Basic Algebra 1
 Solutions to Assignment 3

Bahare Mirza

November 8, 2012
(1)

$$
\left.x^{2}+x+1\right) \begin{array}{r}
3 x^{2}-5 x+8 \\
\cline { 2 - 3 }+3 x^{4}-2 x^{3}+6 x^{2}-x+2 \\
-3 x^{4}-3 x^{3}-3 x^{2} \\
\frac{-5 x^{3}+3 x^{2}}{}-x \\
\frac{5 x^{3}+5 x^{2}+5 x}{8 x^{2}+4 x}+2 \\
\frac{-8 x^{2}-8 x-8}{-4 x-6}
\end{array}
$$

So $q(x)=3 x^{2}-5 x+8$ and $r(x)=-4 x-6$.
(2)

$$
\left.x^{2}+x+1\right) \begin{array}{rr}
& x^{3}-x^{2} \\
\begin{array}{l}
x^{5} \\
-x^{5}-x^{4}-x^{3} \\
-x^{4}-x^{3}
\end{array} \\
\frac{x^{4}+x^{3}+x^{2}}{x^{2}}-x+1 \\
\frac{-x^{2}-x-1}{-2 x}
\end{array}
$$

And $-2 x \equiv 0$ modulo 2 . So we get

$$
\begin{aligned}
\left(x^{5}-x+1\right) & \equiv\left(x^{2}+x+1\right)\left(x^{3}-x^{2}+1\right) & \bmod & 2 \\
& \equiv\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right) & \bmod & 2
\end{aligned}
$$

(3) First note that the function $f: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ assigns to each polynomial its value at 0 , i.e. $f(p)=a_{0}=p(0)$.
Now let $p_{1}, p_{2} \in \mathbb{Z}[x]$, be given by $p_{1}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $p_{2}(x)=$ $b_{0}+b_{1} x+\ldots+b_{m} x^{m}$, then

$$
\begin{aligned}
f\left(p_{1}+p_{2}\right) & =\left(p_{1}+p_{2}\right)(0) \\
& =p_{1}(0)+p_{2}(0) \\
& =f\left(p_{1}\right)+f\left(p_{2}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f\left(p_{1} p_{2}\right) & =\left(p_{1} p_{2}\right)(0) \\
& =p_{1}(0) p_{2}(0) \\
& =f\left(p_{1}\right) f\left(p_{2}\right) .
\end{aligned}
$$

(4) We proceed using Euclidean Algorithm; in the first step we get

$$
\left.x^{2}+1\right) \begin{array}{r}
x^{2}+3 x-1 \\
\begin{array}{r}
x^{4}+3 x^{3}-2 x+4 \\
-x^{4}-x^{2} \\
3 x^{3}-x^{2}
\end{array}-2 x \\
\frac{-3 x^{3}-3 x}{-x^{2}-5 x+4} \\
\frac{x^{2}+1}{-5 x+5}
\end{array}
$$

But $-5 x+5 \equiv 0$ modulo 5 , so we have

$$
x^{4}+3 x^{3}-2 x+4=\left(x^{2}+1\right)\left(x^{2}+3 x-1\right)
$$

hence $x^{4}+3 x^{3}-2 x+4$ is divisible by $x^{2}+1$ modulo 5 and so we have

$$
\operatorname{gcd}\left(x^{4}+3 x^{3}-2 x+4, x^{2}+1\right)=x^{2}+1 .
$$

(5) First we make the following claim:

Claim A polynomial of degree 3 in $F[x]$ is irreducible over F if and only if it has no roots in F.

Proof of the Claim If $f \in F[x]$ has a root t in F , then $(x-t) \mid f(x)$. So we have $f(x)=(x-t) g(x)$, for some $g \in F[x]$, of degree 2 . As neither $x-t$ nor $g(x)$ are unit or equal to $f(x)$ (not having degree 0 or 3,) this gives a decomposition of f. so if f has a root then it is reducible. Conversely, assume f is reducible, say $f=g h$ for some $g, h \in F[x]$ with $0<\operatorname{deg}(g), \operatorname{deg}(h)$. Then as $3=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(h)$, one of g and h should have degree 1 (and the other should be of degree 2.) So without loss of generality we can assume that $\operatorname{deg}(g)=1$; Let $g=r x+s$. Then we have $t=-s / r$ is a root of g and hence a root of f . This proves that if f is reducible then it has a root, or equivalently if f does not have a root, then it is irreducible.

Now going back to our problem; a monic polynomial of degree 3 in $\mathbb{Z} / 2 \mathbb{Z}$ is of the form

$$
f(x)=x^{3}+a x^{2}+b x+c,
$$

where $a, b, c \in\{0,1\}$ (a complete set of representatives $\bmod 2$.)
By the claim we just proved, f is reducible iff it has a root in $\mathbb{Z} / 2 \mathbb{Z}$ i.e. either $f(0)=0$ or $f(1)=0$. But $f(0)=c$ and $f(1)=1+a+b+c$. So f is reducible if and only if

$$
c=0
$$

or

$$
c=1 \quad \text { and } \quad a+b \equiv 1+a+b+1 \equiv 0 \quad \bmod \quad 2 .
$$

Note that the condition $a+b \equiv 0(\bmod 2)$ is equivalent to $a=b$.
We conclude that f is irreducible if and only if

$$
c \neq 0 \quad \text { and } \quad a \neq b .
$$

So the only irreducible polynomials of degree three in $\mathbb{Z} / 2 \mathbb{Z}$ are

$$
\begin{gathered}
x^{3}+x^{2}+1 \\
x^{3}+x+1
\end{gathered}
$$

(6) If $p=4 m+1$, then by Wilson's theorem we have $(4 m)$! $\equiv-1$, in other words $(4 m)!+1 \equiv 0$. So if we prove $a^{2} \equiv(4 m)$! modulo p then by the above congruence relation, we have shown that a is a root of the polynomial $x^{2}+1$ $\bmod \mathrm{p}$.

Note first that $4 m+1 \equiv 0$ modulo p which implies $2 m+i \equiv-2 m+(i-1)$ $(\bmod p)=-(2 m-(i-1))$. So we have the following congruences $\bmod \mathrm{p}$

$$
\begin{aligned}
(2 m+1) \ldots(2 m+(2 m-1))(2 m+2 m) & \\
& \equiv(-1)^{2 m}(2 m) \ldots(2 m-(2 m-2))(2 m-(2 m-1)) \\
& \equiv(2 m)(2 m-1) \ldots(2)(1) \\
& =(2 m)!.
\end{aligned}
$$

Which gives

$$
\begin{aligned}
(4 m)! & =(2 m)!(2 m+1) \ldots(2 m+2 m) \\
& \equiv(2 m)!(2 m)! \\
& =(2 m)!^{2},
\end{aligned}
$$

as desired.

Now assume $p=4 m+3$; any element $a \in \mathbb{Z} / p \mathbb{Z}$ satisfies $a^{4 m+2}=a^{p-1} \equiv 1$ modulo p. If in adition, a is a root of $x^{2}+1$, then we can substitute a^{2} in the first relation, by -1 to get

$$
\begin{aligned}
1 & =a^{4 m+2} \\
& =\left(a^{2}\right)^{2 m+1} \\
& =(-1)^{2 m+1} \\
& =-1,
\end{aligned}
$$

which is a contradiction. This shows that $x^{2}+1$ does not have a root in $\mathbb{Z} / p \mathbb{Z}$ for such p.
(7) First we consider the case of $p=2,3$ separately; we have

$$
\begin{aligned}
& 0^{2}+0+1=1 \\
& 1^{2}+1+1=3 \equiv 1 \quad \bmod \quad 2
\end{aligned}
$$

So, modulo 2, this polynomial has no roots. On the other hand, 1 is a root of $x^{2}+x+1$ modulo 3 .

Now any prime bigger than 3 is either of the form $6 \mathrm{~m}+1$ or $6 \mathrm{~m}+5$. Indeed any number of the form $6 m, 6 m+2,6 m+3$ and $6 m+4$ is divisible by either 2 or 3 and hence is composite.

Now note that a is a root of $x^{2}+x+1$ if and only if a is a root of $x^{3}-1$ that is not equal to 1 ; in fact, $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$.

So in the following, we look at the roots of $f(x)=x^{3}-1$.
First we consider the case $p=6 m+5$; any element $a \in \mathbb{Z} / p \mathbb{Z}$ satisfies $a^{6 m+4}=a^{p-1} \equiv 1$ modulo p. If a is also a root of f then we have $a^{3}=1$, and so

$$
\begin{aligned}
1 & \equiv a^{6 m+4} \\
& \equiv\left(a^{3}\right)^{2 m+1} a \\
& \equiv(1)^{2 m+1} a \\
& \equiv a
\end{aligned}
$$

So the only root of f mosulo p is 1 .
But if $p=6 m+1$, again any $a \in \mathbb{Z} / p \mathbb{Z}$ satisifies $a^{p-1}=a^{6 m}=1$. This shows that for any $a \in \mathbb{Z} / p \mathbb{Z}, a^{2 m}$ is a root of f. So we only need to check whether we can find $a \in \mathbb{Z} / p \mathbb{Z}$ such that $a^{2 m} \neq 1$. But the polynomial $x^{2 m}-1$ is a polynomial of degree $2 m$ and hence has at most $2 m$ roots over the field $\mathbb{Z} / p \mathbb{Z}$. Now if we take $a \in \mathbb{Z} / p \mathbb{Z}$ to be any element other than these $2 m$ roots then $a^{2 m} \neq 1$ and is a root of f . This shows that $x^{2}+x+1$ has a root modulo any prime of the form $6 m+1$.

Below we list all the primes modulo which $x^{2}+x+1$ has a root

$$
\{3,7,13,19,31,37,43\} .
$$

(8) We are looking for a polynomial of the form $f(x)=x^{2}+A x+B \in \mathbb{Z} / 6 \mathbb{Z}$ with four roots. We can do that by finding two different factorizations of f into linear factors

$$
f(x)=(x-a)(x-b)=(x-c)(x-d) .
$$

But to have such factorizations we should have

$$
x^{2}-(a+b) x+a b=(x-a)(x-b)=(x-c)(x-d)=x^{2}-(c+d) x+c d .
$$

In other words, we want $a, b, c, d \in \mathbb{Z} / 6 \mathbb{Z}$ such that

$$
a+b \equiv c+d \quad \text { and } \quad a b \equiv c d \quad \bmod \quad 6 .
$$

For example we can take $a=2, b=3, c=0, d=-1 \equiv 5$, then $f(x)=$ $(x-2)(x-3)=x^{2}-5 x+6 \equiv x^{2}+x=x(x+1)$.

Finally, his does not contradict the theorem mentioned, because the theorem is about polynomials in $F[x]$ for F a field. But since 6 is not a prime, $\mathbb{Z} / 6 \mathbb{Z}$ has zero divisors and is not a field.
(9) a. We use the Euclidean algorithm

$$
\begin{aligned}
x^{4}-x^{3}-x^{2}+1 & =\left(x^{3}-1\right) \cdot(x-1)+\left(-x^{2}+x\right) . \\
x^{3}-1 & =\left(-x^{2}+x\right) \cdot(-x-1)+(x-1) \\
-x^{2}+x & =(x-1) \quad \cdot \quad-x+0
\end{aligned}
$$

So we have

$$
\operatorname{gcd}\left(x^{4}-x^{3}-x^{2}+1, x^{3}-1\right)=x-1
$$

And

$$
\begin{aligned}
x-1 & =\left(x^{3}-1\right)+(x+1)\left(-x^{2}+x\right) \\
& =\left(x^{3}-1\right)+(x+1)\left[\left(x^{4}-x^{3}-x^{2}+1\right)-(x-1)\left(x^{3}-1\right)\right] \\
& =\left(x^{3}-1\right)\left(1-\left(x^{2}-1\right)\right)+(x+1)\left(x^{4}-x^{3}-x^{2}+1\right) \\
& =\left(x^{3}-1\right)\left(2-x^{2}\right)+(x+1)\left(x^{4}-x^{3}-x^{2}+1\right)
\end{aligned}
$$

c.

$$
\begin{aligned}
x^{4}+3 x^{3}+2 x+4 & =\left(x^{2}-1\right)\left(x_{2}+3 x+1\right)+(5 x+5) \\
& \equiv\left(x^{2}-1\right)\left(x_{2}+3 x+1\right) \quad \bmod \quad 5 .
\end{aligned}
$$

So $x^{4}+3 x^{3}+2 x+4$ is divisible by $x^{2}-1$, and hence

$$
\operatorname{gcd}\left(x^{4}+3 x^{3}+2 x+4, x^{2}-1\right)=x^{2}-1 .
$$

We have

$$
x^{2}-1=0\left(x^{4}+3 x^{3}+2 x+4\right)+1\left(x^{2}-1\right) .
$$

e.

$$
\begin{aligned}
x^{3}-\imath x^{2}+4 x-4 \imath & =\left(x^{2}+1\right)(x-\imath)+3(x-\imath) \\
x^{2}+1 & =(3 x-3 \imath)(x / 3+\imath / 3)
\end{aligned}
$$

So

$$
\operatorname{gcd}\left(x^{3}-\imath x^{2}+4 x-4 \imath, x^{2}+1\right)=3(x-\imath)
$$

and

$$
3(x-\imath)=\left(x^{3}-\imath x^{2}+4 x-4 \imath\right)-\left(x^{2}+1\right)(x-\imath) .
$$

f.

$$
\begin{aligned}
x^{4}+x+1 & =\left(x^{2}+x+1\right)\left(x^{2}-x\right)+2 x+1 \\
& \equiv\left(x^{2}+x+1\right)\left(x^{2}-x\right)+1 \quad \bmod \quad 2
\end{aligned}
$$

So $x^{4}+x+1$ and $x^{2}+x+1$ are coprime and we have

$$
\operatorname{gcd}\left(x^{4}+x^{2}+1, x^{2}+x+1\right)=1 .
$$

Further

$$
1 \equiv\left(x^{4}+x+1\right)-\left(x^{2}+x+1\right)\left(x^{2}-x\right) \quad \bmod \quad 2 .
$$

(10) a. we know that for any field F and any polynomial $f(x) \in F[x]$ if $f(a)=0$ for some $a \in F$ then $f(x)=(x-a) g(x)$ for some $g(x) \in F[x]$. In particular take $f(x)=x^{p}-x$ and $F=\mathbb{Z} / p \mathbb{Z}$. Note that by Fermat's Little Theorem, for every element $a \in \mathbb{Z} / p \mathbb{Z}$, we have $f(a)=0$. Take $a=0$ to get $g_{0} \in F[x]$ such that

$$
f(x)=(x-0) g_{0}(x) .
$$

Now since $f(1)=0$ and $(x-0)(1)=1 \neq 0$ we deduce that $g_{0}(1)=0$, and so we have

$$
g_{0}(x)=(x-1) g_{1}(x),
$$

and

$$
f(x)=x(x-1) g_{1}(x) .
$$

Proceeding inductively, if for $0 \leq n \leq p-2$ we have $g_{n}(x) \in \mathbb{Z} / p \mathbb{Z}$ such that

$$
f(x)=x(x-1) \ldots(x-n) g_{n}(x),
$$

since $n+1$ is a root of f but not a root of $x(x-1) \ldots(x-n)$, we deduce that $n+1$ is a root of g_{n} and hence $g_{n}(x)=(x-(n+1)) g_{n+1}(x)$, for some polynomial g_{n+1} over F. Continuing in this manner, we get

$$
f(x)=x(x-1) \ldots(x-(p-1)) g_{p-1}(x) .
$$

But g_{p-1} has degree 0 and both f and $x(x-1) \ldots(x-(p-1))$ are monic polynomials so $g_{p-1}=1$. This gives the factorization

$$
x^{p}-x=x(x-1) \ldots(x-(p-1))
$$

of f into $p-1$ linear factors.
b. $a \in F$ is a root of g if and only if $(x-a)$ divides g. But we know that $(x-a)$ divides f anyway! So a is in fact a root if and only if $(x-a)$ divides $\operatorname{gcd}(f, g)$.

Now if $a, b \in F$ are different roots, then $(x-a)$ and $(x-b)$ are relatively prime, and so $(x-a) \mid g(x)$ and $(x-b) \mid g(x)$ implies $(x-a)(x-b) \mid g(x)$ and so again $(x-a)(x-b) \mid g c d(g(x), f(x))$.

This implies that if $a_{1}, \ldots a_{d}$ are distinct roots of g then

$$
\left(x-a_{1}\right) \ldots\left(x-a_{d}\right) \mid g c d(g(x), f(x)) .
$$

Conversely, if $x-a$ divides $g c d(g, f)$ it obviously divides g and so a is a root of g and so is included among $a_{1}, \ldots a_{d}$. Note also that since $\operatorname{gcd}(g(x), f(x)) \mid f(x)$ and f is factorizable into linear facors by (a), $\operatorname{gcd}(g(x), f(x))$ is also factorizable to linear factors, sp by what we have seen it is factorizable to product of $(x-a)$'s where a is a root. So we have

$$
\operatorname{gcd}(g(x), f(x))=\left(x-a_{1}\right) \ldots\left(x-a_{d}\right)
$$

c. The solution to this part of the question was discussed in detail in class, and so is not included here.

