 1)) are monic poly-
nomials so g,—1 = 1. This gives the factorization

@’ —x=a(z —1)..(x - (p—1)),

of f into p — 1 linear factors.

b. a € F is a root of g if and only if (x — a) divides g. But we know that
(x — a) divides f anyway! So a is in fact a root if and only if (z — a) divides
ged(f, g).

Now if a,b € F are different roots, then (z — a) and (z — b) are relatively
prime, and so (x — a)|g(x) and (z — b)|g(x) implies (z — a)(x — b)|g(x) and so
again (z — a)(z — b)|ged(g(z), f(2)).

This implies that if aq,...aq are distinct roots of g then

(z = ay)...(x — aa)lged(g(x), f(2)).

Conversely, if z — a divides ged(g, f) it obviously divides g and so a is a root
of g and so is included among ay, ...aq. Note also that since ged(g(x), f(z))|f(x)
and f is factorizable into linear facors by (a), ged(g(x), f(z)) is also factorizable
to linear factors, sp by what we have seen it is factorizable to product of (z—a)’s
where a is a root. So we have

ged(g(@), f(2)) = (& — a1)...(z — aq).

c.The solution to this part of the question was discussed in detail in class,
and so is not included here.



