
Basic Algebra 1

Solutions to Assignment 2

October 14, 2013

(1) R = {a + b
√
−5|a, b ∈ Z} is a subset of the complex numbers. Any two

elements of R, then, can be added and multiplied as elements of C, with the
result of each operation, an element of C. But does the sum and the multiple
belong to R? Let us check: Take a + b

√
−5 and c + d

√
−5 in R (a, b, c, d ∈ Z)

(a + b
√
−5) + (c + d

√
−5) = (a + c) + (b + d)

√
−5 ∈ R,

and

(a + b
√
−5)(c + d

√
−5) = ac− 5bd + (ad + bc)

√
−5 ∈ R.

since a + c, b + d, ac− 5bd, ad + bc ∈ Z.
So R is endowed with the addition and multiplication operations, which in-

herit many of their properties, namely commutativity, associativity of addition
and multiplication and distributivity, from the corresponding properties of ad-
dition and multiplication on the complex numbers; for example for x, y ∈ R,
since x, y ∈ C we have x + y = y + x in C which implies that the equality also
holds in R.

Now the neutral elements of addition and multiplication in C (0 and 1 resp.)
are elements of R, (0 = 0+0

√
−5 and 1 = 1+0

√
−5,) and for any a+ b

√
−5, its

additive inverse in C, (−a)+(−b)
√
−5 is also in R. This proves that addition and

multiplication of R has neutral elements and any element in R has an additive
inverse in R. So R is a ring.

Now we prove that p = 3 is a prime (with the given definition); assume e is
a divisor of 3, so that 3 = ef for some f ∈ R. We should show that e = ±1 or
±p.

First we introduce the following auxiliary map from R to Z.

n : R→ Z

n(a + b
√
−5) = a2 + 5b2.

One can check by direct computation that for any a, b, c, d ∈ Z,

n((a + b
√
−5)(c + d

√
−5)) = n(a + b

√
−5)n(c + d

√
−5).
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Let e = a + b
√
−5 and f = c + d

√
−5 for a, b, c, d in Z. Then

9 = n(3) = n(ef) = n(e)n(f) = (a2 + 5b2)(c2 + 5d2).

Thus, by unique factorization in Z, we deduce n(e) = a2 + 5b2 should be 1, 3 or
9. Let us consider each case separately;

If a2 + 5b2 = 3, then b is necessarily zero since otherwise a2 + 5b2 would be
bigger than 3, as a2 and b2 ≥ 0. But then we should have a2 = 3 but there is
no a ∈ Z that solves this equation and so there is no e ∈ R with n(e) = 3. So
n(e) is either 1 or 9.

If a2 + 5b2 = 1, we should have b = 0 by the same argument as above, and
hence a = ±1. So e = ±1.

If a2 + 5b2 = 9, then c2 + 5d2 = 1 and hence by the above case f = ±1 and
as 3 = ef we have e = ±3. This concludes the proof that 3 is prime.

Now observe that 3 divides (1 +
√
−5)(1−

√
−5) = 6 but 3 does not divide

neither 1 +
√
−5 nor 1 −

√
−5 since n(3) = 9 does not divide n(1 +

√
−5) =

n(1−
√
−5) = 6.

(2) a. We want to solve the equation 4x ≡ 3 mod 7. We first observe that
4 and 7 are relatively prime (so we know the equation has a unique solution
mod 7,) and so 4 is invertible in Z/7Z. In fact, one can easily observe (or use
Euclidean algorithm, if one wishes!) that 1 = 2 ∗ 4 + (−1) ∗ 7 and so 2 is the
inverse to 4 mod 7. Now we multiply both sides of the equation to get

(2)(4x) ≡ (2)(3) = 6 mod(7).

But the left hand side is congruent to x and so we have

x ≡ 6 mod(7).

b. To solve 5x ≡ 2 mod 11, we again have gcd(5, 11) = 1 and that (−2) ∗
5 + 1 ∗ 11 = 1 and hence 5−1 = −2 in Z/11Z. So we multiply both sides of the
equation by −2 to get

x ≡ (−2)(5x) ≡ (−2)(2) = −4 ≡ 7 mod(11).

c. 3x ≡ 6 mod 15
Here gcd(3, 15) = 3, which divides 6. So we know that the equation has 3

solutions mod 15. To solve the equation we look at the auxiliary equation x ≡ 2
mod 5, which is gotten by dividing the original equation (including the modulus)
by 3=gcd(3,15). But this equation has the obvious solution x ≡ 2 mod 5, which
mod 15 has the following three solutions; 2 , 2+5=7 and 2+2*5=12.

d. 6x ≡ 14 mod 21 This time we have gcd(6, 21) = 3 but 3 does not divide
14. So this equation has no solution mod 21.
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(3) We wish to show that a5 ≡ a mod 30. But this is equivalent to showing
that 30 divides a5 − a.

We have 30=2*3*5. Since (2,3)=(2,5)=(3,5)=1, to show 30 divides a5− a it
suffices to show a5 − a is divisible by any of the three primes, 2, 3 and 5.

We have

a5 − a = a(a4 − 1) (1)

= a(a2 + 1)(a2 − 1) (2)

= a(a2 + 1)(a− 1)(a + 1) (3)

From (3) we can see that a5 − a is divisible by 2, since one of the two
consecutive integers a and a + 1 are even and hence divisible by 2. Also one of
the three consecutive integers a− 1, a and a + 1 is divisible by 3 and so a5 − a
which is divisible by the multiple of the three numbers is also divisible by 3.

To prove a5−a is divisible by 5 we use (2) and will show that either a, a2−1
or a2 + 1 is divisible by 5; If a is not divisible by 5, then a ≡ ±1 or ±2 mod
5 (since {0,±1,±2} is a complete set of residues mod 5). So a2 ≡ (±1)2 = 1
or (±2)2 = 4 ≡ −1 mod 5. In the first case a2 − 1 is divisivle by 5 and in the
second case a2 + 1 is divisible by 5.

(4) First, by FLT we know that for any integer not divisible by 13 we have
a12 ≡ 1 mod 13.

claim For any such a the smallest positive integer, d, such that ad ≡ 1 mod
13, is a divisor of 12.

Proof Assume d=12q+r for 0 ≤ r < d. If r 6= 0, we’d have

1 = a12 = adq+r = (ad)qar = 1qar = ar.

But this is a contradiction, since we have assumed that d is the smallest positive
integer such that ad ≡ 1. So r = 0 and 12 is divisible by d.�

Now for any given a if the corresponding d equals 12 then the set {1, a, a2, ..., a11}
cotains exactly twelve distinct non-zero residues mod 13, since if ai ≡ aj mod
13, for 0 ≤ i < j ≤ 11, as a is invertible (not divisible by 13) we would have
aj−i ≡ 1 which contradicts the fact that ad=12 is the smallest power of a that
equals 1. This says that the set {1, a, a2, ..., a11} contains exactly the non-zero
elements of Z/13Z, and so every non-zero element can be written as a power of
such a.

So for example 2 is one such number since 22 = 4, 23 = 8, 24 = 16 ≡ 3 and
26 = 2422 ≡ 12 ≡ −1 and so (using the claim above) 212 is the smallest positive
power of 2 that equals 1. (Of course you could have written down all powers
of 2 up to 11 and observed that none of them equals 1. But for primes bigger
than 13, using the claim might be a better idea!)
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But there exist no such number in Z/24Z, since if a is a non-zero residue
mod 24, if it is prime to 24, then all powers of a will be prime to 24 and so
for example the class of 2 cannot be equal to any power of a. And if a was not
prime to 24, then any power of a will also be not prime to 24 so for example 5
cannot be expressed as a power of such a.

(5) a2 = b2 in Z/nZ is equivalent to n|a2 − b2. But if n is a prime and
n|a2− b2 = (a− b)(a+ b) then by Gauss’ Lemma n|a− b or n|a+ b which means
that in Z/nZ either a = b or a = −b.

But take n = 21 = 3 ∗ 7, and a = 10 and b = 4. Then a2 = 100 ≡ 16 = b2

mod 21, but 10 6≡ 4 and 10 6≡ −4 mod 21.

(6) Invertible elements in Z/24Z = {0, 1, ..., 23} are all the elements in the set
that are prime to 24,i.e.

{1, 5, 7, 11, 13, 17, 19, 23}.

And similarly invertible elements in Z/9Z are

{1, 2, 4, 5, 7, 8}.

(7) The idea is to compute 2437 in Z/437Z and observe that it is not equal to
2 in this ring. Whereas if 437 was a prime, by FLT 2437 would be congruent to
2 mod 437.

To do the computation we first write 437 in base 2;

437 = 256 + 128 + 32 + 16 + 4 + 1 = 28 + 27 + 25 + 24 + 22 + 1.

Then we have

2437 = 22
8+27+25+24+22+1 = 22

8

22
7

22
5

22
4

22
2

21.

So it suffices to compute 22
i

mod 437 for 0 ≤ i ≤ 8. So we list these values
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below (using a calculator and observing that 22
i

= 22
(i−1)2 = (22

(i−1)

)2)

i = 0 : 22
i

= 2

i = 1 : 22
i

= 4

i = 2 : 22
i

= 16

i = 3 : 22
i

= 256

i = 4 : 22
i

= (256)2 ≡ −14

i = 5 : 22
i

≡ (−14)2 ≡ 196

i = 6 : 22
i

≡ (196)2 ≡ −40

i = 7 : 22
i

≡ (−40)2 ≡ 289

i = 8 : 22
i

≡ (289)2 ≡ 54

So we have

2437 = 22
8

22
7

22
5

22
4

22
2

21

= 54 ∗ 289 ∗ 196 ∗ (−14) ∗ 16 ∗ 2

≡ 279

6≡ 2

So 437 is not a prime.

(8) First note that 1729 = 7 ∗ 13 ∗ 19. To prove that for all a, a1729 ≡ a mod
1729, we should show that 1729 divides a1729−a, and for that it suffices to show
that any of the primes 7, 13 and 19 divides a1729 − a, or a1729 ≡ a mod p for
p=7, 13 and 19.

case p=7 If (a, 7) = 1, we know a6 ≡ 1, mod 7, by FLT, and that 1729 =
288 ∗ 6 + 1, so

a1729 = (a6)288a ≡ (1)288a = a. mod 7.

And if 7|a then a1729 ≡ 0 ≡ a mod 7.

case p=13 Again if (a, 13) = 1, a12 ≡ 1 mod 13 and 1729 = 12 ∗ 144 + 1, so

a1729 = (a12)144a ≡ (1)144a = a. mod 13.

And if 13|a, then a1729 ≡ 0 ≡ a.
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case p=19 If (a, 19) = 1, a18 ≡ 1 mod 19 and 1729 = 18 ∗ 96 + 1, so

a1729 = (a18)96a ≡ (1)96a = a. mod 19.

And if 19|a, then a1729 ≡ 0 ≡ a.

(9) Assuming p is an odd prime, we have (p−1)/2 ∈ Z and so b = a(p−1)/2 ∈ Z.
Now b2 = ap−1 ≡ 1 mod p, and so b is a root of the polynomial f(x) = x2 − 1
in Z/pZ.

But f is a polynomial of degree 2 and so has at most two roots in the field
Z/pZ. Since 1 and −1 are roots of f in this field, this implies that b should be
equal to one or the other. so b = ±1.

For the second part of the question, again we observe that if p − 1 = 2rm,
then (p − 1)/2i is an integer for all 0 ≤ i ≤ r, and the sequence in question is

a sequence of integers. Now if we set bi = a(p−1)/2i , then we have b0 ≡ 1, by
FLT, so the sequence starts with a one. Further, bi = b2i+1, so if bi ≡ 1 then
bi+1 is a root of f mod p and so is congruent to ±1, by the discussion above.
This proves that the sequence starts with a sequence of 1’s (mod p) and then
the first one that is not congruent to 1, should be -1.

To check that this does not hold for p = 1729 we write p− 1 = 1728 = 2627.
Then we look at the sequence

(21728, 21728/2, ..., 21728/2
4

, 21728/2
5

, 21728/2
6=27),

and will see that mod p it equals (1, ..., 1,−664, 645). So unlike the case where
p was a prime, here the first entry after the string of 1’s, is not -1.

To compute 227 we use the same method as in question(7). We have the
following table

i = 0 : 22
i

= 2

i = 1 : 22
i

= 4

i = 2 : 22
i

= 16

i = 3 : 22
i

= 256

i = 4 : 22
i

= (256)2 ≡ −166.

So b6 = 227 = 216+8+2+1 = 22
4

22
3

222 equals (−166) ∗ 256 ∗ 4 ∗ 2 ≡ 645.
Then b5 ≡ b26 ≡ (645)2 ≡ −664.
And b4 ≡ b25 ≡ (−664)2 ≡ 1.
Obviously because of the recursive formula, all the entries to the left of b4

are 1.
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(10) So let’s look at the set of all people whom the mathematician loves; let’s
call this set A. But then by the mathematician’s description, this set coincides
with the set of all people who don’t love him! Let’s call this latter set B. So we
have

A = {people whom the mathematician loves}
B = {people who don’t love the mathematician}

and we know A = B.
Now let’s see whether the mathematician himself belong to the set A or not!

Does he love himself or not?!
If he loves himself, then he belongs to the set A. But then he cannot belong

to the set B since this set contains only people who don’t love him! But A = B
and that’s a contradiction!

Similarly, if he doesn’t love himself, then he doesn’t belong to the set A. But
he belongs to the set B and again this contradicts the fact that A = B.
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